—
——
—
N
—
——
P
0
—

UniBasic

REFERENCE GUIDE
version8

UniBasic Reference Guide



This document is intended for users of UniBasic IRIS or UniBasic BITS.

Information in this document is subject to change without notice and does not represent a commitment on the part of
Dynamic Concepts Inc. (DCI). Every attempt was made to present this document in a complete and accurate form. DCI
shall not be responsible for any damages (including, but not limited to consequential) caused by the use of or reliance
upon the product(s) described herein.

The software described in this document is furnished under a license agreement or nondisclosure agreement. The
purchaser may use and/or copy the software only in accordance with the terms of the agreement. No part of this guide
may be reproduced in any way, shape or form, for any purpose, without the express written consent of DCI.

© Copyright 2006 Dynamic Concepts Inc. (DCI). All rights reserved.

UniBasic is a trademark of Dynamic Concepts Inc.

dL4 is a trademark of Dynamic Concepts Inc.

Dynamic Windows is a trademark of Dynamic Concepts Inc.

BITS is a trademark of Dynamic Concepts Inc.

IRIS is a trademark of Point 4 Data Corporation.

c-tree is a trademark of Faircom.

1Q is a trademark of 1Q Software Corporation.

Windows is a trademark of Microsoft Corporation.

AlX is a trademark of International Business Machines Corporation.
SCO is a registered trademark of The Santa Cruz Operation, Inc.

UniBasic Reference Guide



Table of Contents i

ADOUL ThIS GUIL oo e 1

(070 01V 01 1T TP U TR 2
Installation & Configuration.........c.c.ccccoeveiiiiiiiie .3
Configuring UNIX FOr UNIBASIC ......c.voviiiiiiitiitiiete sttt ettt h ettt b ettt sb ettt b et e ebe et abe et e b e 3
INUMDET OF PIOCESSES ...ttt ettt bbbt bt bt et e e ee e b e s bt e b e e b e e Rt e st e b e b e eeeeb e e b e ebeebe e bt eme e e e benbesbeneas 3
NUMBET OF OPEN FIIES ...ttt et et e et eeReess e e et e be e et e besbeeteeseenee e e beneesrenrs 3
NUMDBET OF OPEN I-NOUES .....eeeveeesies ettt st et e s s s e e se e e e ee st e besae et e eseeseeseensesteaneateaneenee e enseneenrenrn 4

(N ULl 0T o oo PSSRSO 4
IMIESSAGE QUEBUES ...ttt sttt ettt etttk e ke e bt e s e e s e e bt e she e eb 24 bt 4R e e eh e £ AR £ 2 b £ 2 a b e 2R ke ehH e nE £ e eE e e ebe e ke eme e eheeebeeabeenbeanbensbenbeens 4
UnixX AcCouNting & ProteCIION SYSIEM .......iiviiiiiie ittt ettt e et e e et e e et e besbe st e s tesae et e e e enbeneeseenrs 6
Creating @ UnixX ACCOUNTE FOF UNIBASIC........ccviveieeiiesesesiesestesese e e saes et ste e stesse s e esaeaessesaesaessesbesnesneanaeneesaenseneessenses 6
UNIBAaSIC SECUNLY & LICENSING .....veviiteiieteititiete ettt ettt bbbt b et b e bbb bbbtk n bt et s bt et sb et et n e 6
o) U T L I Tor=T Y[ o o OO SO POUTTUUURURURRORPURPRN 7

[ F T I Tor=Y TSy oo SRS 8
L0ading the INSTAIIAtION FIl........c.ciiiiieie ettt e se e s et e e tesresteenees e e e enseneennenrn 8
Loading the UniBasiC INSTAHAtioN FIlE ...........ccooiiiiiiiise bbb 9
Loading the UniBasiC DeVElOPMENT FlB.........ociiiie ettt e bbb 10
ubinstall - Installing UNIBaSiC PACKAGES; .......cceiviiriiieieieiieieseste e ste s e e e e ae st et ste s e ssaesae e estesaesbesbesaseteeneenteseesrestesnens 11
Errors DUMNG INSTAHALION ......ccuicieice sttt na et e e ee e e et sneeteeneeneeseeteneesrenns 14
Configuring @ UniBasiC ENVIFONMENT ..ottt sb bbbt b et sb et 15
DIreCtOrIES ANG PAENS ...ttt e bbbt h et et b e b e b e b e e b £ e ae e s e e b e nbeebeeb e s beebe et e eneenbenaesbenbesbeas 15
FIlenames and PAtNAMES...........oviiiiiiiieie sttt e s bt s b e e st b st b b s et et n b et e ne st s 16
Organizing Logical UNits and PACKNAMES.........uiiviieieieieiesesieseeteeeeie e se e sreste e eaesae e sresressesnaeseeseenseseessessens 16
ENVIFONMENT VATTADIES ..ot sttt b s et e e se e be st sbeeteeneeseeseeneseesnennes 17
Setting up .profile FOr MUIIPIE USEES ... ..ot e b e bbbttt e et e b e 26
(000 T 0= Lo I T TN ) = o ] O SOUSRS 27
Launching UNIBAaSIiC FIOM UNIX; ..oviieiiiiieii sttt seesae et e sttt stestesseesaesaensesaestestesaesnesseasaesaessenseseessessenns 27
Terminating 8 UNIBASIC PIOCESS. .......ciutiieiiieiieieite ettt stttk r et b e st b e bbbt st b e e bt et e eb e e et e ebe e et e ebennebeare e 28
Licensing @ NEeW INSTAITALION; .........co.oiiiii ettt b e bbb et e b e e e e b seesbe e 29
Changing the SSN ACHVALION KBY .....ccuiiiiiiiitiie ettt e e st et e s te s besteese e s e e s et e see st e sbesaeeteeneenbeseestesrennens 30
Launching UNIBasiC POtS At STAMTUD. ......ccuieiieeiicieiteste e sie et e e sttt te e re e e e e e e tesaesnesreanaenae e enseseennenreens 31
CONFIGUITNG PRINTEE DIIVETS. . .c.eitiiteiiitestee ettt bttt b etk h etk b et b e bbbt b e e b st ekt e b et et s bt et e eb et et e nrns 33
CONTIGUITNG SEFIAI PIINTEIS ... ettt ettt b et et e b s b e bt bt b e e b e e Rt e st e e e nbeseeebenbeebeebeeneenbesbeabesbenneas 35
ConfigUIING TEIMUNAL DIIVEIS .....ecuiciieiiie ettt ettt et et e teete e e et e te st e besbeeteeseessesee e esbeseeabesbesaeeteensenteseesresteaneas 36
Creating a Customized INStAllation MEAIA..........ccveiiriiieiiri ettt e e saesresrenneas 36
Introduction To UNIBaSIC .......cccocevveiiiiiiiiiii e, 38
I - ST PP T ST OPR PR 38
INUMEITC DALA. ...ttt ettt b e et b e ekt b et b e b e bt e b et ekt e b et eb e e b e e e b e e b e e et e eb et et e e bene et e abe st ebeabeneas 39

[N TU T ol o T 1Y o o SO 39
Special Notes 0N %3 aNd Y06 NUMETICS ....c.eiviiuiiiiieie ettt b ettt e e seesbe s besbesbe s e ene e st e nbesbe b 40
Integers Stored in Floating-Point Variables ... et sne s 41
String Data and LIterals ="Str it .........coie ittt r e et nrenre e 41
CRT Mnemonics and EXPreSSIONS = CIEEXPI ...c..cuiiiiirieieiiiteieeste ettt bbbt sb et bbbt nn e 41
Statements, Statement NUMDErS & LALEIS .........ooiiiiiii e ettt 42
IMMEAIALE IMIOUE ... ettt et ettt b et e b e bt e b s b et e b e b et e b e s b et e b e b et e be st et e besbeneetenbns 42
Y1021 0 1= 0T N0 0] 2T o S 42
MUILIPIE-STAEEMENT LINES .....vieeiictiieeete ettt bbb bbbtk b etk e b etk e b e et e e b e et e abe et e ene e 43
Inserting, Changing & Deleting StAEIMENTS ........c.oiiiiii et st see b e 43
AT o] LTSS 44
Variable Naming CONVENTIONS .......cviviieieiiieie sttt et e et e e ste s be s reaseereesseseeseestestesaeaseeneeneeneenseneeanens 44
SUDBSCIIPLEA WAITADIES ..ot bbb bbbt b et bbbt n e 45
ATTAYS ANT IMTBLFICES. ...ttt ettt e ettt b e bt b e e s e e e e b e b e eh e e b e e bt e Rt e R e e mbeh e e ee e b e ebeebe et e e meenbenbenbenbenneas 45
Numeric, Array and MatriX VariabIeS ..........cccoiiiiiiii ittt ettt e et e beene e s e e e et e sresresre e 46

UniBasic Reference Guide



Table of Contents i

Automatic Dimensioning NUMETIC VariabIeS.........cccviviieiiiieie sttt snennesnenne s 46
Re-Dimensioning NUMEIIC VariablS..........coi it bbb 47
SEANG VANADIES ...t b bbb et e b e b s bt e bt e bt e bt e b e e Rt e R b e se et e e b e e bt ebeeneen b e nnenbesbeebennis 47
Y0 TSt T o (=10 IS 1 1SS 48

R L N - Y SR 48
Dimensioning SrNG VariADIES.........cviiiiiiier et bbbttt eb e et b e et abe et e b e 48
Re-Dimensioning StriNG Vari@DIS.........c.coiiiiiiiiii et e bbbt sn bbb e 48
(O] (= (0] 4TSS 49
L@ 0T 1o g o =T0T=To [T o o ST 49
OPerator PreCeABNCE TaBIE..... ..ot bbbt et b e e bt b e et e sbe et e abe e 49
Predefined BASIC FUNCHIONS ......oiuiiiiiiiie ettt sttt bbbt h e st e e et sb e b e bt sb e e b e e Rt ene e e e nbeseesbenes 50
OPErators USEA IN EXPIESSIONS;....uecuveeeieitisteitesteateseestetestestestestesseaseaseesessessessestesteaseassassessesseseeatessesseaseessesseseessessensens 55
L T TV @ o =T = (o] £ SO 56
AFTNMELIC OPEIALOrS ™ * ] %0 F - oottt b et b et et b et b et b e 56
CoNCAENALION OPEIALOIS F | .oeiiiiiiiiieie ittt ettt e et et be b be bt bt e st eae e eeeb e besbeeb e e b e ehe e R e e e e besEeebeebeebeeb e e e enbeneeebenre e 56
Relational OPErators = <> > ST < KoLt b et e e ae et e e e et e tesbe e beeReerbe e e nteneenrenres 56
Boolean Operators AND OR.......ciiioeiire ettt e e et e s te st e s besseeseeseeseessessestesseareaneeneeseenaenreaneas 57
SEIING OPEIALOTr USTNG ..ottt bbbk b ekt b et b bbbt b et et b et b n e 57

[ T=] [0l LTSl ] o] (o] £SO 58
T Lo T o O T - Tox (=] £SO 58

L T O g U= Tod TS 58

N LU T ol O 4 s Ut £SO 59

LO70] 11111 F- L T U TP U TP U U PP URTURRPRO 59
DECIMAL POINES.......teitite ittt sttt sttt bbbt s b et ebe s b e st be s e e bt e b e b e b e e b s b et e be s b et e besb et ebesbe st ebenrens 60
0TS A T 1SS 60
NUMEITIC SPIIT.... ettt bbbttt bbbtk e bt b e s b e Rt e bt b et bt b et et e eb et et e s bt be b 60
Y[ lo O] oL L] g 1 OV RURU SRR 61

N UL T ol ot (=TT o] SO 61
YT ST o =T [0 4SS 61
RuUleS GOVEINING STHNG PrOCESSING ... c.civeeieiitiietiitestet sttt bbb bbb bbbt bbb bt bbb nn e 62
[0 AN Lo | 1 1] £ SO PRI 63
UniBasiC FIleS .....cccoooiiiiiiii i ee00n.. 0D
a1 o [T ol a1 0T T [OOSR 66
FIlenames and PAtiNAIMES............oiiiii ettt bbbttt et e b e b se e b e bt eb e et e bt e s e e e ebesbesbesbe e 67
File Attributes, Protection and PErMISSIONS. ........cciiiiiiiriiieirieei sttt sttt et sttt b 67
L0 LY [T TN L IS (0] (=1 £ o] S 68
Using UnixX PermissSions DIFECTIY .........oiiiiiiiiiiiieiseet ettt bbbt 68
BITS ALTIDULES ...ttt ettt et b ekt b e b e bt e b et e b e ke e b e e b e b e eb e e e e m b e ebeeb e s b e ebtabeeneenbeneenbenbesneas 68
Supplemental ProteCtion ATTOULES ........cc.ciiiiii st e et e st e tesaeete e e enbesrestesre e 69
Accessing Data Files Through @ Channel...........vcveeoiiiiise ettt re e e e seenre e e 70
Channel EXPreSSION = CRNMLEXPE ..ottt ettt bbbt bbb bbbt b et nn e 71

L Too] o I oot (13 Vo OO PSSO UP TP 72
L= 1L OO PSSO PP PRPRPRTPN 73
(@R = LT g0 I3 LTSS 73
ACCESSING TEXE FIIES. ...ttt bbb bbbtk bbbt b e bt et e b et et s b ettt b et et b 73
SAVEA BASIC Program FIlES ... ..ottt bbb b b et h e e b e bbb et ene e b besbesbeees 74
(0001 ([0 [V ToTU I B L W [T RSSO SR 74
Creating CoNtIGUOUS FIIES ......oiiiiiiie ettt sttt e et e st et e s aeeteese e s e seestesteaneene e e enteneeneenre e 75
ACCESSING CONLIGUOUS FIIES.....cviiieeieiiie bbbttt b et b et b et b et ebns 75
TrEE-SErUCTUIEU DAtA FIIES. ... cvi ittt bbbt bt bt et e s e e e e b e s bt bt e b et en e e e e besbesbeees 75
Creating Tree-SITUCLUIEA FIIES ......cviieie ittt et e e e et e be st e st e s tesaeete e e enbeseesrenre e 76
ACCESSING TrEE-SEIUCTUIEA FIIES.....cuvieiie ettt e e te s e e e tesreeteeneeneenaenreneenneas 76
Formatted (ItemM) Data FIlES.........ooiiiiiiiitiieise bbb bbbt b et bbbt nn e 76
Creating FOrmMAatted ITEM FIIES..... ...t ettt bbb bt bbb e e et seesbe e e 77
ACCeSSING FOrMAatted ITEM FIIES ......cooiiie ittt st e et e et e te st e st e besbeeteeneesbeseestesrennens 77

UniBasic Reference Guide



Table of Contents iii

INAEXEA DALA FIIES ......eiiieitiieeiiitt ettt b et b e bbbttt b et b et s e b e s e bt s bt e st b e et s et s 78
a0 [T o I T=T O =T 14T o SOOI 80
Accessing an INAEXEd Data File ... e e bbbttt se e bt nne s 81
MOdE 0 - INAEX DEFINITION ....cviieiiiiiieise bbbttt ettt sttt et nnens 81
Mode 1—Miscellaneous INdeX INFOrMALION ..ot 82
Mode 2—Search fOr @ SPECITIC KBY ....o.viuiiiiiiiii bbbt 83
Mode 3—Search for the NeXt HIGESt KKBY .......c.ooiiiiiiiie e bbb 84
Mode 4—Insert a New Key INt0 aN INAEX ......ccvciueiiiiiiiiiie ittt e et sa et e st b e tasneenee e e neseesnenrs 84
Mode 5—Delete an Existing Key from an INAEX ........c.coviiiiiiiiiiccce e 84
Mode 6—Search for @ PrevVious LOWEE KEY........cuiiiiiiiieirieieesiee sttt 84
MOdE 7—REOIGANIZE INUEX ... ccuieiieieiite ettt et bttt b e bt bt b e e e e b eb e besbeeb e et e neere e e e nbeseesbenes 85
Mode 8—Specify B-Tree INSertion AlGOrithM.........cooiiiiiiice e e e 85
INdEXEd File EITOIS & RECOVEIY ......viiiiiiiiieitietieieie ettt e ettt st et e e seeseese e e e e stesbesbearenbeeneenee e enseseeneenre e 86
Accessing NoN-UniBasiC FileS @N0 DEVICES ..........couiiriiiiiiiiiiiieisie ettt se bt be st 88
IRIS BCD Data @na KEY FIIES..... .ottt bbbt bbbt e s e et e b e s b e bt e b e e e e nbesbeebesre e 88
Creating IRIS BCD Data FIlES ......cvoieieiiie ettt sttt st st te e ae e te e e e et e st e tesbeete e e e beseentenre e 88
ACCESSING IRIS BCD Data FilS.....cuviviieeieiiicie sttt ettt te e ese e e e e stesnesteeneeneeneensenrennens 89
UNIVEISAL DALA FIIES ...oeiie ettt sttt sttt e be e st e s et e s e st et e eeebeebeeneesae s enbeneeatenre e 90
Creating UnIVErSal Data FilES. ..o bbbttt b e bbb bt b e et et e sbe e 90
ACCESSING UNIVEISAl DA FIIES ......cuviiiiiiiiiiii sttt st et e e ae e e e e s e s e et e besresteeseeseeseentestennens 91
SPECIAI UNIBASIC FIlES.....cuveieiiiiieie ettt ettt e et e st et e e st e st e e Rees e e e e st e see st e nbeeneeneensenseseenrenreanens 91
Error MeSSage File: BITIMESSAGE. ... c..cuiitiietirtieet ittt bbbt bbb bbbttt b bbbt b bbb 91
STERM FIES. TBIMXXXX 11vtutttitititeteterereeie e st st et et tebebebebesese e s bbb et et et et ebesess e s s bbb eb et et et et e b e s e e bbbt et bebebeberesn e e e 92
Device Input and Output ........c.cceeveiiiiiiiiieeeeeennn.22. 93
POFE NUIMDEIING ...ttt bbbtk bbbt s bR bbb bbbt bbb bbb et et r e 93
e (T 0] 0 T o] < F OSSOSO 94
ACCESSING DIVETS (BLPT) NG PIPES. .. cviiieteiisietiiie ettt sttt re sttt e s bt st sse s e e bete st e sesesbete e ssete e e base e nneresees 94
PEINEET DIIVELS ...ttt ettt ettt ettt b et bbbt R bbbt E e E e bbbt e b b e st e b e b et b b e st e b b ettt 96
Y UL D LY TSSOSO 97
Terminal Translation File STERM FIES ........ccciiiiiiiiciiisce ettt b bbb re bt nssnens 98
STERM FIags and SWItCHES ......c.cviuiieiiiiiiiiiiiisists ettt bbbt e s bbbttt e b e e s e n e 98
DefiNiNg STERM IMINEIMONICS .......eviiiitiieriitirieiete ettt ettt ettt bbb s et b s bt e eb et e e b et es e b et n e b et en e bentenes 102
Mnemonics Translated fOr OULPUL...........oi ittt sttt 102
CRT IMINBIMONICS. .. 1ttt ettt sttt ettt e e ae b e b e bt e beeae e s beee e beebeeb e e b £ e R e e s e e ee e b e eE e eh e e b e e Rees b e ee et e nbeebeebeebeeb e e e enbenbenbeneas 103
Mnemonics for Keyboard and AUXPOIT;..........ceiiiiiieieieie e se e seeeesee e e st e e e tae e e saeseestestesbesresseeseesresreseesrens 104
Mnemonics to Clear & Reset the TErMINGL ..o s 105
Mnemonics Applied t0 the CUISOr POSITION. ........cuiiiiiiiieiiee e 106
MNemMOonics t0 CONLIOL AIFIDULES .........oiiii ettt see b e eneas 107
MRNEMONICS t0 CONEIOI COION .. vttt b bbb s bt s bbb e st s b et ne st s 108
MNEMONICS t0 TrANSMIT DALA; .....c.viveeereieirieiie ettt bbb bbb bbb bbbt nes 108
MiISCEIIANEOUS IMINEIMONICS .....viiieeieiieieie ettt st s e e b e see s b s beebeeteeseeseeseesbesbeabeebeeneeneeseesbeneenneas 109
Special MNemonics fOr /O CONIOL ..........oiiiie et b ettt see b e 110
IRIS MNemonicS NOt SUPPOIEM ......ccuiiuiiieiicicieece sttt se et e be s b e s beeaeesae e e b e seestenre e 111
STERM Extended GraphiC MNEMONICS .....c.oviviriiiiiirieiisiesieiiste ettt b e bbbt nans 112
Table of Extended Graphics OCal COUES. .......oiiriiiiieiie ettt et sb e e ere e 112
STERM INPUL CharaCter PrOCESSING ... .. cvvvrvieireietrtetsisissseseeetsesssestsaseseassstssseesesesssetesassesesesesesesss s sesesesssesesassnsasesesens 113
(O80T g I = Tod T[0T LSS 115
USING DYNAMIC WINAOWS......c..eiiieiiiiie ettt et te e e s e e et este st e s bease et e eseen e e e e nsesbeaneateeneenee e enseneenrenrn 116
Using Protected CharaCters & PC MONITOIS ........c..oiiiiiieiiiieiete ettt ettt sttt sb et b e ebesbe e 117
Mnemonics Simulated DUring WindoW TraCKING.........couiiiiriiiiie et e 118
UniBasic Commands..........cccceeveviiiiieviiiieeein e 121
Starting & Ending Statement NUMDEIS ..o bbbttt 121
Processing in COMMANT IMOTE. ..ottt b bbbt s e e e b e ke ebeeb e beebeebe e bt ene e s e besbesbe e 122
L 0] 011 1= o Lo SO TSOUPPSSOURRSPRIN 124

UniBasic Reference Guide



Table of Contents iv

JA Lo T 0=V o I = I IS T o) 1 Y/ 125
2 1 I TSRS PSTPPOPSTPRIN 126
BASIC 1 IS0 4] Y2 S SRRSO 127
127 AN 6 | OSSPSR 128
B E .ttt b b bt E R R R oAb AR AR R R4 R e R R £ 4R e AR AR € AR AR R R Rt R Rt R e R R e R bRt b e bRt n e enes 129
O I LSOO 130
CHAIN "SAVE. .. TRIS ONIY .ottt ettt bttt b et b et et e b et te b neebe st e 131
CHANGE BITS ONIY oottt ettt bRttt e b bt b et rens 132
(08 | =T G 3 157 o SO 133
CLU L1 IS0 o] 2RSSR 134
CONTINUE ...ttt ettt b ettt s b4 e a8tk s Rt bt Rt b s e Rt e b b e st e bt e s e e b et st e b et e neebe b e st et b ens 135
DEL BITS ONIY ottt bbbt R bR bR bbbt R et Ee bt rer e 136
DELETE  TRIS ONIY...oiiiiiiitiiiiiiteie ettt bbbt bbbttt ettt bbbt 137
111 PSPPSRSO 138
1 1 PSPPSRSO 139
ERASE BITS ONIY ottt sttt b bRt bbb Rttt b et n et nes 140
EXEC TRIS ONIY .t bbbt bt bt b e bt b e bt b e bt b bbbt bt nns 141
G I |3 1S o o] 2RSSR 142
FI L E . ettt ettt et R bt R Rt R R AR R e R AR e ARt R e Ao Rt R e R AR e R Rt R e R Rt R et R e R e bRt b et et nennenen 143
(=T a2 =) TSRO 144
FIND .ottt ettt b et b e e bt bt £ R b e R R R R b E R Rt R R R4 R R Rt R R e R R Rt R e R R R b R b bRt n et enes 145
GET BITS ONIY it ettt b et bRttt Re bRttt enenterens 146
(1O T | 3 1S o 1] YOS 147
[ N OSSPSR 148
HELP <ttt bbb h b e bR R R AR R AR R AR € R AR R R £ Rt ARt R e R R e b bRt bt n bt enes 149
LEVEL ..ottt ettt ettt bbb e R bR ARt R et e ARt ARt R et oA e R et R e R e bRt b e bR bR et en e nenrenen 150
I S OSSPSR 151
@Y AN D I |4 1S o] o] 2RSS ETRT P RRP 152
MERGE  BITS ONIY ..ottt bbbttt bttt b b st bbbt n et nes 153
S RSSO 154
INEWV ettt ettt ettt bRk et R4k e e Rt bt AR R e R AR e ARt R e AR R e AR R e R Rt R e ARt R e R e Rt R et n e R e bt n e tenen 155
L@ ] OSSOSO 156
PACK  BITS ONIY .ottt b b bbb bbbt bbbt b et s bt s b et e n e b e ntenes 157
o (O I L O RSP RSPOTP 158
PSAVE ..ottt ettt ettt bt et bt R Rt R R h R Ao AR R e ARt R e R Rt R e R R R e Ao Rt R e R e Rt R e R Rt R e bRt b et n e R e tenen 159
RENUIMB ... .ottt ettt b bt b bt s b £ a8t b8 e 84kt e e btk e e btk e R e b e bRt b et s e bttt b e st et nenb s 161
RSAVE  BITS ONIY oottt b ettt b bbbt s bbb e bt b et nes 163
RUN . L.ttt ettt s ettt e bt s e e b et e s e e b e s e s et e e e e s e e R e a2 es s eb e s es s e b e e s e s e R e s e R e R e e e R e R e e e R e R e R Rt R e bR bR et st R e nnenen 164
SAVE . oottt b et bR L4 Ee b et £e bt Ee b et Ee R Re b et Ee b et e Ee b et Ee bt e Ee et et et b neeEenrens 165
SHOWV ettt b ettt bt Ee bt Ee s b et e Ee b et e RS b et eEe ARt Ee R et Ee bRt R b et e R bt bbb b ne bt e 166
3] 7 OSSOSO 167
STATUS L ES T 101 2SSOSR 168
THIMIE oottt ettt bbbt Ee b et RS b et R bRt R e R Rt Re A e Rt Re R e Re ARt e Rt e Ee b et e R e bt e Ee e Rt e Ee e bt tenbe st erenrens 169
UNASSIGN ..ttt ettt e et b et b e b et bt b e £ e b4 ek e e e84 e b e e eb e ke e e b e ket e R e e b e e e Rt b et n e b et n e b et e n e b et enen 170
USERS. ... oottt b etttk h et b bRk R oAb SRR 4R oA R R AR E AR £ AR AR e R R R e R Rt R e R Rt b e bRt b e bRt b et enes 171
WARIABLE ... oottt sttt s e et st e s e e te s b e s e e be s b e s e e b e et e A e ek e b e s e eRe et et e e R et e Reebe st et e ebe st et e ere e ereabeeas 172
WERIFY oottt sttt sttt st e s e e be et e s e e b e st a8 e e R e s 4 e Rt ek e R e R e e R e R e R e R e R e R e R e e e R e eRe e e Eeeb et e Eeebe st ereebe e eteareeas 173
VSAVE  BITS ONIY oottt sttt et sttt sttt b e e b e st e s e et e st et et e se et e e beneeteebeneereabeneas 174
UniBasic Statements ........cooviiiiiiee 175
Program DeDUQGGING AUGS ........oueiiieie ittt ettt sb e b b et e e e e e eesb e s beebeeb £ e b e eR e e e e ebesbeebeebeebeeme e s e besbesbeneas 175
SiNGIE-StEP Program EXECULION. ... .ciiiiieitiitesiestes e st e et e st st testeete et a e e e e e et e stesbesteeseeseese et e stesbesteaseeseeseenbesrennenrs 175
QLI eI, o [T SOOI 176
PrOgram BreaKPOINTS ........couiiiiiitiieeiite ittt ettt b ettt b etk bbb ekt e bt ekt s b b ek e e bt ekt b et ne e b e b e 176
Statement DOCUMENTAtION FOMMAL ..........oiiiii e bttt et st b et sb e et et e seesbenbe b 177
BUILD # ...ttt sttt ettt s bt s bt e b skt 4 a8k 4R bR R Rt AR ARt AR R ARt Rt R e R e bRt bbb tenen 178

UniBasic Reference Guide



Table of Contents Y,

CALLL ittt ettt h e he e be e beeh b e bt be e be e be e be At e aheeaheeebeebe Rt e aheeabe e beenbeeabeeheenbeenbeenbeeresaras 179
(O N S 181
(O VN L IR = A ST 183
CHAIN WRITE ..ottt ettt et ettt ettt te e et e e bt e e be e be e st e e st e eteesbe e s be e s be e beeabeehbesbeeabeeabeenbeeabesbbesbeesbeesbeesbesnnes 184
CLEAR # . oottt ettt ettt et s b e s be e e be e te et e eae e ebe e be e be AL e eh e e b e e beebe e teeReeeReeaheeebe e be e beeabe et beateeabeesbeeareentas 185
(O 0 1S - 186
(G0 1Y, S 187
(G0 \ A USROS 189
CRE AT E Bttt ettt ettt e st et be e e be et e e et e s bt e ebe e be e e b e e Rt e e b b e e b e e beebeeAbeeRbeehe e aheeebe e be e beeabeerbeebeeabeenbeeareennas 191
) A NSO 192
[0 OO RURRSRRPOT 193
[ 11 1Y PO RURRRURRPRO 194
DUPLICATE .. ettt ettt ettt e bbb e e a e st e s beesbe e s beeabeeabeeateabeeabeesbeeabessbestaesbeesbeeabesaeesaeeabeebeenbeenbesteesteens 196
9 ] U 197
N OO URRORRRO 198
EINTER .ottt ettt ettt e bt e bt b e e b e et b e e tb e s be e s be e sbeeabeeRbeeabeebe e ebe e beeAbeaR b e eh e e abeenbeebeeaeeeheeabeeebeebeenbeatbeabeens 199
EORCLR ...ttt ettt ettt e bt et e e b e et b e et b e s be e s beesbeesbesReeeheeebe e beeabe e Rt e eh b e eb e e beeabeeebeebeeRbeeaeeabeeabe e beenbeerbeareens 200
O ] i SRR 201
L0 o = O RURRORRRRO 202
T L O I OSSPSR 203
ERRSET ..ottt ettt ettt et e bt e s bt e e be e b e e r b e e heeeheeaheeebe et eRbeeheeabeebeeAbeeA b e ek bebeeabeeabeebeeRbeeaeeabeeabe e beenbeerbeareens 204
L 11 RO 205
O O ] SRR 206
S O] = IR URRRORRPROT 207
L1 B 1 1S TSP SRR URRRURRPROT 208
S GRS 1 PSSO 209
= O U I OSSO 210
@ ] PO RRURRRORRPROT 211
GOSUB ...ttt ettt et b e e b et e e s be e te e he e e be e e be e abe e be e Rt e e Rt e eh e e ebe e be e be e A beeReeaReeeheeebe e be e beeabeehbeabeesbeenbeerenaeas 213
(€T 1 1 214
L ettt ettt eh— e h e e b e e he e te e teehe e ehe e bt e be R b e eh e e ah e e abe e beeateeheeeheeeheeebe e beeR b e ah b e ebaeabe e aeeaeeaeeeaeeareeareenns 215
L = OO TRRORPR 217
INDEX .ttt e ittt ettt ettt et e b e e et e e beeabe s ae e ebe e e be e beeabe e Rt e eh b e e b e e be e beeAbeeReeeheeebe e be e beeRbeehbeebaeabeenbeebeeareaReeareeareenns 218
SUMMANY OF INDEX IMOOES ...ttt bbbt bbbttt b bbb 219
Detailed Table Of INDEX IMOUES.......cccuiiiiieiriectee ettt cte et ete sttt stee e et e e sbaeesbbeesbaeebeeesbeeanbeesabeesnbessbessbesssbesereeans 219
Table of INDEX STAtUS FEIUIM VAIUES. ......cveciviiieiie ittt sttt ettt e b e be st st sbeestessbesaesasesbessbeeebeesbeenbessbesreens 221
IN P U T ettt ettt e st e e be et e s aeesbe e e beebeeabe e Rt e ebbesb e e be e beeaseeReeeheeebe e beenbeeRbeehbeebaenbeenbeebeeaeeeReeabeeareenns 222
NV 1O I = T 225
VI i TP 226
JUMP ottt ettt b e e b et e bt e e b e e e b e e be et e e aeeehe e ehe e ebe e beeRbeeR b e Rt e abe e be e beebe e beebeeabeahteabeeabeeabeebeebeerbenraeas 227
I 1ttt ettt ettt ettt ettt et et e e te e e be e ebe e e be e Rt e eh b e eh e e beesbe e beeReeeReeeheeabe e beeAbeeRbe ek be b e e beebeebeeReeeheeabeeabeenbeenbenrrenteens 228
1 ST 229
1 TSP 231
1Y AN = OO RURRRORRPROT 232
1Y N I SO OO RRURRRORRRPRO 233
1Y 7 SRR 234
1Y AN IO @ ]\ SR URRRORRPO 235
IMIAT IDN L. ittt ettt ettt et ettt e e bt e ebe e b e et e et b e steesbeesbeesbeesbeeabeeheeebe e beeabeeabesabesbsesbeesbeeabesasesaeeabeeabeenbeesbestaestaens 236
IMIAT TNV ittt sttt ettt s bt ebe e be et e et b e s teesbeesbeesbeeabesabeeheeabeebeeabeeabeeabesbsesbeesbeeabesasesaeeabeeabeenbeenbesteesteens 237
IVIAT TRIN .ottt ettt ettt ettt et et e e bt e e bt e b e et e eabesbeesbeesbeeseeesesshesebeeebeeabeeabeehbeebee b e e sbeesbeestsemeseaesabeeabeeabeesbesrbesreeas 238
Y AN At SO URRORPRO 239
IMIAT INPUT Lottt sttt et b e e be bt et e et b e sta e s beesbe e sbeesbesabeeateebeebeeabeaabeeabesbsesbeebeeabesasesbeeabeeabeenbeenbesteesbeens 240
VAT PRINT L.ttt ittt sttt ettt e st ebe et e et e e bt e s beesbeesbe e besaeesheeabeeabeenbeeabeebseeba e baesbeesbeesbesasesaseabeeabeenbeesbeasbesteens 241
LY AN 4 T 1 (3T 242
LY AN I T AN B USSP 243
IMIAT READ # o.voccti ettt ettt st ettt b e et et e st e s b e e s be e b e s aeeehe e ebe e ebeeabeeabeshbeeb s e beesbeesbeeabesabesaeeabeeabeeabeesbearbesteens 244
IMIAT WRITE ..ottt ettt ettt et ettt e st e s b e e s be et e s aee s he e ebeebeeabeeabeebteebe e beesbeesbeeabesaeesaeeabeeabeenbeenbessbesreens 246

UniBasic Reference Guide



Table of Contents Vi

IMAT WRLOCK H ..ttt bt b e bt s b s a8 b e e b bt h bt e e bbb s e bt et s bbbttt n e st nes 248
Y@ ] PSPPSR 250
N E X T ettt sttt ettt ettt ettt b et e R e e b e e e Rt b e s e R b e AR 4R e R e Rt Rt ARt R e e e R e R e AR ke R oAt R e ARt R e R e Rt R bRt R et n e R e ntenen 251
L ] SOOI 252
OPEN ..ottt b et h bbbt R AR R R R AR R R R R R Rt R R R R Rt b bRt b b ne et r e 253
PAUSE ..ottt sttt ettt b et et b et et R e bRt b e e Rt R e s R e R e e e Rt eR et R e R e R R e R et oAt R et R e R et eR e b et n b b et n e nenrenen 254
PO R T ettt ettt bttt eh et Rt eR £ Rt R et Rt R e £ Rt R oA £ e R e R e Rt R e R e R e Rt AR e R oAt R e R Rt R e R e Rt R e bt R et et R e re e 255
MOdE O—AHACH SEIECIEA POF ... ..eiviieieiiecece ettt sttt b ettt e et b ne et bens 255
Mode 1—Place an Attached Port in Command MOE..........ccooiiiiiiiiineiie e e 256
Mode 2—Transmit Command String t0 AMAChEd POt ........ccocoiiiiiiiiere e 256
Mode 3—Return Attached Port’s Operational STALUS............cceiiiiiiiii e e e 257

o LN TSSOSO 259
RAINDOM ...ttt b et b b e bt bt e b b8 a8 b R R £ bt E R b€ R R Rt R R Rt R R e Rt R Rt bbbt n e b e enes 261
RDLOCK . tttettitt ittt ettt ettt ettt et et et e e b e s et e a4 e b et e e b e e et e a4 e s es e a4 e s e R e et e s eb e et e s s e s et e st e s s e b e s es e e R et e st b et et n e tentenenre e 262
RDREL # ...ttt sttt ettt s b b s ket s a4 e b e R4kt s8R et e Rt R e AR Rt R Rt R ARt R e ARt R bRttt n et nee 263
READ ..ottt sttt bt ekt R R kR Rt R AR e R AR e AR R £ R £ AR ARt R R e R e ARt R e ARt R e bRt b et et n et nen 264
READ # .ottt bbb b E bR R R Rk E AR R AR £ AR ARt R ARt R Rt R R Rt R bRt bbbt enes 265
RECV oottt ettt ettt b et s et bRt h et oAb et oAt R ARt b e e Rt R et R e R et e Rt oA et oAt R et R e Rt et R e R e te bR et et enenre e 267
REM .ottt ettt bbb R e h e Rt R R4 Rt R e R et R e ke Rt e R4 AR oA R e R Rt R e R e Rt R e R e Rt R et n e b et n e R e tenen 268
SRS 10 ] SOOI 269
RETURN L.ttt b et h bt b s bt s bt 882 b 88 b 08 £ b e bbb e bR bt bRt b et s bbbt et bt nt s 270
REWIIND ..ottt ettt et s et a2 e b e s s e b e st e s e a4 e 2 a8 s ek e s e s e e b e e s e s e et e s e s s b e et e s s e b e s e s e e R et es s e b et e st ne st ensenennenen 271
(0 1 OSSPSR 272
ST {01 IO OSSOSO TRP 273
] Y {1 o 2SSOSR OUR TR 274
SUMMArY OF SEARCH # IMIOUES.........civiiitiitiietist ettt bbbt bbbt bbbttt bbb 274
Detailed Table Of SEARCH # IMOUES. ......c.uiiiiiieiiie ettt b e b bbbt et e et eb e be e e e besaesbesee e 275
Table of SEARCH # Status retUIN VAIUES ........ccoiiiiiiiciiie ettt sttt sbe e ene e 277
SEIND . ...ttt R R R R R R R R R R R R E AR R Rt R bRt b bRt b b ne b r e 278
RS I SO US S PR 279
SEGINALL .ottt ettt sttt b et b et b e R b et R e bR e R e R e Rt R e b e Rt Re R e Rt Re b et Ee b et Re b et e Ee et et et aene et r e 280
Mode 1 - Transmit @ Message t0 ANOLNET PO .........ccuiiiiiiie i s re e se et e resre e 281
Mode 2 - Receive messages SENE t0 YOUE PO .....viviiciiiieiesieseseeee st ee st e e st e e s e e e s e seesrestesreeree e eneeseesnenreens 281
Mode 3 - Pause Program OPEFALION .........ccciieiiirieiite ettt sttt ettt sb ettt bt st sb et et b et st nb et b 281
Mode 5 - RECEIVE SYSLEM SIGNAL.......ccuiiiiiiiii ettt bbbt et et e b sb e be bt e be e e e besee b b 282
Mode 6 - Clear all outStanding SIGNAIS .........ciiiieiiicicce e st e s te s re e e e e beseesrenre e 282
SPAWVN L.ttt bbb bt bR R R AR R AR AR R R R R AR R R R R R bRt b bRt b ne et r e 283
RS 1 SRRSO 284
S ] o = N OSSOSO 285
S N A P bk bt bt Ee Rt Ee b et Ee R et Ee bt R Re e Ee b et R b oAt R b et e R bRt e bbb b ne et rens 286
S SN I = 1 OSSPSR 288
TRACE ..ottt et et e et b et te bt Ee Lo e Re b et Ee bRt Re e L e At Eeeb e Rt Re L e Rt Reeb et e Re b et e te e b et ete e b e e ereeae e renrens 290
LU OSSPSR 291
UNLOCK # .ottt sttt et b et s e bt st a8 b e 8 e 82k 448t e b4 e a8t bt b s bt bRt bt bRt b et s e b et n e b et e st b et enen 292
WWVINDOW ..ottt etttk b e ekt h etk b ekt b et e b e e bt e b e e b et e bt e b e ek e eb e e e b e ebe e e b e eb et et e e bt et e abe st ebeabe e 293
MV RITE 2 oottt ettt et ettt e et e s e et e o4 et et e eb et e s e et e s e R e e b e ss e R e a4 e s e e R e e b e b et e ebe s et e ebe e ebeebe st eteebesaeteebeseeteabeeas 295
WVRLOCK H.ottttettite ittt sttt sttt sttt et se et s e e teebe s b e s e e 4e st et e eb e s e et e e ke s e e s e e bese e s e e beee e R e e b e s e e R e ebeneeE e ebe e e b e abeseeteebessnteabenenteareeas 297
WVRREL ...ttt sttt ettt btk e et b e e e bt b e e bt e bt e b e e b et e R e e b et e b e eb e e e b e e be e e R e e be et e b e e be e et e e be st reane e 298
User CALLS ... 299
CALL SATOE .....i ottt ettt b et e sttt R ka4 e st E e b e Rt e b et e Rt e bt e st e b et e s e e R et st e b et e Rt et b ne et r e 300
CALL SAVPORT ...ttt ettt st b ettt s bt s e b b e st E ke Rt E e b e R e b e ke s e bt b et e bt e b e b st e b et e ne et et e st e be et e 301
CALL SO ALLST AT ettt ettt bbbtk bRtk e b b e bRt R e bt e bbbt e b e e bt b e b st e b e b e st ettt et et 302
CALL SCKSUM ..ottt ettt ettt b et s bt s bt s ket e s bR et e s s e R e b e st e b et et e R e et et e neete b e st etenbe e e re st e 303
L0 A I U OSSOSO 304
L0 I I I 7N I OSSOSO 305

UniBasic Reference Guide



Table of Contents Vii

O I Y1 = [ U 306
(O Y I N LV 307
O AN I 10 NS 308
CALL SFINDF ..ottt ettt e ettt e sbe et e et e e bt e ebe e be e e b e e st e et b e sbb e s baesbeebeeabesabeebeeebeaabeenbeeabesbbesbeesbeesbeesbesaeas 309
CALL SINPBUF ...ttt ettt ettt ettt st s bt e e be e be e et e e ab e e beesbe e beesbeaseesbeesbeesbeeabeeabeenbeeabesteesbeesbeesbeenbeennas 310
(O Y Y 0 11 T 311
(O AN I 0 1 [ OO 312
(O AN I I N[0 2 O RSO 314
CALL SRDFHD ....cviiiteite ettt ettt ettt e bt e be et e et e e ab e s beesbe e beesbeesbesaeesbeesbeeebeeabeenbeesbesteesbeesbeesbeenreennas 315
CALL SRENAME ..o ittt ettt ettt et et e et e e bt e e bt et e e st e e ttesbe e s b e e sbe e teeseeeheesbeeebe et e esbeeabesbeesbeesbeesbeeseeentas 318
CALL BSTRING ..ottt ettt et ettt ettt et et e bt e e bt e b e e st e e st e ebaesbe e be et e e st e saeeebeeebeeebe et e anbeesbesbbesbaesbeesbeentesnnas 319
CALL SSWWAPKE ..ottt ettt et et e e b e e ebe e b e e et e e bt e e b e e eb e e be e st e eaeeaheesheesbeeebeeabeeabeeabestbesbeesbeesbeenreeatas 321
CALL STIME ...ttt ettt e s e st s b e et e et e s bt e e be e be e st e e At e e be e s be e s beesbeestesReesheeebeebeeabeenbeeabestbesbeesbeesbeenbeennas 322
(O I Y 112 ) (0@ 323
(OF N I IV ] I I 1] ST 325
L A I L T USSP 326
CALL L8/19 ittt ettt e s e st s b e e be et e e ab e e bt e e be e be e be et beeA b eha e aheeebeebe R beeheeebe e be e beeabeehbeabeesbeenbeeresneas 327
(7 N I I 0 2 R 328
(OF N I 7 2 T PP ORI 329
L A I USRS 330
(O A I R T PSPPSR 331
(7 A I I RO 332
CALLL 28 ettt e ettt e e e ettt e e e e bt e e e ettt e e e aa—eee e ettt e e aateeeeaahteteeatbeeeaateeeeabeeaeaatbeeeaateeeeabeeaeaatteeeann 333
L A I 1 PR SPSR 334
O I TR 336
(7 A I I F OO U PR OURRTORRN 337
CALL 4. ..ottt e e et e e e et e e e ettt e e e eatee e e et beeeeateeeeeahbaeeeaabeeeeaateeeeabeeaeaatbeeeaateeeeabeeaeataeaeann 338
O N I Y L TSROSO 340
L A I R PSP 341
(7 I I L RS 342
(7 A I I X F S SRS U PR PPTRPUTRN 343
L A I PRSP 344
(O A I T T PSPPSR 345
(7 A I I T OO UP RO RRRTURN 346
(7 A I I 1 TSRO U PR O PPRROPRRIN 347
(O AN I I TSSOSO 348
O I 1 TR 349
(7 A I I 24 RO U PR RRRTPRRN 350
Supplied UtIHtIeS ..., 352
AN 1 = PP 353
BUILD XF ...ttt et ettt e et e e e et e e e e atee e e saba e e e e bbeeeesteeeesabeeeeaabbeeeasaeeeesbbeeeaanbeeeesnbeeeesabbeeeeanteeeennnees 354
CHANGE ..ottt e et e e e ettt e e e e beee e s et beeeaaatee e e aabeeeeeabbeeeaasteeeesabeeeesbbseeaasteseesabeeaeanteeeennns 356
L ] PRSP 357
D ST 358
FORIM AT ettt ettt e e ettt e oot e e e et ae e e e ebeee e e eabeeeaasbeeeeeabeeeesbbeeeaasbeeeeaabaeesahbeeeeanbbeeeabaeeeserbeeeeantaeeeanrees 360
LG 1Y VAN 1 N PSR OURSUPRRRI 362
S RSP 365
I TS 366
010 | U U 368
[0 1] SO USSP 369
YN S RSP 371
LY S =101 1Y/ 111 PSRBT 372
IMAIKEHUGE ...ttt ettt e et e ettt e e et e e e e eatee e e sab e e e e aabbeeeaabeeeesabeeeeaabeeeesabaeaesebbeeeeanteeeesnnees 374
1Y = |\ PSPPSR SUPRR 375
00T LT L] SRR 377

UniBasic Reference Guide



0 oTe0] 4]0 €TSS U RUTOTRP 384

0] oot 0] V=T ] OSSPSR 385
0] 0] €] 01U 1 o TSSOSO 387
0] 0] 1T 5 1 OSSO 388
[0]0] 1211 (oo OO UUUT TR 389
{47 L TP OP PP PRTRPRPPRPR 390
Appendix A - ASCIITCODES ........ccoo i, 391
Appendix B - CRT MNEeMONICS .....cooevvviveiiiiieeeiie e, 394
Appendix C - Error Numbers ......cccoooiiiiii e, 398
TRIS EFTOr INUMDEIS ...ttt bbbt b e bt bbbt e b e e e e e bt S h e e b e Rt eb £ e e et e nbeebenbe bt eb e et et e nbesbeneas 401
YA (= L =L (0 g AN [0 o TSSO 403
Appendix D - Port as DeviCe.......cccoovvveiiiviiiiiceiiiceeieeee, 404
L0 L= PR 408

UniBasic Reference Guide



About This Guide 1

About this Guide

This guide is written for experienced BASIC programmers. It is a reference that includes a brief introduction to
UniBasic and information on files and file handling, UniBasic commands, statements, calls and utilities. If you need ele-
mentary information about programming in BASIC, please refer to one of the many books available on that subject.

The terms and conventions used for demonstrating commands and BASIC statements in this guide provide a consistent
format.

This guide covers UniBasic version 8 and greater.

UniBasic Reference Guide



About This Guide 2

Conventions

Literal elements of a UniBasic command, utility, statement, and unix command, utility or shell Environment Variable are
shown in bold type.

Metalinguistic variables are shown in italic type for clarity and to distinguish them from elements of the language itself.
OPEN # channel expression ; filename string
Mono-spaced type is used to display screen output and keyboard input commands and program examples.

LIBR [$LPT]

The right and left brace characters ( {optional items} ) indicate an item that is optional.
LIST {-v}
A series of three periods (...) indicates that the preceding item can be repeated as many times as desired.

KILL filename {filename...}

Selection of one of a group of items is shown within parenthesis separated by
|- Choose only one; WINDOW ON or WINDOW off. The parenthesis are not part of
the syntactical form.

WINDOW (ON | OFF)

This guide has been grouped into topical sections. Whenever a topic or function of another section is referenced, that
topic is followed by a See also: reference for the section where it may be found.

For example:
When OPEN is used to access a data file ...
See also: OPEN

In this example, a reference to the UniBasic language element OPEN informs the reader to find the complete text of
OPEN by using the index.

When the information may be found in documentation other than this guide, for example:
To relocate the file, issue the Unix cp command. ...

the sentence includes a descriptor identifying the command and other documentation to reference. In this example, the
user is referred to the Unix documentation.

UniBasic Reference Guide



Installation & Configuration 3

Installation & Configuration

The installation of UniBasic under Unix is an interactive process. Upon completion, UniBasic and other supplied C
utilities are placed into the directory /usr/bin. A master directory ub is created with a system logical unit, containing
DCI supplied drivers ($LPT) and system processors (BUILDXF, QUERY, MAKEIN, etc.). Following installation, any
user familiar with the IRIS or BITS systems can operate UniBasic and feel quite comfortable. Before you can convert
an existing end-user, or install a new system, you will require more Unix knowledge than is provided in this guide.

Configuring Unix for UniBasic

Prior to installation for an end-user, several Unix system parameters may require re-configuration for multi-user
operation. This process varies from system to system. When purchasing from a UniBasic Distributor, inquire whether
these parameters have been pre-configured for your needs. If changes are required, most systems include a system
administrator shell to assist you in necessary reconfiguration. For specific information, contact your manufacturer or
distributor before changing any system parameters.

The group ID and user ID must be less than 65536.

Number of Processes

Each program or command, including login (getty) or a copy of UniBasic, is called a process. Unix maintains a table of
all active processes on the system. The UniBasic statements SWAP, SPAWN, and CALL 98 (phantom port operations)
initiate additional processes. Opening a printer may invoke as many as 5 processes temporarily. If the maximum
number of system processes is exceeded, an error message may be reported to the console (such as NO MORE
PROCESSES for SCO-Unix systems), or UniBasic may generate a negative (system) BASIC error to the application.

To accommodate Windows, SWAP, SPAWN and print jobs, set the number of processes no less than the number of
users * 5. Applications that provide linkage to other Unix applications (such as 1Q, Word Processing, etc) may require
additional processes per user. The current processes may be displayed using the Unix ps -ef command.

Number of Open Files

Unix maintains tables for all opened files on the system. Each process requires a minimum of three (3) channels referred
to as: standard input, standard output and standard error. In addition, a process may require additional channels if other
files or devices are opened for access. UniBasic itself is an example of a process under Unix. For each additional con-
current process, an additional (3) channels minimum are required.

UniBasic requires a total of 4 channels per user process. These include the standard (3), plus one for the error message
file (ERRMESSAGE). In addition, each device or data file opened requires one system channel; Indexed files require 2
channels.

See Also: Indexed Data Files

UniBasic Reference Guide



Installation & Configuration 4

When the configured number of system-wide channels is exceeded, an error message may be reported to the console
(such as NFILE for SCO-Unix systems), or the program may generate a negative (system) BASIC error.

To compute the approximate number of channels required for your system, multiply the Number of Processes * 3 to
yield the minimum number of channels. Add to that result the average number of opened channels per-user times the
number users. Remember to count each Indexed file as two channels, and include provisions for other applications, such

as 1Q.

Example: An 8-port system with 10 open files per user and 50 processes, might require 300 open files.

Number of Open i-nodes

Unix maintains a table of opened inodes (or header blocks). Each unique file or device opened requires one entry. Ten
users accessing the same file typically share the same open i-node.

Number of Locks

Unix maintains a table of read and write locks placed on files by individual processes. Each locked region requires one
entry in this table. A locked UniBasic data file record is an example of an entry in the lock table. Indexed file key main-
tenance temporarily requires several locks for the various levels in the ISAM tree structure. A minimum of 5 locks per
process should be adequate for most installations.

Message Queues

For all inter-process communication, UniBasic relies on Unix message queues. Each DCI product creates a message
queue at startup to transmit and receive data between users. Such messages include:

. SIGNAL 1 & 2 and SEND/RECV data between ports

. CALL 98 and PORT statement commands and status

. PORT ALL MONITOR status requests

. CALL $INPBUF type-ahead data returned to parent process
. MSG command text

. Security communications

On most systems, the Unix command ipcs may be used to display information about message queues. Each message
queue is identified by a unique 32-bit number, usually displayed as an 8-character hexadecimal value.

UniBasic Reference Guide



Installation & Configuration 5

DCI products are identified by our own numbering sequence, which when viewed in hexadecimal, take on an
appearance such as DCOOpnnn. The digits correspond to:

DC

00

OO, OT

nnn

See also:

Dynamic Concepts Product
Always zero

DCI Product ID:
Passport daemon
UniBasic IRIS
1Q

dL4

UniBasic port number, in hexadecimal, associated with this queue. For example, port 15 is displayed
as "00F".

Terminating a UniBasic process

Message queue requirements for UniBasic are based on the number of concurrent users and overall message traffic on
the system. The default values on many systems are sufficient to support a few users, but certainly will need to be
increased for large installations. If they are not configured, UniBasic may fail at start-up, possibly with a message such
as "Bad system call."

The following 7 parameters affect message queues on most systems. The actual parameter names may vary:

MSGMNI

MSGMAX
MSGMNB

MSGTQL

MSGSSzZ

MSGSEG

MSGMAP

Maximum number of message queues. Configure based upon the maximum number of concurrent
UniBasic users plus phantom ports plus other DCI products such as 1Q for Unix users plus one for the
passport security daemon.

Maximum size of a message in bytes; at least 516.
Maximum number of bytes per message queue. Set to the maximum allowable value; typically 32768.

Maximum number of outstanding system wide messages. Suggested setting is at least 256, but may
be adjusted if message activity is known to be greater or smaller.

Size (in bytes) of a message segment. Memory for message data is divided into segments of the
defined size. A value of 32 is recommended.

Number of message segments within the system. MSGSEG * MSGSSZ determines the total number of
bytes reserved for message data. The recommended formula is MSGSEG = (MSGTQL *
512)/MSGSSZ. For 256 UniBasic concurrent messages, the value would be: (256 * 512) / 32 = 4096.

Number of entries in the message map table. Each entry represents a contiguous free area in the
message segments. The recommended formula is MSGMAP = MSGSEG/8 which, using our example,
would be 512. If UniBasic reports "Communication buffer is full" when the actual number of
outstanding messages is < MSGTQL, first increase MSGMAP. If that doesn't correct the error,
increase MSGSEG.

AIX Note:

There are no user-configurable message queue parameters on AlX. The parameters are hard-coded in
the kernel, and seem adequate for most installations.

UniBasic Reference Guide



Installation & Configuration 6

The following points must considered during configuration:

. Free message space must be available on the system. If the queues become full, additional users,
including phantom ports, cannot be launched into UniBasic or 1Q. In addition, existing users may be
prevented from performing SWAP, SPAWN, CALL 98 and PORT statements, as well as commands
such as PORT ALL MONITOR.

. A processes queue and any waiting messages are deleted if and when the port exits normally. If a
process is killed, it cannot delete its queued messages.

. The configuration guidelines shown above consider only UniBasic requirements. They do not include
requirements of other Unix applications which rely on message queues.

Unix Accounting & Protection System

Access to Unix files is regulated by file permissions. Permissions are generally read, write, and execute (other
permissions and attributes exist, but are not important for discussion here). These permissions are applied against three
levels: The owner/creator of the file, other users in the same group as the creator, and other users in different groups.
The permissions are either expressed as letters (rwx) or numbers (4 2 1) added together. When expressed as letters, a
nine-character field represents the three levels; numbers are shown as three digits.

Each user gains access to the system through a login user name which is assigned to a user number; the user id.
Normally, no two users share the same login user name or user id. Each user id belongs to a group. Group numbers are
equated to names in the Unix system file /etc/group, and user id numbers are equated to login id's in the file /etc/passwd.

Creating a Unix Account for UniBasic

Prior to installation, a master (manager) account must be created to own the UniBasic distribution files, programs and
directories. Most systems supply a menu-driven administration program to assist with user account management. Please
refer to the System Administrator's Guide included with your operating system. Before proceeding, please ensure that
the following is completed; bracketed information is user-selectable:

. Create a login id, [UniBasic], belonging to a new group, [UniBasic], with its own home directory,
[fusr/ub].

See also: Configuring a UniBasic Environment

UniBasic Security & Licensing

You may select either Hardware or Software licensing (security) for an installation of DCI software. Both are controlled
by the daemon, /etc/passport, which is automatically launched by UniBasic. Whereas Software licensing is based upon
information derived during installation, Hardware licensing is based upon the external DCI Passport™ device. Passport
is not part of UniBasic and must be installed separately.

UniBasic Reference Guide



Installation & Configuration 7

In either case, each UniBasic installation is identified by a unique 32-bit license number, generated by the Passport
daemon. This license number, along with a DCI supplied Software Selection Number (SSN) activates your installation
for various DCI products and configurations.

A license number is expressed as an 8-character hexadecimal value, such as 99D04832. The first two characters
represent a specific operating system and/or hardware platform, in this example 99 = SCO Unix, for which the license is
granted. Licenses are not transferable to other platforms.

A special directory, /etc/DCI, is created during installation to maintain security specific information and files for use by
all Dynamic Concepts software products. Typically, the following text files are recorded within the directory:

. ssn DCI activation key for this installation.

. osn OEM activation keys enabling encrypted application software.

. passport.cmd Command text used to initiate the Passport daemon.

. passport.log Log file maintained by the Passport daemon with security information, licensing methods and
errors.

If the installation utilizes software security, one additional binary file is created:

. license License number information for systems installed with Software licensing.

Warning: Modification, deletion, renaming or moving the license file will possibly deactivate a software license
number.

Configuration of licensing is performed during installation of Passport, or by later usage of the ppconfig utility (refer to
the Passport User’s Guide for more information) .

Software Licensing

Software licensing is based upon information derived from the system by the /etc/passport daemon. When launched for
the first time, a license file, /etc/DCl/license is created by the daemon to record the unique license number for this
installation. Although several types of software licensing methods are supported, the type is fixed by DCI for each
specific hardware and operating system platform. The actual type used on a system is recorded in the Passport Log file.

Software licensing is more fragile than Hardware licensing because the unique 32-bit license number may change due to
any number of conditions, including, but not limited to, any of the following:

. Replacement of a disk drive and/or restoration of all data
. Upgrade and/or replacement of the operating system

. Disturbing the /etc/DCl/license file

. Replacement of a serialized CPU board

UniBasic Reference Guide



Installation & Configuration 8

In installations where third-party support personnel might disrupt licensing, installation of Hardware licensing is
recommended.

Should your system lose it's license, a new license number will be generated automatically. Contact your supplier with
your old and new license numbers for a replacement.

Hardware Licensing

Hardware licensing is based upon the connection of a Passport device to an unused serial RS232 communication channel
on the computer. Each Passport device is pre-programmed with its own unique 32-bit license number and any given
SSN for that license number is perpetual. The Passport device and associated SSN may be installed on another like
platform at any time.

For information concerning physical Passport installation and testing, please refer to the documentation supplied with
the device.

Loading the Installation File

A UniBasic installation file is normally supplied as a compressed cpio archive file. The installation file can be
downloaded from www.dynamic.com or the /dist/pub directory of ftp.dynamic.com. If an installation file is first
downloaded on a PC and then copied to a server, be certain to perform a binary transfer of the file. The file is named
using the format pp-ub-vvwv.Z or pp-ubdev-vvwv.Z where “pp” is the platform code (such as “99” for SCO OpenServer
5) and “vvwv” is the version number (such as “8.1”).

For example, the AlX installation file for UniBasic 8.1 is named 07_ub_8.1.Z. After signing on as root and copying the
installation file to /tmp, the commands to load this distribution would be:

cd /tmp
uncompress 07 _ub 8.1.Z
cpio -iavcdu <07 _ub 8.1
On some systems, particularly Linux systems, the cpio options will have to be changed to omit the “c” option:

cpio -iavdu <6D _ub 8.1

If the command is successful, a list of filenames is displayed as the data is loaded into the /tmp directory.

UniBasic Reference Guide



Installation & Configuration 9

Loading the UniBasic Installation File

Verify that you are signed on as root and defaulted to the /tmp directory. Issue the following commands to load the

installation file:

uncompress filename.Z (if the filename ends with a “.Z”)
cpio -iavcdu < filename (i.e. 99 ub 8.1, 6D _ub _8.1.4, etc.)

A list of filenames similar to the following should be printed:

ub

ub/loadlu
ub/makesp
ub/sys/batch
ub/sys/clk
ub/sys/dirl
ub/sys/format
ub/sys/libr
ub/sys/Ipt._sample
ub/sys/makein
ub/sys/port
ub/sys/term
ub/sys/term.wyse50
ub/ubcompress
ub/ubrebuild
ubinstall
ub/README
ub/Iptfilter

ub/sys/bui ldxf
ub/sys/copy
ub/sys/dokey
ub/sys/keymaint
ub/sys/Ipt.bits
ub/sys/make
ub/sys/makeitem
ub/sys/pdp
ub/sys/query
ub/sys/term.ansi
ub/sys/term.wyse60
ub/ubconvert
ub/ubconvertfiles
ub/ubterm
ub/ubtestlock
ub/errmessage
ub/sys
ub/sys/attr

ub/irislist
ub/license.txt
ub/email _mail
ub/email .sendmail
ub/sys/change
ub/sys/dir
ub/sys/dsp
ub/sys/kill
ub/sys/Ipt.iris
ub/sys/makecmnd
ub/sys/mfdel
ub/sys/pdphelp
ub/sys/scan
ub/sys/term_tvi925
ub/sys/who
ub/ubkill
ub/unibasic
ub/sys/term. 1 inux

UniBasic Reference Guide



Installation & Configuration

10

Loading the UniBasic Development File

Verify that you are signed on as root and defaulted to the /tmp directory. Issue the following commands to load the

installation file:

uncompress filename.zZ (if the filename ends with a “.Z”)

cpio -i1avcdu < filename (i.e. 99 ubdev_8.1, 6D _ubdev_8.1.4, etc.)

A list of filenames similar to the following should be printed:

license.txt
ubdev
ubdev/calll.c
ubdev/callll.c
ubdev/calll2l.c
ubdev/calll26.c
ubdev/call19.
ubdev/call2l.
ubdev/call24.
ubdev/cal 128.
ubdev/call130.
ubdev/cal l45.
ubdev/cal l48.
ubdev/call51.
ubdev/call57.
ubdev/cal 165.
ubdev/call72.
ubdev/call77.
ubdev/call82.
ubdev/call197.
ubdev/callcimi.c
ubdev/callenv.c
ubdev/callhelp.c
ubdev/callphil.c
ubdev/calltrack.c
ubdev/comm
ubdev/ctree
ubdev/decode.h
ubdev/dl4._h
ubdev/files.h
ubdev/pcode.h
ubdev/pdn.c
ubdev/str.h
ubdev/timer.h
ubdev/ubdef2.h

0O0O000O00000O0O0O0O0

ubdev/unibasic.o
ubdev/var.h
ubdev/Makefile
ubdev/calll0.c
ubdev/callll4d.c
ubdev/calll22.c
ubdev/calll5.c
ubdev/call2.c
ubdev/call22.
ubdev/call25.
ubdev/call29.
ubdev/cal l43.
ubdev/cal 146.
ubdev/cal 149.
ubdev/cal 153.
ubdev/cal 159.
ubdev/cal 168.
ubdev/call73.
ubdev/call78.
ubdev/cal 188.
ubdev/call199.
ubdev/callclu.c
ubdev/callinpbuf.c
ubdev/callrpcs.c
ubdev/callwindow.c
ubdev/comm/comm.h
ubdev/comm/libcomm.a
ubdev/ctree/ctifil.h
ubdev/eval .h
ubdev/math.h
ubdev/read_me
ubdev/termO.c
ubdev/ubdef.h
ubdev/ubdefs.h
ubdev/unix.h

O0O000O00000O00O0OO0

ubinstall
ubdev/Release.h
ubdev/calll05.c
ubdev/calll120.c
ubdev/calll23.c
ubdev/calll8.c
ubdev/call20.c
ubdev/call23.c
ubdev/call27.c
ubdev/call3.c
ubdev/call44.c
ubdev/call47.c
ubdev/call5.c
ubdev/call56.c
ubdev/call60.c
ubdev/call7.c
ubdev/call76.c
ubdev/call8l.c
ubdev/call96.c
ubdev/cal lavport.c
ubdev/calldate.c
ubdev/calldev.c
ubdev/cal Imemcmp.c
ubdev/cal lswapf.c
ubdev/callwlock.c
ubdev/crt.h
ubdev/ctree/ctport.h
ubdev/extern.h
ubdev/misc.h
ubdev/runtime.h
ubdev/term101.h
ubdev/ubdefl.h
ubdev/ubport.o
ubdev/usercalls.c

UniBasic Reference Guide



Installation & Configuration 11

ubinstall - Installing UniBasic Packages;

ubinstall is a shell-script designed to run under the borne shell only. If the command does not execute immediately,
enter the command: chmod 500 ubinstall and try starting ./ubinstall again. If ubinstall still fails to begin operation,
verify that you are running under the borne shell (usually the file /bin/sh). You can usually start a borne shell by typing
/bin/sh.

If a license has not already been installed, Passport should be installed on the system before installing UniBasic.
Passport is not included in the UniBasic installation. Please see the Passport User’s Guide for information on installing
Passport.

After the desired distribution media is loaded, enter the command:
-/ubinstall
ubinstall will display the following:
Installation for "UniBasic" BITS/IRIS Business BASIC emulation
All Rights Reserved. Copyright (C) 1987 - 2006 by:

Dynamic Concepts Inc. Aliso Viejo, California USA
Installing the following packages:

ubinstall will locate all packages loaded for installation. Your display should include one or more of the following
packages:

UniBasic BITS/IRIS Business BASIC emulator
UniBasic Development

Do you wish to continue? (Yes or No, default = Yes)

If this is a re-installation, ubinstall checks the revision of UniBasic currently installed in /usr/bin:

7.2
8.1

Checking old UniBasic... Level
Checking new UniBasic... Level

"/usr/bin/unibasic" already exists. |If you install this version, the current
version will be renamed and saved as '"/usr/bin/ub7.2".

Do you wish to continue? (Yes or No, default = Yes)

A response of NO terminates the installation process. /tmp will still contain the installation files. All existing UniBasic
files and data are unchanged. You may initiate the ubinstall operation at a later time without reloading the media.
Many systems, however, remove the files in the /tmp directory whenever the system is shutdown and subsequently
restarted.

The next phase assumes you have previously created an account to own the UniBasic distribution files. This master

account is the group manager of the UniBasic group, and the owner of the HOME directory and sys directories (Logical
Unit 0) inclusive of all files. Additional utilities placed into the /usr/bin directory are also owned by UniBasic.

UniBasic Reference Guide



Installation & Configuration 12

Part 11) Accounting Information

UniBasic is distributed with a set of system utilities, an error message file,
sample terminal drivers, printer scripts, etc. These files have permissions
making them generally accessible to all users, but are installed into the user
and group you select.

Enter the user name to receive the distribution files: (default = "unibasic')
Enter the user name previously created as the UniBasic group manager.

Part 111) System directory

The system directory is where the distribution files are placed and where the
.profile for UniBasic is created or modified. It is normally placed in your
account®"s HOME directory. Other logical units required by your application are
best placed in HOME also, unless they should be elsewhere for security or space
reasons. The default HOME for new installations is "/usr/ub™.

However, the choice of "/usr/ub" is only a default; any directory name on any
file system can contain UniBasic logical units, subject to access permissions.

Enter directory to contain system files: (default = "/usr/ub'™)

If this is a re-installation to the same HOME directory (/usr/ub in this case), a warning similar to the following is printed
to avoid overwriting any files or programs normally supplied by DCI that may have been customized by you:

Note: '"/usr/ub/sys" already exists.
Installing will overwrite the following files:

attr dokey Ipt.bits mfdel term.tvio2s
batch dsp Ipt.iris pdp term.wyse50
bui ldxf email _mail Ipt.iris.sco pdphlp term.wyse60
change email _sendmail Ipt.sample port who

clk format make query

copy keymaint makecmnd scan

dir kill makein term

dirl libr makeitem term._ansi

IT you have made custom modifications to any of these files, you may want to
abort the installation at this point and make copies. Otherwise, you can
continue and update them to the latest revision.

Do you wish to continue? (Yes or No, default = Yes)

A response of NO terminates the installation process. /tmp will still contain the installation files. All existing UniBasic
files and data are unchanged. You may initiate the ubinstall operation at a later time without reloading the media.
Many systems, however, remove the files in the /tmp directory whenever the system is shutdown and subsequently
restarted.

Part 1V) Run-time options
Several options in UniBasic are configurable through use of "environment
variables'. These are generally set up in the file "_profile" in your HOME

directory, and are also changeable on-demand from the Unix shell. None are
required to be set up; defaults are used if not specified.

UniBasic Reference Guide



Installation & Configuration 13

Variable Description

BASI1CMODE Specifies the operating environment for UniBasic. I=IRIS, B=BITS.
(default = IRIS).

Select the default emulation mode for users. IRIS mode provides for complete emulation of IRIS
commands, syntax and visual operation. CTRL+C, Scope mode and Basic modes are enabled.
Selecting BITS mode still permits execution and programming of IRIS applications, however
command formats are BITS style.

SPC5 Value to be returned by SPC 5 (account number): (default = 65535)

Choose the value to be returned to your programs for this user whenever SPC 5 function is performed.
Since the Unix group, user and protection scheme is numerically different, you are permitted to
specify this value rather than have to create a special Unix account number to return your desired
value. When different users require different SPC 5 values, the system is easily changed to test who
signed on, and set a different value.

DATESEP Character used to separate MM/DD/YY strings: (default = "/")
Choose the normal date separator used by your applications.

CURRENCY Character used to replace $ in PRINT USING statements:(default = "$")
Select an alternate currency character to be replaced when $ is used in USING formats.

WINDOWS Maximum numbers of windows open per user. (default = ''20")

If your application uses Dynamic Windows, enter the maximum number of opened windows permitted
for each user.

EUROPEAN Mode for date verification calls (CALL 24, 27, 28). 0 = MM/DD/YY, 1
= DD/MM/ZYY. (default = "0"™)

For European dates: 31/12/88, choose option 1

You may tailor these Environment Variables as well as a number of other configuration options by later editing the file
HOME/.profile. For further information on configuration parameters, refer to Configuring a UniBasic Environment.

Do you wish to automatically run UniBasic after login? (y/n) (default = '"n") y

This configures an automatic launching of UniBasic whenever signing onto an account that executes this standard
HOME/.profile. You can also specify a BASIC program to start by editing the last line of the .profile script.

See also:: Launching UniBasic from Unix.

Installation started: Mon Mar 5 17:42:08 PST 1990
Creating directory ''/usr/ub/sys'".._Done
Installing configuration options in "/usr/ub/_profile™.._.Done

AEAEAAAAAAXAAAXAAAXAAAXAXAAAXAAAXAAAAXAAAXAAAAXAAAXAAAALAAXAXAAAA LA XAAAhhx

DCI strongly encourages usage of BCD file types for future File
compatibility and portability. Please refer to UB Reference Guide
for details on PREALLOCATE environment variable values.

AEEAAAAAAXAAAAXAAAXAAAXAXAAAXAAAXAXAAAXAAAXAAAAXAAXAXAAAAXAAAXAAAAAAAXAdAhhx

UniBasic Reference Guide



Installation & Configuration 14

Note: If this is a new installation, the environment variable PREALLOCATE is set to 32 by the ubinstall
program.
Installing UniBasic in "/usr/bin".._Done
Installing distribution files in "/usr/ub/sys"...Done
Creating directory ''/usr/ub/ubdev'.._Done
Installing development source files iIn "/usr/ub/ubdev'.._Done

Installation completed: Mon May 5 17:42:23 PST 1998
To run UniBasic, logout ("exit" or "D") and login to "unibasic". Then type "unibasic".

Finally, the /tmp directory is cleared. If an error occurs while removing the directory, the following message is printed:

There has been an error removing the distribution directory. Type <CR> to
continue, or Q to quit.

The installation process has successfully performed the following procedures:

1) Placed the required files in /usr/bin: UniBasic, ubcompress, ubconfig, ubkill, ubrebuild, ubterm,
Iptfilter, and makesp.

2) Placed into $HOME: errmessage - UniBasic error message file.

3) Placed into $SHOME/sys: All system commands, LPT scripts, drivers and terminal control files
(term.tvi925, term.ansi, etc).

4) Created the full $HOME/.profile environment and startup file.

5) Optionally created the directory ubdev under $SHOME if UniBasic Development files were installed.

Errors During Installation

If, for some reason, you did not load the files into the /tmp directory, an error message is printed and you are asked for
the actual directory where you loaded the installation file:

Distribution files not found in "/tmp/ub”. Make sure you have loaded all files
into the /tmp/ub directory.

If you are not logged in from root and attempt to run ubinstall, an error message notifying the user is printed and the
installation procedure is aborted.

"ubinstall™ must be run from the super-user (root) account.

Installation procedure aborted.

If you have not created the account to own the UniBasic files, an error is generated and the installation procedure is
aborted.

UniBasic Reference Guide



Installation & Configuration 15

You must create an account under which UniBasic can be installed. Refer to
the System Administrator Guide for your system. Most systems have a menu
driven program to assist with account management referred to as the System
Administrator Shell. This program is known on some systems as ''sysadmsh",
sysadm™, "adm', ''va'", etc. and must be run as super-user (root).

Installation procedure aborted.

If the installation was successful, sign off root, and sign on using the UniBasic master login id . Running from root level
while performing conversions or building files may render those files protected and inaccessible from other accounts.

Configuring a UniBasic Environment

When you login to Unix, the system typically executes two shell program files. The first is /etc/profile, owned by root,
followed by any optional user .profile (dot profile) in the user's HOME directory.

The root /etc/profile usually includes a definition for PATH; the directory search path for commands entered at the shell
(The system Command Line Processor). It may also contain commands to print a banner, news of the day or mail.

The user's HOME/.profile contains definitions of environment variables, and special commands unique to the particular
user signing on to the system. This may include changing the default working directory, and/or automatically launching
an application environment such as UniBasic. During ubinstall, the .profile is modified within the HOME directory
defining only the required configuration environment variables. The following sections describe configuration options,
using Environment Variables, for UniBasic.

All users created with an identical HOME directory automatically run the same .profile at login. When creating
multiple user accounts, you may default all users to the same HOME directory, or copy the supplied default .profile to
each of the users newly established HOME directories. Once copied, modify the environment variables (such as LUST
or SPC5) specific to that user accordingly.

During installation, the directory HOME/sys is created to contain the sys logical unit (0). Other logical units may be
created under HOME, or in another file system entirely.

Directories and Paths

A Unix file system directory is tree-structured beginning at the level known as root. Files are accessed by supplying a
pathname in the form dirl/.../filename through the tree. Since IRIS and BITS applications have been designed for a
single level directory, UniBasic provides a Logical Unit Search mechanism to facilitate single to multi-level directory
organization. An Environment Variable may be defined specifying the Unix directories to search for Logical Units
and/or Packnames. The environment variable named LUST (Logical Unit Search Table) in the .profile is used to define
the paths to the final level directories with unit numbers (or packnames).

UniBasic Reference Guide



Installation & Configuration 16

Filenames and Pathnames

Filenames are converted to a series of pathnames, appended one at a time to the entries defined by the Environment
Variable LUST (Logical Unit Search Table) until a match is found. Standard BITS or IRIS filenames are converted to
lower case characters; the Unix standard. Filenames beginning with / are assumed to be full Unix names, and no
conversion or logical unit search list is performed. The form pack:file is converted into pack/file. Account branch
characters (%&#, etc) and account [grp-usr] suffixes are discarded. Filenames in the form 0/filename are converted into
sys/filename; other files in the form lu/filename remain as is except leading zeros are dropped from the lu number.

Note: An ISAM file is made up of (2) separate files; the lower-case filename holds the data portion and an
uppercase filename is created to hold the ISAM portion. (In the case of Universal files the ISAM
portion is the filename with a .idx extension.) Filenames that do not contain at least one letter cannot
be used for ISAM data files. See Indexed Data Files.

Organizing Logical Units and Packnames

The following illustration shows various ways to organize directories. You simply list all of the paths in the LUST
variable to your final logical unit or packname directories. A null path (leading or trailing colon) is replaced by your
current default working directory.

/(root) /(root)
usr acct usr acct
ub progs files ub 234
sys 1 2 ar ap ar ap sys 1
1 1 2 2

The rightmost example shows the simplest structure. Logical Unit zero (sys) and 1 (containing application programs)
are under the path /usr/ub. Data files are on units 2, 3 and 4 under a separate file system (or disk drive) referenced
(mounted) as /acct. The search path for this configuration would be:

LUST=:/usr/ub:/acct:/usr/ub/sys

In the leftmost example, the sys or LU 0 directory as well as Logical Units 1 and 2 are under /usr/ub. Both Programs
and Files are separated into their own directories (progs and files) with duplicate logical units 1 and 2 underneath.
Assuming all files are accessed as "lu/filename", the appropriate search path for this configuration would be:

LUST=:/usr/ub:/acct/progs/ar:/acct/progs/ap:/acct/files/ar:/acct/files/ap:/usr/ub
/sys

In both cases, you may specify paths to a specific directory if your applications do not specify a hard-coded LU. The
entry /usr/ub/sys is normally included as the last entry in LUST to force a search of LU 0 when a command is entered,;
such as LIBR or DIR.

Other default units can be selected as well, but it is recommended that they be at the end of the LUST to minimize

searches. Always construct the search paths in a way that minimizes the total number of searches done for each
CHAIN, OPEN, etc.

UniBasic Reference Guide



Installation & Configuration 17

Environment Variables

This section discusses the user-configurable UniBasic Environment Variables. Definitions are added to, and exported
from, a user's .profile when the default value is insufficient. It is unnecessary to include definitions when a variable's
default value is adequate.

ALTCALL Defines the set of BASIC CALL numbers used within your application that have equivalents
as a different number. For example, your application uses CALL 64 to verify date inputs.
UniBasic includes a CALL 24 functionally compatible for your requirements. Setting
alternate 64=24 invokes a CALL 24 whenever the application requests CALL 64. Multiple
CALLs can be defined separated by colons, i.e.. ALTCALL 64=24:62=22 See CALL.

AVAILREC Defines the numeric value to be returned whenever an INDEX / SEARCH Mode 1 requests
the number of available records in an ISAM file. If AVAILREC is defined, its value is
always returned. When undefined, the number of available records is computed by
subtracting the number of active records from the created or current file size. See also:
Indexed Data Files.

BASEYEAR Defines the system Base Year to be returned for the function SPC 20. It is also used to
compute the hours counter returned for the TIM 2 function. The default for BASEYEAR is
1980 unless specified in the environment. Because Unix systems maintain clock values
beginning in 1970, you may set BASEYEAR to any value from 1970 to the present year.
Setting this value outside this range will result in very large (or negative) values for these
functions.

BASICMODE Selects the desired operating environment. The default is IRIS emulation with separate
SCOPE and BASIC Program command modes. By setting BASICMODE=BITS, you op-
erate in a BITS environment, that is both commands and BASIC statements are performed at
a single command prompt.

The NEW command defaults to IRIS or BITS syntax based upon the BASICMODE
selected. The NEWI or NEWB commands override the default BASICMODE for creation
of new programs. Either BASICMODE runs both types of programs.

Program Files are flagged for IRIS or BITS execution automatically. Text files accessed
using LOAD or MERGE take on the type of the current mode. The BITS GET or GETI
commands allow you to choose the encoding and runtime format for the text files you access.

BCDVARS If defined and non-zero, all BASIC variables are stored in memory using IRIS BCD format.
BCDVARS is required when special CALLSs indiscriminately copy data between numeric
and string variables by straight memory copy. Do Not set this environment definition without
specific instructions from your Distributor or Dynamic Concepts Inc. See also: IRIS BCD
Files.

BITSPROMPT Change the default prompt * displayed in BITS mode. Format is:
BITSPROMPT="replacement string'

CURRENCY Define a single character to be output by USING whenever the $ operator is used. Format is:
CURRENCY=replacement character.

UniBasic Reference Guide



Installation & Configuration 18

DATESEP

DXTDSI1Z

EURINPUT

EUROPEAN

EUROUTPUT

GOSUBNEST

FORNEXTNEST

IBITSFLAG

INPUTSIZE

ISAMBUFS

ISAMFILES

ISAMMAXSECT

ISAMOFFSET

Define a single character other than '/' to separate MM/DD/YY or DD/MM/Y'Y strings.
Format is: DATESEP=replacement character.

Specifies the number of records to extend an Indexed file when the data portion is full. The
default is 1 record. During creation of an indexed file, this value (or default) is read and
stored in the file header. Later expansion of the data portion is based upon this size. Once
created, this parameter cannot be changed for a file. Depending on your application,
changing this value and IXTDSIZ can have some effect on performance.

See also: IXTDSIZ, and Indexed Data Files.

Selects the programming mode used for USING. The default (or zero) mode requires
programs to use comma and period in the form: ####.## When set to one, programs use the
international form: #.### ##.

See also: USING and EUROUTPUT

Mode for date input/output formats; 0 for USA Format: MM/DD/YY, 1 for the international
format: DD/MM/YY.

Selects the output mode for USING. Periods and commas are reversed at output. The default
(or zero) mode outputs in the format: 1,234.56. When set to one, commas/periods are re-
versed; output is represented by the form: 1.234,56.

See also: USING and EURINPUT.

Selects the maximum number of GOSUB and RETURN nesting levels in any program.
Default is 8 levels deep.

Select the maximum number of FOR and NEXT nesting levels in any program. Default is 8
levels deep.

Set to 1 to eliminate the standard IRIS errors: Channel Already Opened (on OPEN
Statement), and Selected Channel is not OPEN (CLOSE Statement). An OPEN issued to an
already open channel performs an implied CLOSE of the channel first.

Size in bytes of the input buffer. This size limits the length of a BASIC statement, LOAD,
GET and other operations, such as Long CHAIN, that require the Input buffer.

Number of buffers allocated for shared memory ISAM files. This parameter is unused at the
time of this writing. DO NOT USE THIS VARIABLE.

Maximum number of opened Indexed file directories. For each file opened, one entry is
required for each Directory (index) plus 1 for the data file. The default value 40 supports 8
indexed files open with an average of (4) directories (indices) each. If this value is too small,
the error Illegal Channel (or ISAMFILES value too small) is printed.

Determines the maximum C-tree node size that can be read. The node size is given by
ISAMMAXSECT *128. Default ISAMMAXSECT is 8 supporting up to 1024-byte nodes
such as those used by dL4.

Define the displacement within ISAM records for maintenance of a system Deleted Record
Flag and Delete Link List pointers. Change this offset (Default 0) when your applications

UniBasic Reference Guide



Installation & Configuration 19

ISAMSECT

write data within the first 5 bytes of a record following deletion. This offset is not used with
Universal Data files.

See also: Indexed Data Files and Universal Data Files.

Determines the C-tree node size. The node size is given by ISAMSECT *128. Default
ISAMSECT is 4 resulting in 512-byte nodes.

Note:

Following deletion of a record in a Non-Universal Data file, DO NOT WRITE (clear) the entire record

or the delete list will be corrupted.

IXTDSI1Z

LOCKRETRY

LONGVARS

LUST

Specifies the size in bytes to expand a file's Index portion when the index is full. The default
is 512 bytes. During creation of an indexed file, this value is read and stored in the file
header. All further access and expansion to the file's index portion is based upon this size.
Once a file is created, this parameter cannot be changed for that file unless the file is rebuilt
using a new IXTDSIZ value. Depending on your application, changing this value along with
DXTDSIZ (and then rebuilding a file) can have a great effect on performance.

See also: DXTDSIZ

Record lock retry counter. A value of zero (default) provides for unlimited record lock return
(aka IRIS Revision 7). Any other positive value selects the number of retries (in 5 second
intervals) attempted prior to issuing a Record Lock error to the application.

See also: Record Locking

Change the default (0) setting to provide for the global use of long variable names. When set
to 1, long variable names are allowed globally; setting 0 disables long names. The variable
command may be used to override this default at any time.

Logical Unit Search Table. Defines the entire series of Unix paths to search for program and
filenames in the form filename, lu/filename or pack:filename. If this parameter is not defined,
only the current working directory is searched. Filenames beginning with / are assumed to
specify the entire path to the file and the LUST definition is not used. The following table
illustrates the search paths used for a simple filename and lu/filename.

LUST=:/usr/ub:/ub/sys:/usr/ub/1:/usr/acct:/usr/acct/?2

filename pack:file or lu/file
filename lu/filename
/usr/ub/filename /usr/ub/lu/filename

/usr/ub/sys/filename /usr/ub/sys/lu/filename
/usr/ub/1/filename /usr/ub/1/1u/filename
/usr/acct/filename /usr/acct/lu/filename
/usr/acct/2/filename /usr/acct/2/1u/Tilename

LUST should be constructed to minimize number of searches required to locate programs and
files. If an application under IRIS or BITS defaults to a specific logical unit containing
programs or data, set the current working directory to that same location. This is ac-
complished by including a cd pathname command within the .profile.

UniBasic Reference Guide



Installation & Configuration 20

Note: The maximum number of entries in the LUST is 24.

MAXACCSLEEP

MAXPORT

MAXVARS

If all file and program access is in the form lu/filename, or pack:filename, define LUST to
provide the path to the directory containing the actual numbered (or named) logical units
only.

If you rely on the IRIS or BITS LU Search for other Logical units, then you must include full
paths directly to each directory.

To ensure the fastest access to programs and files, determine whether your application
performs more OPEN or CHAIN statements. List your entries in LUST accordingly. If
most filenames include a Logical Unit or packname, list entries terminating at the directory
containing the lu, and finally list direct paths to each named or numbered directory.

Define accuracy vs. performance of the Unix sleep timers utilized by PAUSE, SIGNAL 3,
INPUT TIM, record locking, etc. Since many Unix systems provide timer accuracy only to
the nearest second, UniBasic employs the following software method to ensure accurate
tenth-second timers:

First, the specified delay is rounded down to the nearest whole second. If at least one-second
of delay is warranted, the process sleeps, allowing other processes to run, for that number of

seconds. Following the sleep period, UniBasic 'spins’, i.e. wastes CPU time, by watching the
clock for the remaining partial second.

Most applications are not timing critical. Substantial system wide performance is realized by
configuring delays to round up to the nearest whole second. That is, a delay of 5 tenth-
seconds is rounded to a full second.

MAXACCSLEEP defines the delay value, below which, exact accuracy is required. Delays
at or above this value always round to the next whole second. A value of zero, the default,
provides the highest accuracy at the expense of additional system overhead. A value of one
always rounds, etc. To ensure accuracy on all delays below two seconds, set the value to 20.

Some systems support highly accurate timers without the requirement to waste CPU time,
including SCO Unix, NCR Tower 7xx/8xx, MIPS and Motorola 88000. These systems
default, automatically, to 65535 which enables the system specific timer. On systems that do
not support accurate timers, the value defaults to zero.

Change the default automatic port number assignment to a value other than 999. The
maximum port number is 1023. Used for automatic port number assignment by the SPAWN
statement, and during sign on when PORT and/or PORTS are undefined. Set to 99 to pre-
vent automatic assignment of 3-digit port numbers.

See also: PORT, PORTS and Port Numbering and Phantom Ports.

Control the maximum number of variable names that can be used within a program. By
default, 348 unique variable names may be used within each program. Setting MAXVARS
to a number limits the number of variable names to that number. This value is only checked
when a program statement is entered adding a new variable to a program. Setting
MAXVARS to 93 ensures backwards compatibility to IRIS or BITS. Setting MAXVARS to

UniBasic Reference Guide



Installation & Configuration 21

MSC7

PFCHAR

the string “extended” increases the normal limit from 348 to 1113. The increased limit is only
effective for programs that are newly created while MAXVARS is set to “extended”.
MAXVARS does not need to be set in order to load, run, or modify a program created with
the extended variable table.

Define the numeric value to be returned by the MSC(7) function. If MSC7 is not defined (or
defined as 65535), your UNIX group number * 256 plus the user number is returned.
MSC(7) will yield unpredictable results when the group or user numbers are greater than 255.

Define a single replacement character for any @ character terminating a filename. Format is:
PFCHAR-= replacement character. When PFCHAR is not defined, the trailing @ character
is ignored and terminates a filename. Therefore, the filenames DATA and DATA@ both
select the same filename. This default operation is recommended as a method of preventing
@ characters from becoming part of a Unix filename. @ is not a portable filename character,
and its use may interfere with some Unix shell commands.

On some IRIS systems, users may have nearly identical files, such as DATA and DATA@.
Defining this option removes the requirement to modify applications and filenames.

To define this option, choose a single character to replace @, such as PFCHAR="-". In this
example, any attempt to BUILD or OPEN a filename such as DATA@, results in an
operation to DATA-.

Note:

This option should only be utilized on systems where a blind conversion is being performed. It will
safeguard against conversion errors when an IRIS system has nearly identical data and poly filenames.
Resellers converting known systems are advised to rename or delete conflicting filenames. Most
often, duplications are the result of an older Indexed file (itself no longer in use) being recreated as a
Polyfile.

Once files have been built with this substitution in effect, the option must remain set, or all program
occurrences of the @ must be changed to the specified replacement character.

PORT

PORTS

See also: Setting up .profile for Multiple Users.

Force the current session to operate as a specific PORT number, i.e. PORT=23. The value of
PORT can also be set to the string “any” in order to ignore the terminal nhame and use the
first available port number (starting down from the maximum port number). The maximum
Port number is typically 1023 unless your system is licensed for a greater number of users.
The value “any” is sometimes used within a profile script to prevent telnet pseudo-devices
from conflicting with users logging in on serial lines.

Define a specific port numbering order. The format of this definition is:
PORTS=tty00:ttylb:#7:ttylc . . .

In this example, Port O is tty00, Port 1 is ttylb; starting at Port 7 is ttylc leaving ports 2-6

unused. When neither PORT nor PORTS is defined in the environment, port numbers are
assigned based upon the tty name (tty23 is port 23). If a name conflicts with an existing port

UniBasic Reference Guide



Installation & Configuration 22

PREALLOCATE

16

*32

(or a port already in use ), a number is assigned backwards starting at MAXPORT. To
prevent automatic assignment, all system tty device names not in the form ttynnn (where 'nnn'
are digits) should be listed. Ports conforming to the normal numbering conventions need not
be defined.

See also: Port Numbering and Phantom Ports.

This variable contains several flags which, when added together, define options for
processing data files.

Options fall into two categories, runtime and permanent. Permanent options are indicated by
». Runtime options affect current file operations when enabled. Permanent options affect all
future access to files created when that option was enabled. Permanent options are stored
within the file's header and typically define file limits or data storage formats.

Preallocate all blocks for contiguous files and initialize to zero bytes. You might set this
value on a new system to force files to occupy physically contiguous space on the disk. Note:
Indexed files store keys in a separate file, and may be built too large using older style IRIS or
BITS creation algorithms. If this flag is set, modify your file creation sizing algorithms.

Runtime option.

Do not allow writing past the original created size of a contiguous file (no expansion).
Runtime option.

When expanding a contiguous file, do not fill in all records between current end of file and
new record to write. ** Runtime option.

See also: Contiguous Files.

Check Formatted files and return a Record Not Written error if a record has never been
written or contains only null (zero) bytes. Runtime option.

When expanding a Formatted file, do not fill in all records between current end of file and
new record to write. ** Runtime option.

See also: Formatted Files.

Always BUILD and CREATE new files in IRIS style BCD record format. This flag may be
required if: a) data files were converted from IRIS and b) your application indiscriminately
copies entire records from one file to another using variables other than the actual field
specification. For example, a MAT READ of a string or 1% array. Setting this flag for new
installations forces creation of potentially transportable data records for future relocation to
other hardware platforms. Permanent option for files created while enabled.

See also: IRIS BCD Files.

Note: DO NOT set this mode during IRIS or BITS conversions.

UniBasic Reference Guide



Installation & Configuration 23

- 64

Always BUILD and CREATE indexed files in IRIS/BITS 8-bit key format. Forces keys to
be stored in exact IRIS/BITS format. This flag is required when applications utilize binary
information in the keys. DO NOT set this mode during conversion of files from IRIS or
BITS. Permanent option for files created while enabled.

See also: IRIS BCD Files and Indexed Data Files.

Note:

DO NOT set this mode during IRIS or BITS conversions.

128

256

512

» 1024

Restrict Indexed files from dynamic expansion. When built, the number of records specified
to BUILD or CREATE is retained in the file header as the maximum number of records for
the file. The status E=3 is returned from SEARCH # and INDEX# when the file dy-
namically expands to this record number. Runtime option.

See also: Indexed Data Files.

During Indexed File Record Deletion, check for record already deleted. When deleting
records and adding them to the delete chain, this runtime flag forces an initial check of the
delete flag prior to deletion. If the record is already flagged as deleted, an exception status
(E=1) is returned, and the record is not added to the deleted record list. This flag may be
required if your applications arbitrarily delete records not currently in use. Runtime option.

Permit writing past the record boundary of an Indexed file in a single operation. Normally,
error 144 is generated whenever a single write operation will cross a record boundary. This
option should only be used when the application is certain that all records to be written are
previously allocated, otherwise the file's deleted record list might be corrupted. This option is
runtime in nature, affecting all open Indexed files. Runtime option.

Always BUILD and CREATE new files in IMS style BCD record format. This flag may be
required if: a) data files were converted from IMS and b) your application indiscriminately
copies entire records from one file to another using variables other than the actual field
specification. Permanent option.

Note:

DO NOT set this mode during conversion of files from IRIS or BITS.

2048

4096

See also: IMS BCD Files.
Reserved for future use. DO NOT enable this option within your application.
Prevent all write operations to deleted records within Indexed files. Prior to each write

operation, the record's delete flag is checked. If the record is flagged as deleted, set ERR(8)
c-tree status to 144 and return BASIC error 123. Runtime option.

UniBasic Reference Guide



Installation & Configuration 24

Note:

Formatted and Contiguous, including Indexed, files are typically created containing a 512-byte header
and no data records. For Contiguous and Indexed files, the number of records specified to BUILD or
CREATE is stored within the header for use by CHF and runtime-limiting PREALLOCATE
options. Only when PREALLOCATE option 1 is set are records physically allocated at creation.

Prior to each write operation, the number of records between the current physical end-of-file and the

end of the record being written is computed. Missing (intervening) records are automatically written
to the file. This process may take several seconds depending upon the number of intervening records
that must be written.

When setting PREALLOCATE to prevent intervening record allocation, only the record to be written
is allocated. Reading any non-existent record results in the transfer of a null data without error.
Although these files are completely valid, warning messages may be printed by the Unix command
fsck (File System Check) when 'gaps' are detected in the structure. These files are sometimes referred
to as sparse files.

Within Formatted files, PREALLOCATE option 8 is used to interpret null records as Records not
written.

Always BUILD and CREATE new files as a Universal type file. The file will contain IRIS
style BCD data. If this flag is set, the 32 and 64 option flags are ignored. Permanent option.

Always BUILD and CREATE new files as a Huge Universal type file. The file will contain
IRIS style BCD data. If this flag is set, the 32 and 64 option flags are ignored. Permanent
option.

SCOPEPROMPT Choose an alternate prompt while in SCOPE Command Mode (BASICMODE-=IRIS only).

SPC5

SPC7

STRING

TABFIELD

The default prompt # is replaced using the form: SCOPEPROMPT="replacement
characters'.

Define the numeric value to be returned whenever the SPC(5) function is called. If SPC5 is
not defined as an environment variable (or set to 65535), your UNIX group number * 256
plus the user number is returned. The SPC(5) function will yield unpredictable results when
the group or user numbers are greater than 255.

See also: Setting up .profile for Multiple Users.

Define the numeric value to be returned whenever the SPC(7) function is used. If SPC7 is
not defined as an environmental variable, zero (0) is returned.

Select alternate string processing for BASIC to match HAGEN Business Basic. To invoke
HAGEN String Processing, use the form: STRING=HAGEN.

Change the number of spaces between comma fields in PRINT statements from 20 to the
new numeric value specified.

UniBasic Reference Guide



Installation & Configuration 25

WINDOWS Define the maximum number of Windows that may be opened by this user. If WINDOWS is
defined, the main screen is counted as the first Window. Each WINDOW requires approx-
imately 64 bytes of storage for the array. As Windows are created, memory is allocated
based upon twice the number of characters in the Window. The main screen occupies (80
*24 *2) characters of memory for a 80 column, 24 row screen.

See also: Windows and Output Considerations, WINDOW, CALL $WINDOW, and
MSC Functions.

WARNING: THE FOLLOWING UNIX ENVIRONMENT VARIABLES MAY BE EXAMINED OR
CHANGED AS REQUIRED. HOWEVER, CHANGING THESE VARIABLES WILL LIKELY
AFFECT THE OPERATION OF OTHER UNIX APPLICATIONS.

HOME The home directory of the user, i.e. /usr/ub.

HzZ The clock rate used internally by the Unix system. For most systems, this value is either pre-
defined to the compiler or is already in the environment. This value is used to compute
certain TIM and SPC functions; the BYE command and pause durations less than 1 second.
Do not change this variable unless incorrect times are reported by the above noted functions.

See also: MAXACCSLEEP Environment Variable.

TERM Many applications, including UniBasic, retrieve the value of this variable to select a terminal
driver for screen operations. While many applications rely on the Unix termcap or terminfo
drivers, UniBasic developers have the flexibility of their own driver system.

See also: Configuring Terminal Drivers

PATH The Logical search path for Unix commands issued to the shell. PATH=:path:path:path: ...
The PATH is only referenced when shell commands (or Unix commands) are entered while
in command mode. To open pipes without supplying the full pathname (i.e. DUMP $more),
append PATH definitions to LUST, i.e.: LUST=$LUST : $PATH

Note: The following are useful Unix commands that may be of interest to the user. For more detailed
information, consult your Unix documentation.

stty Command to reset terminal configuration, Baud rate, parity, backspace and control characters,
xon/xoff protocol, character length, mapping of return to return-linefeed, etc.

UniBasic Reference Guide



Installation & Configuration 26

Unix typically assigns the characters BREAK and DELETE for QUIT and INTERRUPT
functions used to abort a process. These functions are reset upon entry to UniBasic to the
characters ~D [EOBC] and ESCAPE.

When a Unix command is performed from UniBasic (Command mode, SYSTEM statement),
the functions are reset to their initial Unix definitions for the duration of the system

command. Some users find it desirable to use ESC and D for both system and UniBasic
commands. The stty command may be executed from within the .profile to change the default
Interrupt and Quit functions.

Note:

To ensure proper terminal operation, incoming stty parameters are saved whenever a UniBasic process
is launched. Issuing stty or similar commands, within UniBasic, have little effect since UniBasic
restores and resets these parameters. Certain changes are permitted, using the ! command, such as
changing the baud rate.

cd $SHOME/1

umask

ulimit

Command within .profile to set the user's default Logical Unit to 1 when LU 1 directory is
below HOME.

Set to zero to provide for pass through protections to Unix. Any non-zero value forces Unix
to XOR supplied protection digits with this umask value. For example, if umask=7, then all
lower protection digits are cleared. See File Attributes, Protection and Permissions for a
complete discussion of the Unix protection system.

The ulimit command sets the upper limit (in blocks) for files created on the system. Set this
value to the largest allowed value to allow your applications to control file size. If this value
is set too low, a Write Error will be given when a file reaches this maximum size. This value
may be defined in /etc/profile, as part of the user's account or within the Kernel. Contact your
supplier if this value is too small for your needs.

Setting up .profile for Multiple Users

When multiple users default to the same HOME directory, you may insert statements within .profile to determine the
login name used, and configure environment variables accordingly. The following statements might be added to

HOME!/.profile.

To set a different SPC5, MSC7 or LUST (Logical Unit search path) based upon the user signing on:

case $LOGNAME

"doug') SPC5=32774;LUST=$LUST:/usr/drivel;;
"laura') SPC5=32896;LUST=$LUST:/usr/drive2;;
"mike'™) SPC5=32768;LUST=$LUST:/usr/drive3;;

*)

esac

SPC5=16384; ; #Default other users.

UniBasic Reference Guide



Installation & Configuration 27

The previous example configures different SPC5 values and alters LUST, appending to its previously defined value the
additional search of drivel, drive2, or drive3 only for doug, laura or mike. By appending a previous base value, it is
unnecessary to redefine the entire LUST specification for each user. A total re-definition would take the form:

LUST=/usr/ub:/usr/ub/sys:/usr/drivel.

For further information , refer to the Unix manuals on Shell Programming.

Command Line Interpreter

Two separate command line interfaces are provided within a running UniBasic process. Command Mode is signified by
the prompt character # (SCOPEPROMPT) printed at the left margin. System commands (UniBasic or Unix) and
program names may be entered while in Command Mode.

BASIC Program Mode is entered by the BASIC Command and has no prompt character. Programming and debugging
is performed while in BASIC Program Mode.

#ls Issue Unix Directory command
#LIBR {param} Command Mode example
READ var.list BASIC Program Mode example

It is also possible to configure all commands for operation from a single command mode by setting
BASICMODE=BITS. In this configuration, a single prompt * (BITSPROMPT) is always displayed at the left margin.

*Is Issue Unix Directory command
*LIBR {param} Command Mode example
*READ var.list BASIC Program Mode example

Launching UniBasic From Unix;

SYNOPSIS: Launch a UniBasic Process
unibasic {-ffilename} {-Ffilename} {-Pfilename} {-Xfilename} {-s} {-0} {-t}

DESCRIPTION
Start a UniBasic session on your terminal. The current environment is read for all pertinent variables, a Port Number
is established, a Message Queue is created and the terminal modes are reconfigured. If this is to be an interactive
keyboard session, the terminal is placed into command mode.

filename is an optional name of any BASIC program file. The specified filename must be in the current working
directory, or in one of the supplied pathnames specified in the environment variable LUST. The filename may also
include a lu identifier, or be a full Unix pathname beginning with '/

The -f switch is used to immediately execute the named program file. If the specified program terminates or an error
occurs, the terminal remains within UniBasic in command mode.

The —F switch is also used to immediately execute the named program file. However, if the specified program

terminates using STOP, BYE, SYSTEM 0, END, CHAIN ", non-trapped ESC, [EOBC] (CTRL+D) or an abortive
error, the session is terminated, and control returns to the point UniBasic was launched; see below.

UniBasic Reference Guide



Installation & Configuration 28

The —P switch is identical to —F except no terminal translation will be used and the UniBasic startup messages are
suppressed.

The —X switch is used by DynamicXport to run UniBasic applications and must not be used outside of that
environment.

The -s switch requests entry of a new Software Selection Number (SSN). The SSN might be changed when you are
installing additional terminals, installing additional products (such as 1Q) or converting a demonstration License into a
paid-up License of UniBasic.

The -0 switch requests the entry of a new OEM Selection Number (OSN). The OSN is used to control execution of
one or more dealer-protected software packages.

The -t switch requests the entry of a new OEM Selection Number (OSN) similar to the -o switch. This OSN is
considered temporary and is not stored into the system. The -t option is used when the owner of protected software
wants to temporarily grant access to the source code. This access is restricted to the single terminal issuing the -t
switch.

When a session terminates using BYE, SYSTEM 0 or 1, or an aborting condition using the -Ffilename, the process is
exited, and all terminal characteristics are reset to the incoming values. If the UniBasic session was started from the
shell, then the shell is resumed. If launched from the .profile using a UniBasic {switches} command, the .profile
resumes at the following statement. To return the user to login mode at process termination, place an exec UniBasic
{switches} command as the last line of the .profile.

EXAMPLES

unibasic -f menu

unibasic -s

unibasic -F program | tee savefile

ERRORS
No SSN currently entered
Demonstration system, not for resale
License number from ssn does not match actual license
Cannot allocate sufficient memory
Cannot initialize ISAM. Check I1SAMBUFS/ISAMFILES definitions
Cannot open term.xxx file. No CRT translation in effect!
Error loading CRT file term.xxxx. No CRT translation in effect!
Could not open "errmessage”, no error messages available!
Too many users; max = n
Port n is already signed on and in use

See also: Environment Variables, Entering an SSN, PORT, PORTS, CRT TERM Files, Program Files, Port Numbering

Terminating a UniBasic Process

Once initiated, an interactive UniBasic process remains active until terminated. Interactive, as well as Phantom Port,
termination is provided for with the SYSTEM 0 and BYE commands.

Non-interactive UniBasic processes, such as those launched using UniBasic -F or SPAWN, terminate when the
specified program stops execution.

UniBasic Reference Guide



Installation & Configuration 29

All of the above (normal) methods provide for a graceful termination of UniBasic. Open files and devices are closed,
the Message Queue is removed, the terminal driver is reset to the modes present upon entry and the process terminates.

Abnormal termination, resulting from the following events, may require operator intervention before other tasks may be
performed:

. Memory Fault - core dump

. Hardware failures.

. Receipt of a non-supported signal. UniBasic supports the signals HANGUP(1), TERMINATE(15),
SYSCHILD, SIGPIPE, INT, QUIT, SIGUSR1, SIGUSR2. Any other signal may cause abnormal
termination.

The following functions may be performed manually, from the failing terminal, when an orderly shutdown did not
occur. From a remote location, only the Message Queue must be deleted, after which you should kill any remaining
processes, including the shell, associated with the port.

. Issue the Unix command: stty sane and press CTRL+J or RETURN if the terminal is misbehaving.
. Issue the Unix command: ipcs to review, and ipcrm to remove the Message Queue for the offending
port.
. Issue the Unix command: ps to determine and Kkill any remaining suspect processes under the port's
control.
. Sign off and back on to reset all terminal parameters before re-launching another UniBasic process.
See Also: Message Queues

Licensing a New Installation;

If this a new installation, you may be asked to enter an SSN the first time UniBasic is launched:
$ unibasic

UniBasic Level 8.1

All Rights Reserved. Copyright (C) 1987 - 2006 by:

Dynamic Concepts Inc. California USA

No SSN currently entered

Enter Software Selection Number (SSN), RETURN to remain the same

If you do not yet have an SSN, press [RETURN] to invoke a single-user grace period. A special warning about the
grace period is printed periodically until you enter an authorized SSN.

To obtain an authorized SSN for this installation, contact your supplier with the following information:

. License Number displayed
. Number of ports desired

. Type of system

. End-User name

UniBasic Reference Guide



Installation & Configuration 30

. Options, other DCI products such as 1Q runtime, 1Q development or IMT.

SSN entry is space and case insensitive. After entering all characters, press [RETURN]. You will be prompted to enter
the User Name. Enter the name exactly as printed on the SSN License Agreement. Entry of the name is case and space
sensitive. Backspace may be used to correct input errors.

Following entry of the SSN and User Name, immediately issue a BYE command, and restart UniBasic. If the SSN was
accepted, the command mode prompt is displayed. If you are again asked to enter an SSN, either an error occurred
during entry, or the License Number does not match the supplied SSN Report.

The SSN contains the licensed configuration for the specific License Number. Currently, an SSN includes
Demonstration options (Permits operation for up to 90 days), the number of concurrent Ports that may run UniBasic, and
additional information to enable IMT and 1Q.

Note: When using Software Licensing, the license number is keyed to your specific system. Prior to updat-
ing the operating system (Unix), or replacing or re-formatting your disk drive, contact your distributor
or Dynamic Concepts concerning the deactivation and replacement policy for your license.

Changing the SSN Activation Key

Prior to changing a system's SSN, verify that you have a copy of the existing SSN number, as contained within the file
/etc/DCl/ssn. Prior to installing a new SSN, you may print this text file, or use the Unix cp command to make a copy of
this file. You will need root permission to access this special file.

To change an existing SSN, for example to add additional users, enable additional products or convert a demonstration
license into a full license, issue the command:

ssnmaint
Any existing SSN is displayed.

Enter the new SSN (case and space insensitive) and Customer Name (space and case sensitive). After pressing return,
command mode is entered.

Following entry of the SSN and User Name, restart UniBasic.
A new ssh can also be entered by using the command: unibasic -s

See also: Launching UniBasic from Unix.

UniBasic Reference Guide



Installation & Configuration 31

Launching UniBasic Ports at Startup

You may provide for turn-key operation whereby Unix automatically launches terminals directly into UniBasic, and/or
your application. Start-up is performed at system initialization (IPL) or whenever a terminal is evicted or a user signs
off.

This feature may be used for interactive or phantom (background) jobs.
The following instructions apply to most Unix based non-server environments.
Make the following changes for each port to be initialized:

1. When starting an interactive terminal, change the getty command inside the /etc/inittab entry for the
terminal to:

login unibasic </dev/ttyxx >/dev/ttyxx 2>&1
where 'xx' is the system tty name.

2. Change the .profile to set the necessary tty options. The PORTS environment variable should be
defined within .profile to ensure the same port number assignment for each automatic startup.

a. .profile based upon a Login User Id: Create a login 'ubauto’ with the same $HOME directory, group
and user id as your ‘unibasic' login. Then add a single line in .profile to handle all automatic startup
ports:

[ SLOGNAME = ubauto ] && stty sane

___Or___
b. .profile based upon which tty when ports require different settings:
case “tty  in
*tty0l) stty 9600 sane ;;
*tty02) stty 1200 sane ;;
esac
3. When starting a phantom port, change the command to:

PORT=n login unibasic </dev/null >/dev/null 2>&1

where 'n' is the desired port number for the process. No changes are required to .profile. You may
also include PORT=n for interactive ports when the PORTS environment variable is not defined, or
special numbering for each process is desired.

The 'login unibasic' forces a direct login and execution of the .profile as if the login id 'unibasic' was entered on a
terminal.

The .profile must contain the line exec unibasic as the last line to launch the session. The initial copyright is printed and
the session is waiting input at command mode. You may also force a starting program using the form:

exec unibasic -f program.

UniBasic Reference Guide



Installation & Configuration 32

See also: Setting up .profile For Multiple Users, PORT, PORTS, Port Numbering and Phantom Ports,
Launching UniBasic from Unix, Port Number

UniBasic Reference Guide



Installation & Configuration 33

Configuring Printer Drivers

Two printer drivers are supplied for use with your applications; Ipt.iris and Ipt.bits. An additional file Ipt.sample
documents various modifications and sample printer drivers.

Ipt.iris is designed for applications requiring locked printers. Users attempting access to a locked device receive an
error until it is available.

Ipt.bits is designed for multi-user spooling applications. Both drivers are similar and may be used with either IRIS or
BITS applications.

You may examine and change the driver saving copies using the filenames required by the application, i.e. Ipt1, Ipt2, etc.
A driver must use a lower-case filename and be stored within a directory listed in the LUST Logical Unit Search Table.
Do not place a $ as the first character of the filename. The $ is a flag recognized by UniBasic as a request to open a pipe
to an executable file.

For a printer driver to operate correctly, it should be owned by the master UniBasic account with the permissions 555.
Before using the driver, issue the Unix command: chmod 555 filename to set the proper permissions. If further
modifications are necessary, issue chmod 666 filename, perform editing as required and reset the permissions to 555.
The following is a line by line description of the supplied Ipt.iris printer script. It is designed to run as an executable
shell-script under the borne shell only. It operates as a pipe, taking as its standard input data transmitted by PRINT #
statements.

#lock LPT - Printer Driver for UniBasic

If the first line begins with #lock’, locking is employed to guarantee single user access to the device. Typically required
for check or form printers.

Note: No tabs, spaces, blank lines or other characters may exist before the '#lock'.

#Module: Ipt Level: 1.2 Modified: 7/18/88

Comment indicating revision of supplied Ipt script.

trap " 12 3
INODE="Is -i $0°

INODE="expr "$INODE" : " *\([0-9]*\)""
LOCKFILE=/tmp/ 1k .$INODE

trap "rm $LOCKFILE" 0

Setup for cancellation, and signals. Determine the filename of the lock file built, and setup to remove the lock file on
script termination.

OPENSTR="\c"

Define the string of characters to be sent to the printer when opened. The \c is a special flag for the Unix echo command
to avoid sending a return and line-feed following the characters. Enclose within single quotes; characters as themselves,

UniBasic Reference Guide



Installation & Configuration 34

\Onn for octal using 7-bit form, such as \015 for carriage return; \? special characters such as \n new-line, \r return, \f
form-feed. For a complete list, refer to your Unix documentation on the echo command.

CLOSSTR="\Ff\c"

Define the string of characters to be sent when all output is complete. The same rules apply as with OPENSTR.

FILTER="Iptfilter BX \010*"

Define output filtering. Supplied by Dynamic Concepts, Iptfilter provides output translation. Modify the data between
quotes to contain 'Iptfilter' and pairs of parameters representing data sent by the application, and replacement strings.
The above example changes all BX mnemonics (Begin Expanded Print) to the replacement string ASCII character 10
(octal). For additional information, see also Iptfilter. Iptfilter prints directions for its use when typed as a command at
command mode, or at the shell.

PTRDEV="/dev/1p00~

Define the device to actually receive the finalized data sent by this script. To send the data through the spooler, this line
would contain the actual spool command within single quotes, such as Ip -s.

PTRBAUD="9600 opost onlcr istrip ixon cs8 -parenb*®

Define for a serial port the baud rate and other characteristics required to define the port for the printer. The above
options indicate 9600 baud, process post output, change new-line to carriage return, strip high bit, Xon/Xoff protocol,
etc. This string is not required for parallel printers, and it is not used (only defined) in our example. See also:
Configuring Serial Printers below.

Standard Parallel Operation to device:
(echo "$OPENSTR'";cat -;echo "$CLOSSTR'™) | $FILTER >$PTRDEV

Standard Parallel Operation to a spooler:
(echo "$OPENSTR";cat -;echo "$CLOSSTR™) | $FILTER | $PTRDEV

Standard Serial Operation to device:
(stty $PTRBAUD >$PTRDEV <&1; echo "$OPENSTR'"; cat -; echo "$CLOSSTR™) |
$FILTER > PTRDEV

Create a sub-shell to perform the following processes under the process of the script itself:

1. Invoke echo to transmit the defined opening string.
2. Invoke cat getting its input from standard input (the pipe).
3. Invoke echo to transmit the defined closing string.

All of the output from the sub-shell process is optionally piped again through Iptfilter and finally redirected to the
selected device or through the spooler.

If Iptfilter is required, add the command | FILTER immediately following the close parentheses before the >PTRDEV
or |IPTRDEYV respectively. If not, remove the | FILTER command. This increases the speed of the script, preventing
an additional process from starting.

By opening the Ipt printer, we have started the process sh (shell) to interpret the script, another sub-shell to perform
items 1-3. The sub-shell will have echo or cat opened and running until the BASIC program closes the channel.
Finally, the optional Iptfilter process may be running. If you have directed output to the spooler, additional processes
may also be started.

UniBasic Reference Guide



Installation & Configuration 35

The entire operation is quite fast, and easily configured. For special applications, you might write in C a printer driver
specifically for your needs.

See also: Pipes, Iptfilter, filename

Configuring Serial Printers

In the previous section, each time the printer is opened the Unix stty command is sent to initialize the device. With
some printers, this may cause problems such as overflowing buffers, or losing flow control when the device is turned
off-line or out of paper.

If you experience problems with serial printers, check the following conditions:

1. Is the printer set for Xon/Xoff protocol, and if so, does the PTRBAUD definition contain the option
for ixon?
2. Is the printer set for DTR protocol, and if so, is the wiring correct for the mux, and does the mux

support this protocol ?

3. Is the script properly set for serial operation including the Unix stty command as the first command
within parenthesis?

These conditions should be checked by your installer with a break-out box. You may also have to check with the
manufacturer of the printer, system and mux to verify that your configuration and use is supported by the hardware and
Unix drivers.

If you continue to have problems:

1. Modify the PTRDEV definition to specify a temporary file for printer output, i.e. /tmp/printerdata.
Run your report and examine the contents of the file to verify that the data is being correctly sent by
the application through the Ipt script.

2. From command mode or shell, use the Unix Commands stty and cat to configure the port and direct
the data to the device:

(stty options; cat /tmp/printerdata >/dev/...)

3. Once you are able to print data, modify the script using the same parameters remembering to reset
PTRDEV to the desired device name.

If printing works, but the printer occasionally loses data or overflows on multiple jobs, it may be necessary to remove
the Unix stty command from the script. Follow the above example for a parallel printer. Next, add the following code
to the system file /etc/rc or other Unix startup file:

(stty ; while - ; do sleep 40000; done ) </dev/... &

Insert the proper parameters following stty, and </dev/... is the name of the physical device driver, such as /dev/tty23.
This must be a background process as indicated by the terminating '&'.

UniBasic Reference Guide



Installation & Configuration 36

It should be noted that these changes are only required on systems redirecting data to a physical device, i.e. PTRDEV, is
the actual name of a device driver.

When configuring a printer for use with the spooler, these changes are not required.

Configuring Terminal Drivers

Terminal drivers translate keyboard and display mnemonics between applications and various brands of terminals.
When launching a UniBasic process, the value of the environment variable TERM selects the terminal translation driver
for this session. A filename in the form: term.name is opened, where name is the value of the TERM variable.

Terminal files, typically stored within the sys directory, must use a lower-case filename and be within a path of the
LUST environment variable. If a matching terminal driver is not located, an error is printed and no terminal translation
functions are available for that session.

Four terminal driver files are supplied for use with your applications; term.ansi, term.tvi925, term.wyse50 and
term.wyse60. term.ansi is designed specifically for use with ANSI style terminals and the primary monitor supplied
with many systems. The other drivers are for use with Televideo 925, Wyse 50 and Wyse 60 terminals respectively.
These may be duplicated and modified for use with other TERM definitions. The Unix cp command may be used to
make additional copies of these drivers. For example, to create a Televideo 910 driver, issue the command:

cp term.tvio25 term.tvi9lo.
Any standard editor, such as vi may be used to adjust the new driver file accordingly.
For a terminal driver to be properly recognized, it must have read-permission enabled and be located within the path
specified by the environment variable LUST. Once configured, it is recommended that only read-permission remain
enabled to prevent corruption.
The names assigned to the TERM environment variable are usually defined in the /etc/inittab or /etc/gettydefs files.
Refer to your Unix system documentation for additional information relating to equating TERM names with terminal

drivers.

See also: Terminal Translation Files $TERM files

Creating a Customized Installation Media

You may customize the supplied DCI Installation program, ubinstall, to include provisions to install your applications,
data files, printer and terminal drivers.

To ensure proper operation of DCI supplied products, your customized installation procedure should be added to the
existing ubinstall script. Failure to perform all of the steps contained therein can lead to problems in an installation.

Within the /tmp directory during installation, the files at the level /tmp/ub are moved into /usr/bin, except for the system
error message file errmessage.

Files at the level /tmp/ub/sys are moved into HOME/sys as defined during installation.

UniBasic Reference Guide



Installation & Configuration 37

Directories at the level /tmp are not moved. Directories at the level /tmp/ub are moved to HOME/ub.

Files in ubdev (UniBasic Development) are moved under HOME/ubdev.

To create a custom version:

1.

Follow the installation instructions on the various DCI supplied installation files (omitting the entry of
the ubinstall command).

Move copies of custom printer drivers, system BASIC programs and any other sys or LU 0 custom
items into /tmp/ub/sys using the Unix cp command.

If you have a complex .profile, such as one containing settings which are not prompted during
ubinstall, place a copy of that .profile into /tmp/ub . It will be necessary to modify the ubinstall script
to accommodate this option. Add code in the script following the move of the errmessage file to
HOME to move your custom .profile in a similar manner. Be sure that the code is inserted after the
initial creation of a .profile. Properly coded, installation will replace the default file with your
customized .profile.

Under /tmp/ub, create any directories that are to be placed under the HOME level on your customer's
systems. Even if these directories are empty, the cpio command will create them for you during instal-
lation.

Use the Unix cp command to move copies of program and data files into the associated installation
directories under /tmp/ub. You may use the In command (link) instead of cp to reduce disk space re-
quirements.

Use the Unix commands Is, chown, chgrp, chmod to verify and set the permissions, user id, and
group id of your directories and files. Verify that your LPT scripts have the x attribute (i.e. 555). It
is recommended to select a default group and user id, as is the case with DCI supplied programs and
files. During installation, ubinstall changes the group and user id of the supplied DCI files and
directories to the prompted owner/manager of the UniBasic installation.

Modify the supplied ubinstall script to automatically create and/or move your directories to the
desired location (optional). Also add code to allow for other directories loaded at the level /tmp to be
installed or moved onto another file system, drive or directory.

Your /tmp directory is now ready to be copied onto a master distribution archive file. Issue the

following commands from root:
cd /tmp

find . -print | cpio -ovc >filename

Note:

If you prefer to use the Unix tar command, that format is acceptable for your master media. Change
your installation instructions accordingly.

UniBasic Reference Guide



Introduction To UniBasic 38

Introduction To UniBasic

UniBasic is a formal language used to communicate with a computer. It is in the family of computer languages that have
been designed using Dartmouth BASIC (Beginner's All-purpose Symbolic Instruction Code). Unlike the binary
language of the computer, however, BASIC is easy to learn and use. And like any language, UniBasic has a set of rules,
syntax, and conventions. This chapter introduces the rules, syntax, and conventions for UniBasic programming.

UniBasic has two basic modes of operation; Command mode and Program mode. Command mode is the outer shell of
UniBasic, just above the unix operating level. While in the Command mode you can type BASIC commands that deal
with the system and the UniBasic environment.

One of the commands that you can enter while in the Command mode is BASIC.

UniBasic lends itself to a variety of applications. The computer operates as a calculation or programming device. In
immediate mode, the computer works as a calculation device, and executes instructions directly as they are entered. In
BASIC programming mode, instructions are not executed until the computer is instructed to run them. In this form, the
BASIC instructions comprise a program that can be stored for later use.

A program is a set of computer-recognized instructions that perform a desired series of operations. For example, a
payroll preparation system written in BASIC is a program that a computer can execute.

Data

Data is the information that is supplied for a program to produce a result. Data may come from outside the system, or it
may be in the computer memory as a result of a previous computation. An important characteristic of a data element is
its type. In UniBasic there are two basic data types; numeric and string.

Numeric data is made up of numbers that can be manipulated by arithmetic operators. String data is comprised of any

ASCII character. Although string data may contain numeric characters, there can be no direct arithmetic manipulation

of string data. There is a special type of string data called CRT mnemonics and expressions. This group of data is used
to control video terminal functions.

Both numeric and string data can have two forms; constants and variables. A constant is data that is used by a program
and does not change. An example of this form of data is the mathematical constant pi. This is the ratio of the
circumference of a circle to its diameter, and is approximately 3.14159. A variable is a storage area that contains the
current value assigned to the name associated with it.

Example:
Pl = 3.14159 variable equals constant
Fed_ID$ = "31-555642" variable equals constant
A=A+1 variable equals expression
C=A+8B variable equals expression
D$ = A3 variable equals variable

UniBasic Reference Guide



Introduction To UniBasic 39

Numeric Data

Numeric data is operated and stored in binary integer, Binary-coded-decimal (BCD) or base 10,000 (decimal). The valid
range for numbers is approximately 10764 thru 1063 with 20-digit precision. All arithmetic calculations are performed
to this degree of accuracy, although results may be truncated depending on the type of variables used and its precision.
Numeric values supplied in statements are referred to as numeric constants.

Very large or small numbers are expressed using floating-point E-notation (scientific notation).

E-notation is used for output whenever a number’s decimal point does not lie among its 16 most significant digits.
Numeric data may be entered using E-notation at any time.

For example, the large value: 13429178952112216
is output as: 1.342917895211222E+16

and is read "One point three four ... times ten to the sixteenth power".

The small value: -00000000000000000034
is output as: 3.4E-19

and read as "3.4 times ten to the negative nineteenth power."

Numeric Precision

Several numeric data representations are supported, with differing representation, accuracy and performance. The ten
numeric precisions determine the storage representations and the valid range of values for all numeric variables.

Prec Data Bytes  Significant Range of values supported
% Type req'd Digits by precision
1 Integer 2 5 +32768
2 Integer 4 10 +2,147,483,648
3 Decimal float 6 9-12 +.999999999999 E+63
4 Decimal float 8 16 +.9999999999999999 E+63
5 Decimal float 4 6 +.999999 E+63
6 Decimal float 12 17-20 +.99999999999999999E+63
7 IRIS BCD 1% 2 4 +7999
8 IRIS BCD 2% 4 6 +.999999 E+63
9 IRIS BCD 3% 6 10 +.9999999999 E+ 63
10 IRIS BCD 4% 8 14 +.99999999999999 E+63
11 IMS BCD 2% 4 6 +.999999 E+63
12 IMS BCD 3% 6 10 +.9999999999 E+ 63
13 IMS BCD 4% 8 14 +.99999999999999 E+63

The default precision for variables is based upon the type of program running. IRIS programs default internally to %5
(2-word floating), while BITS programs default to %4. Newly created BITS programs may specify any of the above
precisions in a DIM or COM statement.

UniBasic Reference Guide



Introduction To UniBasic 40

IRIS programs may specify one of 4 precisions in the form 1%, 2%, 3% or 4%. These precisions map to %1, %5, %3,
and %4 respectively. When the environment variable BCDVARS is enabled, the precisions map to %7, %8, %9 and
%10 forcing all variables to be processed in BCD. This option is only required in applications performing unique
processing of internal BCD formats (such as indiscriminate moving of data between numeric and string variables using
CALL 72/73).

During file access, variable precisions are internally changed as data is read or written between IRIS BCD files and other
integer or Base 10000 data files. This process eliminates conversion of numeric data during READ and WRITE.

See also: IRIS BCD Files

Proper selection of variable precision is required when memory space is limited. For example, a 1,000 element array
using Double-precision %4 requires 8,000 bytes of program space (1,000 X 4 words X 2 bytes per word). The same
array using one word per element (%1) requires only 2,000 bytes. It is best to choose precisions based upon the worst-
case data you expect to place in the variables. Precision affects the amount of bytes required in data files to hold a given
variable during normal READ and WRITE operations.

Special Notes on %3 and %6 Numerics

The number of significant digits retained by %3 and %6 varies depending upon the number of integer versus fractional
digits being represented. To determine whether the precision can correctly represent a specific number, locate the
required number of integer or fractional digits in the first column. The second column then gives the maximum number
of digits for the other (fractional or integer).

Accuracy limitations using %3 format:

1 8 7 4
2 8 8 4
3 8 9 0
4 8 10 0
5 4 11 0
6 4 12 0

Accuracy limitations using %6 format:

1 20 11 12
2 20 12 12
3 20 13 8
4 20 14 8
5 16 15 8
6 16 16 8
7 16 17 0
8 16 18 0
9 12 19 0
10 12 20 0

The %6 form is the most speed-efficient of all floating-point representations but also requires the most memory space.

UniBasic Reference Guide



Introduction To UniBasic 41

Integers Stored in Floating-Point Variables

If, when a value is packed into %3, %4, or %6 form, the value is within the double-precision signed-integer range, word
0 is cleared and the value is instead stored into words 1 and 2 in %2 integer form If two such values are operated upon,
integer arithmetic is used, which can be performed faster than floating-point arithmetic. If the result value is again
within the %2 range, it will be packed as such when stored back into a variable.

Integer arithmetic is not performed if:

Either operand is in floating-point form
or
A divide operation is performed

The adjustment between integer and floating-point arithmetic is totally user-transparent. However, use of integer
arithmetic greatly enhances the net speed of program calculations, many of which are integer-type operations (A=A+1,
etc.).

String Data and Literals -"str.lit"

A string is defined as a sequence of zero or more ASCII characters. Strings range in length from 0 to 65534 bytes
(characters). Strings within programs are enclosed in double quotes and referred to as string constant str.lit. A zero byte
is used internally to denote the logical end of a string.

Each str.lit is governed by the following rules:

1. The str.lit must begin and end with double quotation marks (*).

2. Any character may be expressed using its octal ASCII value enclosed within backslashes, for example
"\215\". Non printable and special control characters that perform an immediate keyboard function
(such as backspace) must be entered in this fashion to be included as data.

3. All printable characters represent themselves except \ (backslash).

4, Each \334\ is replaced with a single backslash.

5. Each pair of single quotes (' ') are replaced by a single double quote (*).
See also: ASCII Codes and Input Character Processing

CRT Mnemonics and Expressions - crt.expr
CRT mnemonics and expressions, crt.expr, are used in conjunction with a CRT term file to provide control of video
terminal functions such as clear-screen, reverse-video, etc. CRT mnemonics appear in one of two forms:

. A set of one or more 2-character codes enclosed in single quotation marks (*). Each code can be
preceded by an optional count value.

. A cursor address in the form: @num.expr, num.expr;. Addresses are given in the form column, row
from origin 0,0 home (upper-left of screen).

UniBasic Reference Guide



Introduction To UniBasic 42

For example:
"Cs- Clear screen
"CS10ML*" Clear and move left 10 positions.
@5,5;°CL*" Position to column 5, row 5 and clear line
@10,L; Position cursor to column 10, row L.

"BG"'"\107\""EG" Output a graphics sequence.

See also: Using Dynamic Windows, Terminal Translation: CRT CODES $TERM Files for a complete
discussion on defining your terminal for use with Windows, Mnemonics, Cursor Positioning and
Extended Graphics.

Statements, Statement Numbers & Labels

All BASIC program instructions are called statements. They have the general form:

stn {label:} statement {\ statement }

where: stn is a valid statement number 1 to 99999999.
label: is a valid statement label followed by colon.
statement is any valid BASIC statement.

and {\..} is the separator for multiple statements.

Immediate Mode

Any BASIC statement entered without a stn is executed immediately. This type of operation is termed immediate mode
and provides for interactive debugging, calculator, or single-step operations. Most statements may be executed in
immediate mode; some cannot simply because of their nature. For example, FOR without a matching NEXT is
prohibited. Each statement documented indicates whether it is available in immediate mode.

Statement Numbering

Each line begins with a statement number (stn) and ends with the [EOL] end of line character. The stn must be an
integer in the range 1 thru 99999999 and is used to indicate where within the program to insert the line.

Following the stn may be a statement label. The label may be from 1 to 32 characters in length consisting of letters,
digits, and underscore. A label must begin with a letter or underscore and end with a colon.

Throughout this guide, stn is used to indicate selection of either a statement number or label. If a label is not explicitly
defined for a statement, the stn is considered both the statement number and label.

A statement is one instruction to be executed by the computer, such as printing a list of values. A program line is a line
consisting of one or more BASIC statements.

UniBasic Reference Guide



Introduction To UniBasic 43

Program lines may only be entered while in BASIC program mode. Program lines may be entered in any order. They
are sorted automatically into ascending statement number order. A stn is always required when entering or changing a
statement, even if the statement includes a label.

For example, the following lines assign values to variables. Spacing between keywords and around variable names is
required if LONGVARS or VARIABLE modes are set to accept long variable names. If long variable names are not
enabled, the system will accept statements without regard to spacing:

5A=0

10 LET A=10

20LETA=10

30 ASSIGN_VALUES: LET ZERO_VALUE=7

Let is assumed if not given, as in example line 5. If long variables is not enabled, line 20 is identical to line 10. If
enabled, the variable name "LETA" is assigned the value of 10. The actual statement in this case would be "LET
LETA=10."

See also: LET statement

Multiple-Statement Lines

Several BASIC statements may appear following a single stn.. Each statement is separated by a \ and termed a sub-
statement . Sub-statements are numbered on each line starting with 1 and are identified as a sub-stn. For example:

100 PRINT TOTAL;J \ GOTO 140

When using multi-statement lines, certain programming effects must be noted. Conditional branching (GOTO,
GOSUB, ON) may only select the first sub-statement of any line. Branching to sub-statements (other than the first) is
only provided by the JUMP statement. Refer to the following statements for further considerations:

DATA ERRSTM ESCSTM GOSuUB
IF ERR JUMP ON GOTO
REM RETURN IF

Inserting, Changing & Deleting Statements

Insertion of new program lines is accomplished by selecting a new stn between two existing stn's . For example, to
insert a new line between 10 and 20 above, select a stn from 11 to 19 such as:

14 LET Q=16

Fractional stn's are not allowed. The entire program may be renumbered as necessary using the RENUMBer command.

UniBasic Reference Guide



Introduction To UniBasic 44

To replace an existing statement, simply enter the stn to replace followed by the new BASIC statements. The new line
replaces the existing.

30 LET Z=7
30 LET Z=6 replaces LET Z=7

To modify part of an existing line, use the EDIT command. Simple changes, insertions or deletions are easily
performed without re-typing the entire line. In addition, EDIT may be used to correct a line entered with an error.

To delete an existing program line, type the stn only, and press [EOL] (usually return). This process deletes one
program line at a time:

20

Multiple lines are removed using the DELETE/ERASE commands. To delete all lines of a program, use the NEW
command.

Examples:
OPEN #0, "S$LPT', #3, "PAYROLL"
DIM A$[100],R$[100],3%,DATA_ARRAY[32]
SEARCH #3,3,1;A$,R1,E \ PRINT R1,E
READ #3,R1;R$ \ MAT READ #3,R1,104;DATA_ARRAY

See also: Statements and Calls

Variables

BASIC is an algebraic language, with data values operated upon and stored in storage areas called variables or vars. In
UniBasic there are two types of variables. The first is a numeric variable and the second is a string variable.

Variable Naming Conventions

In UniBasic there are two types of variable names; a short var and a long var. The default is the short form: letter or
letter+ digit for numeric variables, and letter or letter+ digit +$ for a string variable. Any variable ending with a dollar
sign is automatically recognized as a string variable.

To use the long variable names, the global environment variable LONGVARS is set, or you may issue the command:
VARIABLE +. A long variable is named by a letter followed by up to 31 additional characters which may be letters,
digits or underscore.

Lower-case letters are equivalent to their upper-case counterparts. Some examples of variable names include:

A BO DATA_VALUE
A$ BO$ PHONE_NUMBER$

By default, up to 348 different variable names may be used within each program. This value may be restricted or
increased through the use of the environment variable MAXVARS, which defaults to 348. When you enter a program

UniBasic Reference Guide



Introduction To UniBasic 45

statement that includes a previously unused variable name, the variable count is compared to MAXVARS. If the defini-
tion of this new variable will exceed the limit, the following error is displayed:

Too many variables defined

Once a variable name is in the internal variable table, it is not removed even if all occurrences of its use are removed. A
program must be dumped to ASCII form and re-loaded (see the DUMP/LOAD/GET commands) in order to release
unused variable names. To increase the number of variable names beyond 348 (to 1113), the MAXVARS environment
variable must be set to “extended”. The number of variables will only be increased in newly created programs. To
increase the number of variables in an existing program beyond 348, the program must be dumped to text and then
reloaded while MAXVARS is set to “extended”.

If you exceed the number of variable names allowed, use the VARIABLE command to locate one or more variables that
could be removed from the program. Manually (or using an editor), remove all occurrences of the deleted variables.
Next, DUMP the program to text, perform a NEW, and finally reload (LOAD or GET) and resave the program.

Subscripted Variables

Certain variables permit the use of a numeric subscript. In the second example below, subscript defines the beginning
byte of a variable, while subscript2 defines the ending byte of the subscript. A subscript is given in the form:

[subscript]
or
[subscriptl, subscript2]

These subscripts may be any numeric expressions which, following evaluation, are truncated to integers. Subscripts are
allowed on numeric variables, arrays and matrices, and string variables. An error is generated if a supplied subscript is
outside the range of the variable referenced.

Arrays and Matrices

An array is a list of numeric data elements. A matrix is a two-dimensional table. Array and matrix elements are
numbered origin zero for selecting individual elements. Therefore, an array dimensioned [10] actually contains the 11
elements [0] thru [10].

Matrices also have row and column zero. The 4 X 4 matrix shown above contains the 25 elements:

[0,0] [0,1] - . . [0,4]
[4,0] [4,1] . . . [4,4]

The example below shows a four element array (list) and a 16 element matrix (4 by 4):

Array[4] Matrix [4,4]
0 0 0 0 0 0
1 0 1 2 3 4

UniBasic Reference Guide



Introduction To UniBasic 46

2 0 5 6 7 8
3 0 9 10 11 12
4 0 13 14 15 16
Note: Most MAT statements do not operate on row and column zero elements; they use origin one. So, for

the purposes of matrix arithmetic, a 4 X 4 matrix actually has 16 usable elements. The MAT READ
and MAT WRITE statements do transfer row and column zero.

Numeric, Array and Matrix Variables

A numeric variable is one of three types: simple, array, or matrix.
A simple numeric variable var or num.var is one that will store a single numeric value.
For example: A B4 INPUT

An array variable array.var may contain many values, which are operated upon either as a whole (MAT), or
individually by selecting a single element or subscript. The subscript addresses a single array element by its number (0-

n).

For example: Al3] B4[36] INPUT[O]
A matrix variable mat.var may also contain many values, which are operated upon either as a whole (MAT), or
individually by selecting two separate subscripts. The two subscripts together address a single matrix element by its
position, i.e. row and column number (0-x,0-y).

For example: X[9,2] B4[15,28] INPUT[O, 10]

All subscripts are origin zero. If an array.var or mat.var is referenced without subscript, each missing subscript defaults
to zero (excepting MAT Statements defined to operate upon the total variable).

For example: If Ais an array, then A
If B is a matrix, then B

A[0].-
B[0,0] and B[x] = B[x,0]-

In most other contexts, the terms array and matrix are used interchangeably. In this guide, we will restrict the usage of
array to indicate one-dimensional and matrix to indicate two-dimensional.

Automatic Dimensioning Numeric Variables

A variable’s type and precision are selected when dimensioned, either explicitly (DIM or COM statements), or
implicitly by its initial usage, termed Auto-Dimensioning. All auto-dimensioned variables take on the default or last
specified precision from a DIM or COM statement. A simple num.var is auto-dimensioned to hold a single value. An
array.var is auto-dimensioned to hold 10 elements, and a mat.var to hold [10,10] elements. All numeric variables are
initialized to zero when dimensioned.

UniBasic Reference Guide



Introduction To UniBasic 47

LET A=0

performs an automatic dimension of A to a simple variable at the current precision.
LET A[6]=0

performs an automatic dimension of A[10] at the current precision.
LET A[6,3]1=0

performs an automatic dimension of A[10,10] at the current precision.

Re-Dimensioning Numeric Variables

Once any num.var, array.var, or mat.var is defined through explicit DIM or COM, or automatic dimensioning, its
precision cannot be changed. When a matrix variable used in a MAT statement includes subscripts, the subscript values
are interpreted as a new working size for the selected matrix. This new size can not require more total elements than the
original dimension. For example, a matrix originally dimensioned as [10,10] has 121 elements. Some examples of legal
new working sizes would be:

[50.1] [2.40] [40,2] [20,4] [3.,31 [7.6]1 - - -

The new working space will now remain in effect for the remainder of the program, or until changed again. A change in
working size does not affect variable precision, or file access statements.

If you attempt to re-dimension a two-dimensional array (matrix), to (-1,-1) a subscript error is reported.

String Variables
Variables used for string data are denoted by a dollar sign following the variable name.

A$ D5% X0$  DATA_VALUES$
A string variable str.var must be explicitly dimensioned before it may be referenced in statements in a program. A str.
var can be dimensioned only once, by using a DIM or COM statement . The dimensioned size represents the maximum
size in bytes (characters) allowed for the variable. A str.var may also be passed from one program to another using
CHAIN READ, in which case it may not be included within a DIM or COM statement.
A str.var is initialized with all zero bytes when dimensioned, and so has a logical length of zero.

See also: LEN function

A str.var may contain any ASCII Characters. Each str.var is terminated by the ASCII character \00O\. The logical
length of any str.var is equal to the number of characters from a starting position up to, but not including the terminator.

UniBasic Reference Guide



Introduction To UniBasic 48

Subscripted Strings

String subscripts are used to access certain portions of a string by position. String positions are numbered starting at 1.
String subscripts may be any numeric expressions that, when truncated to integers specify character positions between
and including 1 and the dimensioned length of the str.var.

A str.var given by its name alone (B$) refers to the entire string, from the first position up to the first zero byte.
A str.var given with a single subscript (B$[14]) refers to all bytes from the starting position up to the first zero byte.

A str.var given with two subscripts (B$[14,22]) refers to all bytes between and including the two positions selected up to
the first zero byte. Therefore, two equal subscripts (B$[8,8]) specify a single byte position within the string.

A str.var may also contain binary information including zero-byte terminator characters. Certain statements are
provided for manipulation of binary strings, CALL $STRING, MAT, CONV, ASC and CHR. These functions and
statements may be used to operate upon an entire string or substring. The LEN function may not be used with binary
strings since the first zero byte is considered a terminator.

String Arrays

String arrays are not directly supported, but can be emulated using formulated subscripts. For example, if a string array,
AS$, is to contain N strings of L characters each, the required dimension is:

DIM A$[N*L]
and any given element E of the array can be accessed by:

AS[E*L+1,E*L+L]

Dimensioning String Variables

String variables must be declared in a DIM or COM, or CHAIN READ statement. Attempting to use a string variable
not previously dimensioned produces an error. No auto-dimensioning of string variables is supported.

Re-Dimensioning String Variables

Once a str.var is defined, its size may not be changed. Any attempt to dimension the variable to a smaller or larger size
results in an error. A re-dimension of the same size is permitted, without an error.

UniBasic Reference Guide



Introduction To UniBasic 49

Expressions

There are two types of expressions: numeric expressions and string expressions. A numeric expression num.expr is
considered any group of numeric variables, constants, functions, and/or operators returning a numeric result. A string
expression str.expr is considered any group of string variables, constants, functions, CRT expressions and/or operators
to be concatenated (linked together) returning a string result. Any statement may incorporate the use of string or
numeric expressions as long as the final result matches the format of the statement, or the variable chosen to store the
result.

Operator Precedence

Expressions are evaluated according to the precedence documented in the Operator Precedence Table. Operators on the
same level are evaluated from left to right in the expression, however parentheses can be used to override this hierarchy.

Operator Precedence Table

(highest) + - and Functions Unary + - and FUNCTIONS evaluated R-L
A Exponentiation Left-to-Right
* 1% Mult, Divide, Modulo Left-to-Right
+ - Add, Subtract Left-to-Right
TO String TO string Left-to-Right
USING number USING string Left-to-Right
, + String concatenation Left-to-Right
< <= > >= <> expr relation expr Left-to-Right
AND relation AND relation Left to Right
(lowest) OR relation OR relation Left to Right
For example:
EXPRESSION EVALUATES AS RESULTS WITH
3+4*5 3+(4*5) 23
(3+4)*5 (3+4)*5 35
14/7*10/2 ((14/77)*10)/2 10
3n2*4 G7N2)*4 36
"3"+"B" 3 concatenate B 3B
“CSBP”+”BU~ CS BP BU Clear Screen, begin protect & underline

Functions are evaluated before any arithmetic operations are performed.

UniBasic Reference Guide



Introduction To UniBasic 50

Predefined BASIC Functions

Many built-in functions are included which can be used within numeric or string expressions. Functions produce a
result based upon a given value, termed an argument. The result, as well as the argument can be string or numeric
depending on the function in question. A function’s general form is:

FUNCTION argument
where FUNCTION is the three-letter function name, and argument is the variable or expression to be operated upon.

Note that the argument may or may not be enclosed within parentheses. Parentheses are only required when the
argument is itself an expression, as functions are evaluated on a higher precedence than other arithmetic operations.

For example:
100 LET A=ABS X+2

In this case, the ABS function is evaluated before the 2 is added. The statement:
100 LET A=ABS(X+2)

performs the addition before applying the function.

The function itself can appear within another expression, provided its result is compatible with the surrounding
expression, e.g. a function producing a numeric result is invalid within a string expression.

BS+INT(X)+CS$
is by itself invalid unless the numeric result of the function INT is cast into a string result, for example:

B$+STRCINT(X))+C$

All pre-defined functions are documented below in alphabetical order. The first column identifies the function name
(ABS, TAN, etc.), the second defines the argument type (string/numeric), and the third the result type. The function’s
operation is then described at the right.

Name  Arg Res Operation
ABS num num Absolute Value of the argument.
ASC str num ASCII value of specified character in string. Characters are toggled and returned in

BITS/IRIS 8-bit format unless Binary Input mode is enabled by SYSTEM statement or
'IOBI" mnemonic.

ATN num num Arctangent in radians.

CHN num num Same as CHF.

UniBasic Reference Guide



Introduction To UniBasic 51

Name  Arg Res Operation

CHF num num Various parameters of an open file or device. The argument must be the channel
number (0-99) of an open channel plus a constant greater than 100 to select mode. The
Channel Modes are shown in the following table, and 'xx' refers to the desired channel
number.

0xx num Total number of records contained within the file. This value can be used also as the first
record number not contained in a file. For Contiguous files, this is the larger of the initial
number of records specified in BUILD/CREATE or the current number of records. If
the file has a First Real Data Record, that value is included in this size.

1xx num Record number of current file position. For an item file, mode 100 yields the last record
number written.

2XX num Byte displacement into record of current file position.

CHF 3XX num Record Length in words for IRIS Applications, or (0) representing the channel status

word for BITS Applications.
4xX num Memory location of UniBasic T_chan structure for this channel.
5xx num Open File’s record length in bytes.
BXx num unused, returns 0.
TXX num unused, returns 0.
8xx str Filename of file opened on channel.

CHR num str Supplies the ASCII character selected by the argument value for BITS applications. The
argument is supplied in IRIS/BITS 8-bit format and toggled to conform to the internal
character representation. If Binary Output is enabled SYSTEM statement or '1OBO"
mnemonic is in effect, no toggling is performed.

CHR num num Returns the ‘characteristic’ value for IRIS applications. This is an integer exponent X
such that: 10X-1 <= argument < 10X.

COS num num Cosine in radians.

DET num Determinant of the last matrix inverted. See the MAT INV statement.

ERR num num Various values pertaining to error, ESCape and interrupt branching. When using this
function within IRIS programs, the argument must be parenthesized to prevent
misinterpretation as an IF ERR statement. The argument selects:

0 num Last error number in BITS error format
1 num stn of last BASIC error.

2 num stn of last ESCaped statement.

3 num stn of last interrupted statement.

4 num sub.stn of last error, ESC, or interrupt.

5 num sub.stn of last BASIC error.

6 num sub.stn of last ESCaped statement.

7 num sub.stn of last interrupted statement.

8 num Last Index File Structure error identifier.

UniBasic Reference Guide



Introduction To UniBasic 52

Name  Arg Res Operation
ERM  num str Supplies the selected message from the user message file currently selected Returns null
if no user message file is selected. See CALL 40.
EXP num num Exponential, the constant e to the power given (eX).
FRA num num Fractional portion of argument. For example: FRA(4.5) yields 0.5.
INT num num For a num.arg returns the greatest integer less than or equal to the argument. For
example: INT(4.5) yields 4, while INT(-4.5) yields -5.
INT str str For a str.arg. returns the ASCII value of the first character in the string. This is
functionally identical to the ASC function.
IXR num num Integer radix base 10 of the argument. For example: 1XR(1000) returns 3.
LEN str num Length of string in characters. Length is computed from optional starting subscript to
first zero-byte terminator.
LOG num num Logarithm base e of the argument. Logarithm in any base B can be achieved using the
theorem: logBX=logeX/logeB.
MAN  num num Decimal mantissa of the argument in base 10.
MEM  num num Supplies data from the selected location in main memory; presently this function returns
0.
MSC num num Miscellaneous numeric functions. The argument selects the value returned; -1
returned for unimplemented functions:
0 num Your current Port number.
1 num Logical input element last accepted.
2 num UniBasic revision level.
3 num stn of last GOSUB instruction. Value is returned and removed from the stack.
4 num Reserved for future use.
5 num Current screen tab column counter.
6 num Current unused variable space.
7 num Returns the environment variable MSC7, or the Unix Group humber * 256 + User
number if MSC7=65535 or is undefined.
8-17 Reserved for future use.
18 num The constant Pl (3.141592653589793).
19 num The constant e (2.718281828459045).
20 num Maximum channels per user; returns 64.
20-29 Reserved for future use.
30 num stn of current BASIC statement.
31 num sub.stn of current BASIC statement.
32 num crt_type value from current term. file.

UniBasic Reference Guide



Introduction To UniBasic 53

Name Arg Res Operation
MSC 33 num Number of columns in the open window.
34 num Number of rows in the open window.
35 num Size of environment variable INPUTSIZE.
36 num Reserved for future use.
37 num Maximum port number supported.
38 num Number of Total Users.
39 num European date flag.
40 num max-x value from current term. file; Number of columns for your CRT
41 num max_y value from current term. file; Number of rows for your CRT
42 num Window nesting level. Number of open Windows. On an ANSI monitor, a default of 1
window is always opened.
MSF num str Miscellaneous string functions. Argument selects the value returned:
-1 str UniBasic revision 8-character string. 5.8.2.3 returns 05080203, 5.3 returns 05030000.
0 str System date and time in international format: dd mon year hh:mm:ss
1 str Current working directory path
2 str Text description of last BASIC error.
3 str System date and time in IRIS/US format:  mon dd, year hh:mm:ss
4 str Path and filename of the current BASIC program loaded into memory. If the returned
string does not begin with '/', the program name is relative to your current working
directory. The full name must be assembled by concatenating MSF(1) and MSF(4) .
5 str Returns the name of the parent BASIC program, when the current program was invoked
by SWAP.
NOT any num Logical NOT. Returns 1 if argument is zero or null, or zero if not.
RND num num A pseudo-random number X is generated in the range 0 < X < argument.
See also: RANDOM statement for more on pseudo-random numbers.
SGN num num Signum function. Returns the sign of the argument, where:
-1 if argument < 0
0 if argument =0
1 if argument > 0
SPC num num Special numeric functions used by IRIS applications. The argument selects the value

returned, or a -1 is returned for unimplemented functions:

UniBasic Reference Guide



Introduction To UniBasic 54

Name  Arg Res Operation
SPC 0 num CPU time used this session in tenth-seconds.
1 num Connect time used this session in minutes.
2 num Hours since a base date of 1980. This value is computed assuming all months have 31
days.
3 num Current tenth-second of the hour.
4 num UniBasic revision level.
5 num Returns the environment variable SPC5 or the Unix Group number * 256 + User number
if SPC5=65535 or is undefined.
6 num Your current Port number.
7 num Returns the environment variable SPC7.
8 num Last BASIC error number in IRIS format.
9 num Current stn being executed.
10 num stn where last BASIC error occurred.
11 num Current Logical Unit number. The last directory name in the current working directory is
returned as a number.
12 num Logical Unit number of the current program. The last directory name in the current
programs pathname is returned as a number.
13 num crt_type value from current term. file.
14 num stn of last GOSUB instruction. Value is returned and removed from the stack.
15 num Return and clear the last BASIC error number in IRIS format.
16 num stn of last GOSUB statement. Value is returned and left on the stack; non-destructive
read, whereas SPC 14 is destructive.
17 num Length of last character-limited INPUT.
18 num System base year; always returns 1980.
19 num UniBasic License Number in decimal.
20 num System base year; Returns the default 1980 or the value of the Environment Variable
BASEYEAR.
21 num Length of the input buffer environment variable INPUTSIZE.
22 num Available program space in words. Returns a large constant to reflect virtually unlimited
space.
23 num Return the current library logical unit number. A -1 is returned if no current library, or if
it is non-numeric.
24 num Statement number stn of last END, STOP or SUSPEND statement.
SQR num num Square root function. Returns the square root of the argument. An error is generated if

the argument is negative.

UniBasic Reference Guide



Introduction To UniBasic 55

Name  Arg Res Operation
STR num str Convert the numeric value into a string result. No leading or trailing spaces are
provided.
TAB num str Return the required number of spaces terminated by a zero byte to move the terminal to
the column specified by the argument.
TAN num num Tangent of the argument returned in radians.
TIM num num Returns various Time functions as humeric values. The argument specifies the function
to perform:
0 num CPU time used this session in seconds.
1 num Connect time used this session in minutes.
2 num System real-time hours since base date. Normally adjusted using a base year of 1980.
To change the value returned, see the environment variable BASEYEAR.
3 num Current tenth-second of the hour.
4 num Current date in the form: MMDDY'Y where MM is the month (1-12), DD is the day of
the month (01-31) and Y'Y is the year such as 89.
5 num Current date in the form YYDDD where DDD is the day of the year (1-366).
6 num Number of days since 0 January 1968.
7 num Current day of week (0=Sunday, 6=Saturday).
8 num Current year in the form Y'Y, such as 89.
9 num Current month; 1=January, 12=December.
10 num Current day of the month ; 1-31.
11 num Current hour of the day; 0-23.
12 num Current minute of the hour; 0-59.
13 num Current second of the minute; 0-59.9.
14 num Current date in the form: MMDDYYYY where MM is the month (1-12), DD is the day
of the month (01-31) and YYYY is the year such as 2001.
15 num Current date in the form YYYYDDD where DDD is the day of the year (1-366) and
YYYY is the year such as 2001.
16 num Current year in the form YYYY, such as 2001.
VAL str num Convert the string argument to a numeric value. An error is generated if the argument is
null or does not contain a valid numeric value.
See also: DEF FNx for information on custom User-Defined functions within a program

Operators Used in Expressions;

Several classes of operators are provided for use within expressions. Operators are evaluated either right to left, or left
to right and have a strict evaluation precedence. Parenthesis may be used to change the precedence of an operation.

UniBasic Reference Guide



Introduction To UniBasic 56

Unary operators + -

Avrithmetic operators NE %+ -
Relational operators < <=>>= = <>
Concatenation operators +,

Boolean operators AND OR

String operators USING TO

Parenthesis may be used to override the default evaluation order of any expression.

Unary Operators + -

The unary operators (+ -) are used to change the sign of an argument. They are evaluated Right-to-Left and have the
highest precedence. The + is a non-operation, and the - changes a negative value positive or a positive value negative.

Arithmetic Operators * * |/ % + -

Arithmetic operators follow unary operators in the precedence of an expression. The highest precedence is given to ()
invoking exponentiation, which is essentially repeated multiplication. A value yX is read, "take the value y raised to the
power x." In simpler terms, multiply y by itself x times. Exponentiation has the highest precedence of all of the
arithmetic operators and is evaluated Left-to-Right.

Next, (* / %) which selects multiplication, division and mod. The mod operator % returns the remainder of a division
of the two operands. This is calculated as (x - INT(x/y)*y). 10%?2 yields 0, 10%3 yields 1, etc. These operators are
evaluated from Left-to-Right after exponentiation.

Finally, (+ -) addition and subtraction are the lowest precedence of the arithmetic operators. These are also evaluated
from Left-to-Right.

Concatenation Operators + |,

Concatenation operators are used to link string expressions together. The result of concatenating two string expressions
is the combination of both expressions into a single string expression. Each concatenated string is appended to the end
of the current expressions result. "This" +" That" results in the string: "This That", etc.

The concatenation operator (+) may be used in any expression involving strings, and IRIS programs may also use the (,)
concatenator in LET and IF statements.

Relational Operators = <> > >= < <=

All relational operators are evaluated on an equal precedence and all group Left-to-Right. Their result is said to be True
(one) if the relation is true, and False (zero) if the relation is false. Relational operators can be used in IF statements or
as part of a boolean expression. The format is: expression relation expression, where relation can be any of the
following:

UniBasic Reference Guide



Introduction To UniBasic 57

= Equal

<> Not Equal

> Greater Than

>= Greater Than or Equal To
< Less Than

<= Less Than or Equal To

When relationals are used for numeric comparisons, it is easy to understand that the comparisons are strictly based upon
the numeric values compared. All comparisons are made using the same 20-digit significance as printed. No additional
hidden digits interfere causing printed values to differ from internal representation as is typical with systems utilizing
binary instead of decimal floating point operations.

When relationals are used in Boolean expressions, they result in a numeric result of one if the relation is true, and zero if
the relation is false.

String variables and literals are compared using the ASCII code of each character, one character at a time. If the strings
are not subscripted to control their length, then they are evaluated using the current logical length (from any optional
starting position up to the first zero-byte terminator). Strings are equal only when they are exactly equal in length and
contents. When a shorter string is compared to a longer one, and they are equal up to the length of the shorter string, the
shorter string is said to be less than the longer string. If, during comparison, two characters do not match, the left string
is said to be less than the right string if the ASCII code of the mismatched character is less than the ASCII code of the
right strings character.

See also: Appendix A for a complete list of ASCII codes and their numeric values

Boolean Operators AND OR

The Boolean operators AND/OR are processed Left-to-Right and are used to compare several relational expressions
together. AND has a higher precedence than OR. The format of these operators is: expression AND expression, or
expression OR expression. The result is true (one) for AND if both expressions are true, or true (one) for OR if either
expression is true.

String Operator USING

The USING operator groups Left-to-Right and results in a formatted string result from a numeric expression. The
format of this operator is:

numeric expression USING string expression.

The numeric expression is evaluated first. Next the string expression is evaluated and used to ‘format' the numeric
expression into a string result.

The format string is scanned, and any characters which are not field descriptors are copied to the destination until a
format field is seen. Characters which can begin a format field are: $ # + - & *. Other field descriptors (, ! CR DB) are
treated as text and are copied until a starting character is seen. After formatting a result, the remaining characters in the
format string (up to the start of another format field) are copied to the destination.

UniBasic Reference Guide



Introduction To UniBasic 58

Each format field is made up of certain characters describing the formatting to be done. These are called field
descriptors. Numeric items are formatted according to the rules governing each descriptor. If an item cannot be for-
matted according to the field given, the field is output filled with asterisks (*). This generally occurs when a number is
too large to be expressed with the number of digits available in the field.

Field Descriptors

Field descriptors for a format field fall into seven categories:

. Leading characters
. Floating characters
. Numeric Characters
. Commas

. Decimal Points

. Post Sign

. Numeric Split

Leading Characters

A field can begin with one or two leading characters. The available leading characters are:

LEADING OUTPUT

$ $ always
+ + if item >=0; - ifitem<0
- space if item >=0; - ifitem<0

The $ can be combined with either + or - for a two-character leading group. Note that all three leading characters are
also valid as floating characters. A group of two or more identical characters is considered a floating character
designation. You can change the character output of the $ leading character by setting the environment variable
CURRENCY to any printable character. You will still use the $ (or its ASCII equivalent) for your programming.

Floating Characters

A field can contain groups of floating characters. This character ‘floats’ and is eventually executed just before the first
digit output. The available floating characters are the same as the leading characters ($, +, -) and are processed the
same.

UniBasic Reference Guide



Introduction To UniBasic 59

Note: Numeric formatting outputs a sign (+ or -) only if one is specified within the format field. If none is
given in the format, all items are output as positive, regardless of sign.

One extra floating character should be given in the format field in addition to the number given for the highest digit
count desired. One space is required for the execution of the floating character itself. The remaining floating characters
can be occupied by digits. For example, the format string “$$$$” can accommodate no number larger than 999, as one
space is required for the dollar sign itself.

Numeric Characters

A field can contain groups of numeric characters. The available numeric characters are:

SYMBOL CHARACTER

# Digit or space if leading zero
& Digit, leading zeroes not suppressed
* Digit or “*” if leading zero

Every numeric character given in a format field can contain a digit. For example:

Format: HHHHHE  &&&&  FFFH FF*H
17 0017 **17 **17

247 0247 *247 *247

6140 6140 6140 6140

0 0000 ***Q ***Q

Commas;

A field can contain one or more commas which are output when significant. For example:

Format: HH LR HOHRR LR &,888,88&
768 768 0,000,768
2,147 2,147 0,002,147

FKkk Ak 1,034,957 1,034,957

Both the programming and output of commas and decimal points is controlled by the environment variables:
EURINPUT, EUROUTPUT. These parameters let you change the programming and output style respectively of
comma and decimal point fields. You may set either or both parameters for your desired effect.

See also: the Environment Variable: CURRENCY.

EURINPUT=1 ##.###  #H.#HHH . #HHH & .8&&.8&&&
EUROUTPUT=1 2.147 2.147 2.034.957

UniBasic Reference Guide



Introduction To UniBasic 60

Decimal Points

A field can contain a period for an item’s fractional portion. The fractional portion will then follow and be truncated to
the number of digits specified. Only numeric descriptors (#&%*) can follow the period, and all are processed as a
character. For example:

Format: HH HHH HH#t_H ##.8&& Fk KX
74 .000 74.0 74.00 74.00
16.408 16.4 16.40 16.40

Both the programming and output of commas and decimal points is controlled by the environment variables:
EURINPUT, EUROUTPUT. These parameters let you change the programming and output style respectively of
comma and decimal point fields. You may set either or both parameters for your desired effect.

See also: the Environment Variable: CURRENCY

EURINPUT=1 ##,### #H#,H# ##,8& Fk KX
EUROUTPUT=1 16,408 16,4 16,40 16,40
Post Signs;

Post signs are only applicable to BITS programs. A field can be terminated with a post sign designator. The post signs
are:

Sign output if item >=0 output if item <0

+ + ifitem>=0 - ifitem<0

- space if item >=0 - ifitem<0

DB DB ifitem>=0 CR ifitem<0

DR DR isitem>=0 CR isitem<0

CR two spaces if item >=0 CR ifitem<0

Format: +HH# it HH - #H _##CR ## _##DB

+47 .24+ 47 .24 47.24 47.24DB
- 6.27- 6.27- 6.27CR 6.27CR

A sign can be output before and after an item. Page numbers using the field ---&- are output as -#- if the page numbers
are made negative. For example, page number can be -7- or -10-.

Numeric Split

Numeric Split is only applicable to BITS programs. A numeric item, such as a part number, date or government Social
Security Number, can be separated automatically (without dividing into separate numerics). The descriptor ! causes a -
to be output when significant. For example:

Format: &&&!1&&!1&&&& HHVHH VA &&&1&88&8&&& T &&

130-42-1427 3-21-85 047-000065-24
000-06-1217 12-24-86 050-000036-03

UniBasic Reference Guide



Introduction To UniBasic 61

String Operator TO

The TO operator is evaluated Left-to-Right and is used to specify part of a string expression. The general form is:
string expression TO string expression

The string expression on the left is evaluated first and referred to as the source. Next the right string expression is

evaluated and shall be referred to as the pattern. The resulting string expression is generated by copying all characters

from the source up to and including the pattern string. If the pattern is not found within the source, then all characters

of the source become the resulting string expression.

For example, if you have a large block of text and wish to find the first sentence, you might use this operator to find the
result of:

strvar TO". " (Locate first period followed by 2 spaces).

Numeric Expressions

Numeric expressions are performed in either integer or 6-word decimal floating point. Each argument is unpacked into
the floating point register where all operations occur. The final result is maintained in the highest precision until the full
expression is computed. The result is finally converted into the format requested by the operation. This may include
truncation to an integer, or converted to the precision of a variable for storage of the result. An error can occur if the
destination precision is not large enough to store the final result.

For example:

5+ 4
P * 10
VAL (A$)

String Expressions

A string expression str.expr is considered any group of string variables, literals, functions, CRT expressions and/or
operators to be concatenated (linked together) returning a string result. For example:

T USING "'##H#HH#"
A$ + B$
"Processing element: " + A$

All statements may incorporate the use of string or numeric expressions as long as the final result matches the format of
the statement. What this means, is that any statement (not just IF, PRINT and LET) that previously required a str.lit, or
str.var, may now contain any legal string expression. A variable is required only when a statement returns data into the
variable such as LET, INPUT, READ, etc. Numeric and string conversion is performed across an equal sign of the
LET statement, or through the VAL, STR, ASC and CHR functions.

The exact interpretation of the + operator is determined by the operand that precedes it, so that:

UniBasic Reference Guide



Introduction To UniBasic 62

LET B$=A$+A

implies string concatenation, and the num.var A is converted to string automatically.

However, the reverse is not true:
LET B=A+A$

implies addition but is an invalid expression. In this case, the conversion of A$ must be done explicitly, e.g.:
LET B=A+VAL(A$)

String concatenation converts a numeric operand on the right from numeric to string. Numeric expressions do not
perform automatic conversion of string elements.

Note: The IRIS string concatenator *," may only be used in IF and LET statements. To utilize string
expressions in all other statements, use the concatenator "+'.

Examples:

100 OPEN #0, P$+F$+"."+STR(SPC(5))
200 ON VAL(A$) GOTO 100,200,300
300 PRINT USING A$+".##'; D, E, F

Rules Governing String Processing

When using string items within a program, that is any str.var, str.lit, crt.expr, functions returning string values or
str.expr, the following rules are applied to operations:

e A string may contain any of the ASCII codes listed in Appendix A.

o A zero ASCII byte is used to terminate any string segment.

e str.lits using the form \xxx\ to represent ASCII characters perform an automatic toggle of the high-bit to insure
compatibility with IRIS and BITS applications externally, and Unix internally. When Binary Input or Output is en-

abled, this toggling is disabled for use in communications and raw binary processing.

e  String variables must be DIMensioned, COMmon, or CHAIN READ prior to use. They may not be re-
dimensioned to other than the original declared size.

e String variables may be subscripted to select a starting and ending character position within a string. A single
subscript selects a starting point only. All strings terminate upon the occurrence of a zero-byte terminator, the
second subscript, or the physical dimension of a string.

e Afull string is defined to be any reference to a string variable in which a single or no subscripts are supplied.

e Asub-string is defined to be any reference to a string variable using 2 subscripts.

UniBasic Reference Guide



Introduction To UniBasic 63

String Assignment;

When assigning data to a string using LET, the following rules are applied when using full strings:

e The source is truncated to the size of the supplied destination.

e A zero-byte terminator is inserted in the destination if the source is shorter than the destination.

e A zero-byte terminator may be placed within a string by specifying a single subscript in the form: str.var[x] ="".

When assigning data to a string using LET, the following rules are applied when using sub-strings in IRIS applications:

e When the source is shorter than the destination, the remaining characters within the subscripts are deleted.
Characters following the subscripted portion are shifted down to immediately follow the shorter source. (IRIS
Mode).

e When a zero-byte is overlaid in the destination, it is pushed forward to the first character position following the
length of the source copied. This may cause a zero-byte to be placed into the first character position beyond the
second subscript if the source exactly fills or is larger than the destination.

When assigning data to a string using LET, the following rules are applied when using sub-strings in BITS applications:

e When the source is shorter than the destination, the second subscript is ignored. Only the humber of characters
supplied in the source are copied to the destination.

e When a zero-byte is overlaid in the destination, it is pushed forward to the first character position following the
length of the source copied if and only if the source string does not completely fill the destination. No bytes outside
the supplied subscripts are altered.

When assigning data to a string using LET, the following rules are applied when using sub-strings in IRIS applications
running with the environment variable STRING=HAGEN set:

e When the source is shorter than the destination, the second subscript is ignored. Only the humber of characters
supplied in the source are copied to the destination. No shuffling down or overlaid zero-byte operations are
performed.

Other special string functions are available to the application:

e Concatenated strings are evaluated and treated as a single source string for LET. IRIS programs concatenate strings
in LET or IF statements by placing a comma between each str.var, str.lit, string function or crt.expr. For BITS ap-
plications, the concatenation operator + is used. The + operator may also be used for IRIS applications in
statements other than LET or IF.

e A string may be completely filled with a single character (or group of characters) except zero-byte terminators using
the form:

e strvar =str.expr (+|,) str.var, i.e.. A$="",A$ to space fill.

e A zero-byte terminator is placed into a str.var by supplying a single subscript for the destination, and a null str.lit as
the source, i.e. str.var ="". To fill a str.var with zero-byte terminators.

See also: CALL 57 and CALL 60

UniBasic Reference Guide



Introduction To UniBasic 64

Characters beyond the zero-byte terminator may be operated upon by specifying a starting subscript beyond the
zero-byte. Use the LEN function to determine the length of any sub-string.

A number of special CALL Statements are available for string processing.

Numeric data may be converted to string using the LET Statement, or in some cases the functions STR and CHR.

UniBasic Reference Guide



UniBasic Files 65

UniBasic Files

This section documents the types and usage of data files within UniBasic applications.

UniBasic differs from IRIS and BITS in its internal representation of numeric and string data within variables and files.
These differences, once understood, provide the user a totally compatible platform for moving IRIS and BITS programs
and data files without sacrificing the new features of Unix.

ASCII characters stored internally conform to 7-bit ASCII industry standard. 8-bit ASCII characters are reserved for
graphics, and crt mnemonics.

IRIS and BITS store characters as 8-bit strings in exactly the reverse format. All printable characters have bit-8 set, and
7-bit codes (less than 200g) are used for printer (or CRT) functions. A carriage return is represented as \215\ and code

\015\ represents CRT function #15g.

Character processing is performed as follows:

Characters input from the terminal port are passed exactly as received. Most systems are configured to strip the parity
bit which, in effect returns 7-bit characters to the system. Unless you are sending/receiving binary data, verify that the
port is configured to strip this parity bit. The Unix command: stty -a command will display istrip if parity is being
stripped, or -istrip if 8-bit data is allowed.

Program statements, commands and filename comparisons must be performed using 7-bit characters for consistent
operation.

When a str.lit is entered, printable characters are stored as received. Characters entered using the \xxx\ octal
representation form are high-bit toggled except \0\ and \200\; i.e. \201\ is stored internally as \001\, and \001\ as \201\.
During display (such as LIST), the data is again toggled for display in the familiar form.

During output, printable characters less than \200\ are displayed directly. CRT translation is performed on all bytes
greater than \200\ sent to the screen. When these characters are transmitted to a file or device, no translation is
performed. Later screen display of this data performs the CRT translation, or a supplied Iptfilter is available to provide
translation for device independence.

Since input characters are stripped and str.lits toggled internally, the application runs unmodified. Any\215\in a
program is stored and output as a [RETURN], and \015\ is stored as \215\ invoking CRT function #15.

When obtaining the decimal ASCII code of a character using ASC or CALL $STRING, the internal value is again
toggled to match the IRIS/BITS format. A [RETURN] is the value 1411. CRT codes are returned as codes less than

128. This facility permits most applications which check the ASCII range of a character to operate transparently.

When generating ASCII data using the CHR or CALL $STRING functions, your supplied code is toggled to the new
internal format. In this way, the code 141 still generates a [RETURN] for your application.

This internal toggling is virtually transparent to all Business Application Programs. All normal comparisons of strings,

input and records work as before. String comparison is always performed in 8-bit format to ensure compatibility when
operating upon binary strings.

UniBasic Reference Guide



UniBasic Files 66

To facilitate operation with true binary data, the toggling feature for ASC, CHR, and CALL $STRING is automatically
disabled when Binary Input or Binary Output modes are enabled. Binary Input and Output modes are available using
SYSTEM and the 1O mnemonics

Note: System or special applications that manipulate binary data using CHR, ASC or $STRING may yield
unpredictable results when Binary Input/Output is not enabled since the resulting top bits will be
toggled.

To pack or unpack binary data when not operating in Binary mode, use the CONV statement. If this statement is not
acceptable, a CALL is provided to toggle data within a string according to the same rules described above to minimize
changes to these special system programs. For example:

AS$ contains a binary string:
CALL 60,3,A$ !Toggle the top bits

...proceed as normal, processing the data with ASC/$STRING

AS$ contains binary data built from $STRING or CHR function
CALL 60,3,A%$ !Toggle data into actual binary

Introduction to Files

A file is a pre-selected area of the disk to be considered a single data storage entity. Files allow data to be stored and
retrieved by programs, and retain their data indefinitely. A device is an external storage medium such as a hardcopy
printer, magnetic tape, or terminal screen.

Maximum file size is limited by the host operating system. Usually, a file may contain a maximum of 231 bytes. On
many operating systems, files can be created as “huge” files to exceed this limit. Some systems may have a limit set
upon the number of blocks a file can contain. This value is available using the command ulimit. Following
installation, verify that this value is not restrictive for your applications.

All files are logically divided into equal sections called records. Record division allows data to be accessed via its
record number. Each record is made up of a selected number of bytes (characters), and all records in a given file are of
equal length. When a file is created, the creator specifies this record length in bytes or words (byte-pairs). Data records
may be any even length from 2 to 65534 bytes. All files have a record length, whether accessed by record or not. Saved
BASIC programs, for example, are given an arbitrary record length of 65534 bytes.

Record numbers usually start at zero, meaning a file with five records has record numbers 0, 1, 2, 3, and 4. Individual
bytes within each record are also numbered from zero. BASIC statements allow access to specific bytes within any
record by giving a byte displacement.

To access afile, a link is made to the file using a channel number in the range 0 to 99. All communication is via the

channel number linked to the file or device. The link is made using one of the statements BUILD, CREATE,
EOPEN, OPEN, or ROPEN.

UniBasic Reference Guide



UniBasic Files 67

Several types of data file structures are supported, each with its own rules governing access and modification. The types
of files available to UniBasic are:

Universal Data Files
Contiguous Data Files
Tree-Structured Data Files
Formatted Item Files
Indexed Keyed Files

Saved BASIC Program Files

UniBasic can also read and write dL4 Portable Indexed Contiguous, Contiguous, or Formatted files. All other files are
assumed to be Text Files and are accessed according to the rules contained herein.

Filenames and Pathnames

A filename is the name given to a file, and is made up of lower-case letters, digits, dash (-) or periods (.). Upper-case
characters are converted to lower-case automatically. Other characters, although allowed by Unix are not permitted in
standard UniBasic filenames.

A pathname is a series of Unix directory names separated by /, terminated with a filename, such as: /usr/ub/23/payroll.

Standard filenames are converted to a series of pathnames, appended one at a time to the entries of the LUST (Logical
Unit Search Table) until a match is found.

Filenames beginning with / are assumed to be full pathnames and are passed directly to Unix. LUST is not used, and no
conversion is performed.

The form pack:file is converted into pack/file. Account branch characters (%&#, etc) and account [grp-usr] suffixes are
discarded.

Filenames in the form O/filename are converted into sys/filename; files in the form lu/filename remain unchanged
excepting the omission of leading zeros in the lu number, i.e. 023/filename becomes 23/filename.

To replace an existing filename, append an ! character to the filename.

File Attributes, Protection and Permissions

Access to files on the system is controlled by the file attributes or permissions given by the creator for access to a file by
other users on a system. The default attributes under Unix are made up of 3 octal digits. The first digit affects the
owner/creator of the file. The second digit controls other users in the same group, and the third digit controls access to
all other users. The digits are as follows:

4 Allows reading of a file
2 Allows writing to a file
1  Allows execution of a file (for shell scripts and C programs)

The digits are combined to select the desired protection. A 6, for example permits reading and writing to a file; 666
allows reading and writing by all levels. The default permission (when none are specified) is 666 permitting reading and

UniBasic Reference Guide



UniBasic Files 68

writing by all users. To facilitate a different default protection (such as IRIS <77> protection against all but owner),
change the umask setting in /usr/ub/.profile. This mask is a 3-digit mask that removes permission digits passed on
CREATE and BUILD. The first digit should be 0 to allow the owner unlimited access to the file. The second and third
digits control masking for other users in the same group and other users in different groups as follows:

4 Remove read permission.
2 Remove write permission

To simulate IRIS default <77> protection, set umask to 066.

Using IRIS Protections

IRIS protections <pp> are processed as follows. A 6 is selected for the owner/creator, the first digit is applied to users in
other groups, and the second digit is applied to users in the same group. Note that privilege levels are not supported in
Unix; the same group equates to the same privilege, and other users in other groups applies to users at lower privilege
levels.

The IRIS digits are mapped as follows:
4 Remove Read permission
2 Remove Write permission

1 Ignored

A <77> protection results in the Unix protections <600>, <70> maps to <660> and <33> to <644>.

Using Unix Permissions Directly

A 3-digit permission value may be passed directly to Unix. The BUILD and CREATE statements as well as the
CHANGE utility provide for specifying a full 3-digit protection value. The permissions are supplied using the format:
<ppp> as defined above.

See also: File Attributes, Protection and Permissions.

BITS Attributes

BITS attributes <PRWEO> may be specified and are converted into the appropriate Unix permission.
P Set default 666 protection code
R Remove Read permission at all levels except owner
W Remove Write permission at all levels except owner

Other BITS attribute letters, such as: D, S, G, A, and B are accepted and ignored.

UniBasic Reference Guide



UniBasic Files 69

Supplemental Protection Attributes

Additional letter attributes are supported and must be placed before any numeric selections within the <> brackets.

U

Build a Universal data file which contains IRIS style BCD data. Unlike other IRIS BCD files, these
data files are the only ones that are platform independent.

See also: Universal Data Files, PREALLOCATE environment variable and IRIS BCD Data Files.

Build a “huge” Universal data file. A “huge” file is a Universal data file that supports data or index
parts larger than 2 gigabytes in size. Huge files are not supported on some older operating systems.

Build the file to contain IRIS style BCD data. Valid for data files only. Forces numeric data to be
stored in IRIS Binary-Coded Decimal form. Q is used for files transferred from IRIS without record
conversion..

See also: PREALLOCATE environment variable and IRIS BCD Data Files.

Build the file to contain 8-Bit IRIS/BITS style binary keys. Data is toggled to 7-Bit format whenever
a key is retrieved into a string variable, and into 8-Bit format when new keys are inserted. This
attribute is required when a file has mixed key values both above and below \200\. Normal ASCII
keys do not require this special attribute. When converting files from IRIS, options are available to
force this condition.

See also: PREALLOCATE environment variable and IRIS BCD Data Files.

The program is an IRIS BASIC program. This attribute causes the program to obey IRIS rules for
encoding syntax of BASIC Statements and Runtime considerations. This attribute is set automatically
during SAVE commands, and has no effect if set on data files. IRIS rules are applied for all runtime
and file-access statements.

The program is execute-only and cannot be listed. Valid for saved BASIC programs only. The
program may be executed, but all channels are closed and the program is erased from the user’s parti-
tion when aborted or completed. This attribute is used for system command programs written in
BASIC, such as LIBR.

The program is an overlay. When an overlay program is executed from command mode, UniBasic is
forked creating a child process to run this command. Upon termination for any reason, the child pro-
cess dies, and remaining type-ahead is returned to the original program. The original program is
restored as if the Overlay program was never called. Specifically, overlay protection is used for
BASIC program processors such as LIBR, QUERY, SCAN, etc.

Build the file to contain IMS style BCD data. Valid for data files only. Forces numeric data to be
stored in IMS Binary-Coded Decimal form. J is used for files transferred from IMS without record
conversion.

Flag the file as an IRIS polyfile. Perform functions in bytes instead of words, and set a first real data
record of zero.

Force usage of BITS numeric and string data in a “Huge” file. Warning: files using BITS data are not
portable between platforms.

See also: PREALLOCATE environment variable and IMS BCD Data Files.

UniBasic Reference Guide



UniBasic Files 70

Accessing Data Files Through a Channel

Once a channel link is established, file access may be performed. The following statements are used to control channel

links, and transfer data to and from files.

BUILD # Build a new data or Text File.

CLEAR # Clear an open channel (same as CLOSE).

CLOSE # Close an open channel.

CREATE # Create a new data file.

EOPEN # Exclusively open a file for single access.

INDEX # Maintain the index portion of a file.

INPUT # Input ASCII input from a channel; BITS only.

MAT READ # Read {lock} a matrix / binary string.

MAT WRITE # Write {lock} a matrix/binary string.

OPEN # Open an existing file for reading and writing.

PRINT# Redirect normal PRINT format to a channel.

RDLOCK # Read and lock a record.

RDREL # Read a relative 512-byte block from a channel.

READ # Read {lock} data from a channel.

REWIND # Reset the channel to the first record and byte.

ROPEN # Open a file for Read-only, ignore locks.

SEARCH # Maintain the index portion of a file.

SETFP # Set the file position for sequential transfers.

UNLOCK # Unlock any locked record on a channel.

WRITE # Write {lock} data to a channel.

WRITE #x;; Unlock any locked record on a channel.

WRLOCK # Write and lock a record.

WRREL # Write a relative 512-byte block to a channel.
Note: Data transfer is governed by the file type for IRIS applications, and by the statement used for BITS

applications. Mixing statement types can have adverse effects on an application. Before using any
class of statement, refer to BASIC Statements and Appendix D CALLS in this guide for additional
information.

UniBasic Reference Guide



UniBasic Files 71

Channel Expression - chn.expr

SYNOPSIS:
STATEMENT #channel {,record {,byte displacement {,time-out}}};expr.list {;}

DESCRIPTION:
STATEMENT specifies any BASIC statement that performs an operation to a file or device, as described previously.

channel is any num.expr which, after evaluation is truncated to an integer and used to select one of 100 possible open
files. The channel must be in the range 0 to 99. Special channels are reserved for system use. Channel (-1) contains
the open BASIC program currently loaded. There is no open channel if this is an unsaved program. Channel (-2) is
used for special operations such as DUMP, LOAD and MERGE.

The channel may be the only parameter if it is followed by a semi-colon, i.e. #3;. Additional parameters are parsed
until the first semi-colon is seen. An error occurs if more than (4) parameters are supplied and a semi-colon
terminator for the channel expression is not specified.

The optional record is any num.expr which, after evaluation is truncated to an integer and used to select a starting
record number for the transfer. If the record expression is omitted, transfer will be sequential based upon the file
type, statement and emulation (IRIS/BITS) in force. Sequential access is always from the last byte transferred for
BITS applications.

When sequentially accessing records in IRIS applications, the following rules apply:

RECORD ACTION PERFORMED

omitted The record number used for the last access to this channel is incremented and used to select
the record. This mode reads sequential records of a file.

-1 Performs identically to 'omitted' except that it serves as a place holder so that a byte
displacement may be specified.

-2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

The optional byte displacement is any num.expr which, after evaluation is truncated to an integer and used to specify
the starting point in the record for the transfer. If the byte displacement is omitted, transfer begins with byte 0 of the
selected record.

The optional time-out expression is any num.var which, after evaluation is truncated to an integer and used as the
maximum time (in tenth-seconds) to wait for the selected record to become unlocked. If, after the specified time-out
the record is still locked, the error Selected Record is Locked is returned to the program. If the time-out is (-1) or
omitted, default record lock retry is governed by the environment variable LOCKRETRY. If this value is zero, retry
continues indefinitely. A non-zero value specifies the number of five-second periods to wait prior to issuing the
Selected Record is Locked error. Any time-out is terminated immediately upon the record becoming available.

The expr.list may contain a list of variables or expressions for the operation.
If the statement is terminated with a semi-colon, and the running program is an IRIS program, the selected record is

unlocked at the termination of the statement. Otherwise the record remains locked until another operation is
performed unlocking the record.

UniBasic Reference Guide



UniBasic Files 72

ERRORS:
Channel is not opened
Channel is already opened
Illegal Channel Number
Selected Record is Locked

See Also: CHF function, CHN function, Accessing Data Files Through a Channel, Introduction to Files

Record Locking

Record locking is a feature of the file structure to restrict access of a given record to a single user. Under Unix, this is
accomplished by first checking whether any other user has a lock on the same record on the same file. If not, the record
is locked while the statement performs its transfers. Upon completion of the transfer, the record is unlocked unless the
statement requested a continuing lock.

Record Locking is essential in applications where two or more users are trying to update the same information
simultaneously. The first user might be performing an inventory receipt, while the other is taking stock to fill an order.
Applications must be written to ensure that all updating operations are performed using Record Locking. When two or
more users attempt access, the first is given access, and additional users are suspended (or an error is given) until the
record is available.

For example, the first user is updating stock received into inventory. The part number is entered and its record is
locked. The second user entering that part number for an order is suspended. The first user enters the amount received
and the record is updated and unlocked. The second user continues unaware of the dual access. This assumes of course
that the first user didn't leave the record locked indefinitely.

A deadly embrace may occur when two or more users are attempting to access a record which is locked by the other.
Both users wait indefinitely for the other to unlock the record. For example, user 1 has locked the ABC Company
customer record and is attempting to read the parts file record for wool carpet. Meanwhile, user 2 has already locked
wool carpet and tries to read ABC Company. Each waits indefinitely for the other. Some Unix systems return a system
error (negative BASIC error) when a deadly embrace is detected.

You can avoid infinite suspension of a program by specifying a time-out or period of time (in tenth-seconds) to wait for
a locked record. If, after that amount of time the record is still locked, an error is generated to the program. For older
applications, set a system-wide time-out default selected when no individual time-out is specified in the statement.

The Environment Variable LOCKRETRY specifies this delay. If the value is undefined (or zero), programs wait
indefinitely for locked records (IRIS 7 style). A non-zero value indicates the number of five second intervals to wait
before generating an error to the application.

To perform an operation and lock a record in IRIS mode, simply omit the optional ;' at the end of the statement. To
perform the operation and unlock the record, include the trailing ';'. To unlock any previously locked record on a
channel without performing a transfer, issue the statement: WRITE #channel;;

In BITS mode, the statement controls Record Locking (READ, WRITE, PRINT, INPUT) for operations without

locking, and RDLOCK/WRLOCK for operations requiring locking. To remove any outstanding locks on a channel,
the UNLOCK # statement is used.

UniBasic Reference Guide



UniBasic Files 73

Note: Any locked record on a channel is automatically removed on any of the following:

Closing the channel.

Trailing semi-colon on the last operation (IRIS).
Access to the same record without again locking.
Attempted access to any other record.

Only a single record may be locked on any given channel. If you need to lock several at once, you
must open the file on separate channels.

Text Files

A Text file is a file comprised of ASCII characters terminated by a zero-byte. For purposes of random access, Text Files
are assumed to have a record length of 512 bytes. Data begins in the first byte of the file and there is no special
UniBasic header. Lines of text are separated by the Unix new-line (\12\) character. When Text Files are created, the
data is stored in Unix 7-bit ASCII format to ensure compatibility with all other Unix text editors, word processors or
other programs.

Creating Text Files

Text files are created using the BUILD statement. Standard Unix files are built using 7-bit data without any special
UniBasic header information. All Text files are accessible to any Unix text processor or command.

Accessing Text Files

Text files are typically accessed sequentially. When data is written to a Text File, carriage returns are converted into
new-line characters. A column count is maintained for the channel. Printable characters increment the column; return,
new-line or form-feed resets the counter to zero.

When TAB functions are used to the open channel (i.e. writing to a device such as a printer), the column is kept
separately from the column count of the screen. If writing to a file, a zero byte terminator is always maintained at the
end of the file. A zero byte is written and the file pointer is decremented such that each subsequent write operation
overwrites the trailing zero byte, and appends a new zero-byte at the end-of-file.

When reading data from a Text File, End-of-File is signified by the occurrence of a zero byte, regardless of whether data
exists beyond the zero-byte. BITS programs generate an End of File error (88), and IRIS applications simply receive a
null (empty) string.

When BITS applications read from Text Files, the normal statement used for sequential access is INPUT. Input

terminates on new-line or form-feed. No terminator is placed into the string. An empty string is simply a blank line in
the Text File. Carriage returns are stripped from the file and ignored.

UniBasic Reference Guide



UniBasic Files 74

When IRIS applications READ from Text Files, a null string indicates the end-of-file. Otherwise, carriage returns are
stripped from the file, and new-lines terminate the READ . All new-lines are converted into the string as \215\ carriage
returns. Additional special modes are available for IRIS applications reading Text Files. The optional record controls
the type of operation to perform:

Record Action Performed

omitted Access the next sequential byte of the file up to the first new-line character or size of the
string (whichever is smaller). Replace the new-line with \215\.

-1 Same as 'omitted'".

-2 Transfer characters up to the DIMensioned size of the string variable. Convert new-lines to
\215\ but do not terminate the transfer until end-of-file or filling the string.

Text files may also be accessed using MAT READ and MAT WRITE statements.

Saved BASIC Program Files

A SAVED BASIC program file contains p-code compiled BASIC programs stored by the SAVE or PSAVE commands.
Each program is stored with several flags indicating the type of program (IRIS or BITS), and encryption status. For
further information on application program protection and encryption, see the PSAVE command.

Newly created programs are of the type IRIS or BITS based upon the default BASICMODE environment variable or
command (NEW, NEWB, or NEWI) issued. This option controls statement syntax and run-time operation and cannot
be changed for the life of the program file.

A program file is converted to a Text File using the DUMP command.
When converting a Text File into a program file, verify that your default program mode (IRIS or BITS) is set via the

BASICMODE environment variable, the proper NEW command, or by issuing the proper GET command for BITS
mode.

Contiguous Data Files

Even though the Unix systems do not support Contiguous files in the traditional internal sense, compatibility is provided
for applications designed to use these files.

Contiguous files utilize a fixed-length record, specified during creation. Each record contains the identical number of
bytes. The total number of records to be within the file is stored within the file's header during creation.

The value of the PREALLOCATE environment variable is used during file creation and globally during execution of
programs performing Contiguous file access. Refer to this documentation in order to define the options properly for
your applications. PREALLOCATE provides features including pre-writing all records to null, limiting expansion, and
eliminating system file structure gaps in the file.

A Contiguous file will return as its number of records (CHF/CHN functions), the greater value of its current physical
size, or the size in records specified during creation.

UniBasic Reference Guide



UniBasic Files 75

Access to any record within the valid CHF/CHN range with either READ or WRITE statements is permitted. If the
record is beyond the current physical size, the file is extended unless this feature is restricted using PREALLOCATE.
To expand a Contiguous file, simply write to any record higher than the current size.

During expansion of the file, all intervening records are written (with zero bytes) from the current physical size up to
and including the new record. To prevent the writing of all intervening records, set PREALLOCATE accordingly.
This automatic filling in of records is to prevent Unix from reporting the file as sparse (gaps). Sparse files are usually
considered corrupted when the file system is checked, although they are perfectly valid.

Creating Contiguous Files

Contiguous files are created using the BUILD or CREATE statements. In addition, the FORMAT command may be
used from command mode to create the file. A Contiguous file may have any number of records with a maximum
record length of 65534 bytes (32767 words). Contiguous files may be built as Universal files if the PREALLOCATE
8192 (16384 for “huge”) flag is set or if the <U> or <H> attributes are specified.

Accessing Contiguous Files

Contiguous files are accessed by supplying the record and byte displacement. Access may cross a logical record
boundary. Care must be taken to ensure that your transfers are within the specified record or data in subsequent records
may be damaged.

When transferring data to a Contiguous file, the record, and byte displacement are used to specify the starting point for
the transfer. All items in the var list are transferred sequentially. The following table illustrates the optional use of the
supplied record.

Record Action Performed

omitted The record number used for the last access to this channel is incremented and used to select
the record if the program is an IRIS program. BITS programs resume transfer at the first byte
not transferred by a previous operation. This mode reads sequential records of a file.

-1 The record number used for the last access to this channel is incremented and used to select
the record . This mode permits the selection of a new byte displacement within the in-
cremented record.

-2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

Tree-Structured Data Files

Tree-structured files utilize a fixed-length record, specified during creation. Each record contains the identical number
of bytes. These type of files are preserved for compatibility with BITS applications. They provide a free-format record
in a dynamically expandable structure.

UniBasic Reference Guide



UniBasic Files 76

A Tree-structured file will return as its number of records (CHF/CHN functions), its current physical size in records.

Access to any record within the valid CHF/CHN range with either READ or WRITE statements is permitted. If the
record is beyond the current physical size, the file is extended.

During expansion of the file, all intervening records are written (with zero bytes) from the files current physical size up
to and including the record being accessed. This automatic filling in of records is to prevent Unix from reporting the file
as sparse (gaps). Sparse files are usually considered corrupted when the file system is checked, although they are per-
fectly valid.

Creating Tree-Structured Files

Tree-structured files are created using the CREATE statement. A Tree-structured file may have any number of records
with a maximum record length of 65534 bytes (32767 words).

Accessing Tree-Structured Files

Tree-Structured files are accessed by supplying the record and byte displacement. Access may cross a logical record
boundary. Care must be taken to ensure that your transfers are within the specified record or data in subsequent records
may be damaged.

When transferring data to a Tree-structured file, the record, and byte displacement are used to specify the starting point
for the transfer. All items in the var list are transferred. The following table illustrates the optional use of the supplied
record.

Record Action Performed

omitted The record number used for the last access to this channel is incremented and used to select
the record if the program is an IRIS program. BITS programs resume transfer at the first byte
not transferred by a previous operation. This mode reads sequential records of a file.

-1 The record number used for the last access to this channel is incremented and used to select
the record . This mode permits the selection of a new byte displacement within the in-
cremented record.

-2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

Formatted (Item) Data Files

Formatted ITEM files are sequential data files utilizing a fixed-length record and fixed record format. Each record is
pre-defined with respect to the data record definition. The format is initialized through creation and is maintained for
the duration of the file's existence. When initially created, only a single record (Record 0) is within the file.

The record length can be up to 65534 bytes in length. A null record is returned when access is made to a record below
the maximum record number, but not physically in the file.

UniBasic Reference Guide



UniBasic Files 77

The value of the PREALLOCATE environment variable is used during file creation and globally during execution of
programs performing Formatted Item file access. Refer to this documentation in order to define the options properly for
your applications.

A Formatted file will return as its number of records (CHF/CHN functions), the first record not contained within the
file. If your files grow dynamically using this function, no empty records exist in the file. If you READ a record
beyond the current number of records in the file, an error is generated (lllegal Record or End-of-file). When you
WRITE a record beyond the current number of records, the file is expanded automatically.

During expansion of the file, all intervening records are written (with zero bytes) from the file's current physical size up
to and including the record being accessed. To prevent the writing of all intervening records, set PREALLOCATE
accordingly. This automatic filling in of records is to prevent Unix from reporting the file as sparse (gaps). Sparse files
are usually considered corrupted when the file system is checked, although they are perfectly valid.

PREALLOCATE may be set to return a Record-Not-Written error if required by the application. When defined, each
read operation is checked for a null record. If the record contains all zero-bytes, the Record Not Written error is
returned. When not defined, null records are returned. This function slightly degrades read access to Formatted files.
Set this option only when your application expects the Record Not Written error in the middle of the file.

Creating Formatted ITEM Files

Formatted ITEM files are created using the BUILD or CREATE statements. In addition, the FORMAT command may
be used from command mode to create the file. A Formatted Item file may have any number of records with a maximum
record length of 65534 bytes (32767 words). Formatted ITEM files may be built as Universal files if the
PREALLOCATE 8192 (16384 for “huge™) flag is set or if the <U> or <H> attributes are specified.

To create a Formatted Item file within an application, write to record zero a list of variables to sequential item numbers.
The type and DIM of each variable is recorded in the format map. When a numeric variable is written, its precision is
also stored in the format map. When a string variable is written, its DIMensioned size is incremented and then rounded
up to an even number of bytes. If a MAT operation is performed, a Binary Item is created using the actual
DIMensioned size. Strings are rounded up (not incremented first), and numerics occupy the entire size of the specified
variable, array or matrix. The actual data within the variables is also written to the record after the item is defined in the
format map.

An error is generated if items are written in other than sequential item number order starting at 0, or when you exceed
128 items. Once an item is defined, its type, precision or length may not be changed.

Accessing Formatted ITEM Files

Formatted files are accessed by supplying the record and item number (byte displacement). Access cannot cross a
logical record boundary.

When transferring data to a Formatted Item file, the record and item number are used to specify the starting point for the
transfer. All items in the var list are transferred, and each must match the pre-defined record layout in the format map.

If an Item is defined as string, only a str.var may be transferred. If the Item is numeric, a conversion is performed when

the variable precision does not match the item's definition. Data is converted to the precision of the destination; var
when reading, item when writing. An error occurs if the destination precision is too small to hold the numeric value.

UniBasic Reference Guide



UniBasic Files 78

Binary items are accessible using MAT statements. You can, however transfer any str.var, num.var, mat.var or
array.var into a binary field. No conversion is performed. Care must be exercised to ensure that numeric data is
transferred into variables of the same precision used when written or the resulting data will be indistinguishable to the
application..

The following table illustrates the optional use of the supplied record.

Record Action Performed

omitted The record number used for the last access to this channel is incremented and used to select
the record. This mode reads sequential records of a file.

-1 Performs identically to ‘'omitted' except that it serves as a place holder so that a byte
displacement may be specified.

-2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

Indexed Data Files

An Indexed Data File is any Contiguous Data File which is defined to contain a companion ISAM Key file. Access to
data records is identical to a standard Contiguous Data File, except write operations may not cross a record boundary
unless enabled by PREALLOCATE. The companion ISAM (Indexed Sequential Access Method) file holds keys and
pointers to data within the Contiguous Data File. The use of an Indexed file allows an application to rapidly locate data
in a large database. Even when a file contains several hundred thousand data records, a specific record can be located
instantly.

The environment variable PREALLOCATE options affecting Contiguous Data Files also apply to Indexed Data Files.
In addition, four options are provided specifically controlling Indexed Files:

PREALLOCATE option 128 prevents dynamic expansion beyond the number of records specified at creation. This
limits the number of active records a user may insert using the SEARCH or INDEX statements. When enabled, a new
record is not allocated when the first available record is greater or equal to the number of records specified during
creation. To expand the file, WRITE to a higher limiting record number. The record number must be greater or equal
to the value returned by CHF or corruption of the delete list may occur! Note, this operation is prevented if
PREALLOCATE option 2 is enabled for this session.

PREALLOCATE option 256 forces a check prior to deleting a record using SEARCH or INDEX. If the record is
already deleted (not in use), an exception status is returned. This option is required to simulate BITS and Polyfiles bit-
map ability to delete records whether they are in use or not.

PREALLOCATE option 512 allows a WRITE to cross an ISAM record boundary. Normally, an error is generated
when a WRITE to an indexed file crosses a record boundary. Setting this option should only be done when the applica-
tion can be certain that all records to be written are already allocated, otherwise the file's deleted record list will be
corrupted.

PREALLOCATE option 4096 prohibits writing to a deleted record. An examination of a record's status (deleted or in-

use) is made prior to performing a WRITE. An error is generated if the record is already deleted, preserving a file's free
record chain.

UniBasic Reference Guide



UniBasic Files 79

Indexed files, consisting of optional data records and keys, are maintained by the application program. When new data
is to be added to the file, you request a new record. Automatically, the system expands the file if there are no unused
records. After writing your new data to the supplied record of the file, you insert a key, that is a unique piece of
information tagged to the new record. The key could be a customer name, number; any unique information about the
record. Later, you retrieve the record by simply asking for the record that contains the key.

Each file can have from 1 to 62 separate indices, and each index may have a different sized key (up to 122-bytes). This
allows multiple keys (e.g. name, account number, etc.) to access the same data. Each different index provides a different
way to locate a record.

Any given record may be located by its specific key. When the entire key is not available, a group of records matching a
partial key may be displayed for final selection under program control.

Data records may be read from the file sequentially (in key order), forward or backward for as many different indices as
are in the file. For example, a file keyed by customer name and number could produce a sorted (ascending or de-
scending) report by those fields without any resorting.

When information is no longer needed in a file, the keys are deleted, and the record is returned to the system for later
reuse before extending the file.

Indexed Files are not required to contain data records. A Contiguous Data File is always present with a single data
record, but may be unused. This allows indices to exist separately from the data referenced, or to build key-only files
into existing data bases.

Indexed files utilize the FairCom, release 4.3C c-tree™ file structure, widely accepted in the Unix community for its
reliability, industry standard approach, and extended features.

c-tree 4.3C provides for index node deallocation and b-tree compression when keys are deleted; but only in the single-
user or server environment. Using the full locking capabilities of Unix, compression is allowed in the multi-user
environment.

This is accomplished by granting a user who is deleting a key exclusive index access for the duration of the delete. This
is a requirement of the b-tree compression algorithm. Users performing searches and/or insertions can still access an
index concurrently.

This type of compression has the following benefits:

. Unused space in an index is kept to a minimum. When an index block becomes empty, it is placed on
the delete list. It therefore be can be reused elsewhere in the index when required.

. An index that has keys systematically added to the end and deleted from the beginning does not
require the file to grow continuously.

. Since overall index size is reduced, overall access performance to the index is proportionally
increased, with very large indices benefiting the most.

The added locking permits implementation of the fast search-next and search-previous function in c-tree. Sequential
mode 3 or mode 6 searches through an index now do not require a complete b-tree search. The current key position is
always saved and the next key in sequence is returned, if possible. Concurrent changes to the index are detected, and a
full search is only performed if necessary.

Indexed Data Files are maintained within 2 separate Unix files. These are a standard Contiguous Data File utilizing a
lower-case name (as built), and the ISAM (key) portion in a companion file with the same name using upper-case

UniBasic Reference Guide



UniBasic Files 80

characters (i.e. payroll and PAYROLL). In the case of Universal Data files, the ISAM portion companion file has a .idx
extension (i.e. payroll and payroll.idx).

Indexed File Creation

Indexed files are created using the BUILD, CREATE, INDEX and SEARCH statements or using one of the supplied
utilities BUILDXF or MAKEIN. They are initially created with a single data record. The actual number of records
supplied to the statements or utilities is stored in the file header. Indexed files may be built as Universal files if the
PREALLOCATE 8192 (16384 for “huge”) flag is set or if the <U> or <H> attributes are specified.

Note: An ISAM file is made up of (2) separate files; the lower-case filename holds the data portion and an
uppercase filename is created to hold the ISAM portion. If the file is Universal, the ISAM portion will
have the data file name with a .idx extension rather than an uppercase filename. Filenames that do not
contain at least one letter cannot be used for ISAM data files.

During initial creation, you may specify the type of B-Tree balancing to apply to each index. Proper selection increases
performance and minimizes the disk space required to hold keys. The default is to assume random key insertions into
each index. This results in a well balanced tree-structure with nodes split when half full. If your insertions into a
specific directory are sequential (ascending or descending), you may change this parameter to suit your application. An
example of a sequential index is an order/invoice number file keyed by an increasing (decreasing) number or date. By
setting the proper parameter, as much as 25% performance and a 50% reduction in disk space may be realized; See
Summary of SEARCH/INDEX Modes.

When allocating new records, the system first checks for any deleted records that can be reused. If found, they are used
first. When no deleted records exist in the file, the file is expanded using the number of records specified by the
environment variable DXTDSIZ. This value is set to a default of one for the best overall performance. Setting this to a
higher value may increase performance of certain applications.

Similarly, when the ISAM portion of the file is full, it is expanded by the value specified in bytes of the environment
variable IXTDSIZ. This value must be a multiple of 512 or the file may grow erratically. The default value should
never have to be changed.

To maintain a dynamically expandable file structure, c-tree maintains a linked list of deleted records in the data portion
of the file. When records are returned to the system, c-tree checks that you have not returned the same record twice in a
row. It does not normally check to see if you have returned the record in a previous operation. It is therefore possible to
corrupt the Deleted Record Chain if you arbitrarily return records not actually allocated. To prevent this, you can set the
environment variable PREALLOCATE option 256 to force c-tree to check for a record already deleted.

Deleted records are flagged with a single-byte delete-character (ff hex, 3778)- Next, a 4-byte pointer is written linking

deleted records together into a delete-list. The top of the delete-list is maintained in the header. It is possible to corrupt
this pointer system if you perform a WRITE # operation to a record following its release as a free record. Many
applications write their own delete-flag into unused records. If your applications require this capability, set the
environment variable ISAMOFFSET to a byte location other than zero (default) such that c-tree has 5 contiguous bytes
available for delete-list maintenance.

UniBasic Reference Guide



UniBasic Files 81

C-tree requires internal arrays of data to maintain fast key operations such as search next. For each Indexed file your
application opens, one array element is required for the data portion of the file, and one element for each Index in the
file. A typical application opening 10 files with an average of 3 indices requires (3 + 1) * 10 or 40 positions. If your
application errors trying to OPEN too many ISAM files, change the default value of the environment variable
ISAMFILES.

Indexed files dynamically expand to meet the requirements of your application. Over a period of time, continuous
expansion and contraction of data occurs in your files. For example, at month or year-end, applications typically delete
a large number of keys and records. The Unix system does not provide for a reduction in a file's size. The ubcompress
utility is provided to rebuild the ISAM portion of the file and release unneeded space back to the system. The data
portion is not compressed to insure that all records maintain their positions in the file. Additionally, since not all
applications have the keys within the data records, the process of sorting and rebuilding all indices to point to the
compressed file would be very time consuming.

Accessing an Indexed Data File

An Indexed File is accessed using the SEARCH # and/or INDEX# statements. The parameters are identical and select
operation mode, index to operate upon, and data values passed both ways.

SYNOPSIS
SEARCH #channel , mode , index ; key var, record var, status var
INDEX #channel ; mode , index, key var, record var, status var

channel is any num.expr which, after evaluation is truncated to an integer and used to specify an opened channel
currently linked to an Indexed Data file. A semi-colon may follow the channel or index.

mode is any hum.expr which, after evaluation is truncated to an integer and used to specify a mode of operation for the
statement. The following pages provide a detailed list of mode operations.

index is any num.expr which, after evaluation is truncated to an integer and used to specify an Index or Directory (list
of keys) for the operation.

key.var is any DIMensioned str.var which must be DIMensioned large enough to hold the key being operated upon.
An error is generated on search type operations if a key from the file cannot fit into the supplied str.var.

record.var is any num.var and contains (or returns) a value for the statement mode.
status.var is any num.var used to return a status (exception) value to the program. Generally, a zero indicates a

successful operation; non-zero for an exception error. When issuing mode 1 functions, the status.var is set before the
statement to select the miscellaneous information to be returned.

Mode 0 - Index Definition

Generally, Indexed Files are created and structured using the MAKEIN or BUILDXF utility . SEARCH/INDEX mode
0 is used to create an Indexed File during program execution.

Each index in the file is defined using a mode 0 statement specifying the key length. Indices must be defined in
sequential order, beginning with 1, up to a maximum of 62. The index is selected with the index expression.

UniBasic Reference Guide



UniBasic Files 82

The record.var defines the key length (2-122 bytes) of the selected index. Key length is expressed in bytes for BITS
Applications and IRIS Polyfiles where a CALL $VOLLINK is issued, or in words (byte pairs) for standard IRIS
Indexed files.

status.var is set upon completion as follows:

0 Operation successful.

4 File is not a data file (type Data or Contiguous).

6 Selected index number is out of sequence.

8 File already indexed (May not be changed once defined).

9 Illegal parameter specified. Key length can be 2-122 bytes.

10 Too many indices specified. Maximum is 62.

To create an Indexed File with two indices of key lengths (bytes) of 6 and 24 requires two mode 0 statements. The first
to index 1 with record.var containing 6; the second to index 2 with record.var equal to 24.

As each index is defined, a mode 8 may be issued to the same index with record.var set to 0 for random insertions, 1 for
increasing keys, and 2 for decreasing keys. If this step is omitted, random insertions are performed.

The data portion of an Indexed File begins with data record zero. If the creation program is an IRIS program, or the
BUILDXF utility is used, the file begins with record one; that is no record zero is logically within the file. To force the
first data record to be other than zero, issue a mode 1, with record.var set to the desired first record number and
status.var set to 6. Setting a First Real Data Record other than zero does not occupy space within a file. The system
simply stores a starting record constant which is added or subtracted from all file operations. If the First Real Record is
set to 200, then logical record 200 equals physical record 0; 210 record 10, and so on. This feature is included for
compatibility when moving existing data files from a live IRIS system in order to keep the record numbers and key
pointers consistent.

Once all indices have been defined, the file structure must be locked. This is accomplished by issuing a mode 0
statement with index equal to 0 and record.var set to the desired number of data records. This number of records is
placed into the file header and used by CHF/CHN functions and to limit automatic expansion during record allocation;
see PREALLOCATE.

Once all indices are structured according to the information supplied, the file is available for key insertion, record
allocation and other operations.

No further mode 0 statements may ever be issued to this file without an exception status occurring.

Mode 1—Miscellaneous Index Information

SEARCH/INDEX mode 1 is used to access structure information about an open Indexed File. When the index
expression is non-zero, the key length of the selected index is returned in record.var. If the running program is an IRIS
program and the file was not structured as a polyfile using CALL $VOLLINK, the size is returned in words using the
formula INT (size in bytes/2). BITS indexed files, or those created by MAKEIN with an odd size key length, will
appear to IRIS programs as having 1 less byte.

Specify index zero and set status.var to select one of the functions listed below. The value (if any) yielded by the
function is returned in record.var.

0 Return in record.var the First Real Data Record as defined during creation.

UniBasic Reference Guide



UniBasic Files 83

1 Return in record.var the available record count. This is either the value of the environment variable
AVAILREC if defined, or computed by taking the current size of the file and subtracting the actual
number of active records.

2 Allocate a new record in the file returning its value in record.var. Possible exception status:

3 = No free records remaining. This condition is only returned when you have set the environment
variable PREALLOCATE option 128 restricting automatic expansion.

3 De-allocate (return) a record to the file. Available record count is incremented, active records is
decremented. record.var supplies the record number to mark as ‘available’. Possible exception status:

1 = Record number already de-allocated. If you attempt to return the same record twice in a row, this
condition is returned. To check the records status before returning it to the Delete List set the environ-
ment variable PREALLOCATE option to 256.

4 Return in record.var the number of physical records within the file for IRIS applications only. Does
not include the addition of the First Real Data Record value. Error for BITS programs.

5 Same as mode 4; for IRIS or BITS applications.
6 Set the First Real Data Record to the value supplied in record.var. This function is used by the
Conversion Programs, and whenever having a record zero is undesirable. This option may only be set

prior to freezing the structure with mode 0.

7 Return in the current (actual) number of records in use within the file in record.var. This number is
maintained as records are allocated and de-allocated (See 2 and 3 above).

Mode 2—Search for a Specific Key

SEARCH/INDEX mode 2 is used to search an index for an exact match to the supplied key.var. If found, record.var
receives the data record number associated with the key, and the status.var is set to zero. If no match is found,
record.var is unchanged and status.var is set to one.

A match is indicated when the supplied key.var is equal to an entry in the index up to the end of key, even if the entry in
the file is longer. When the entry is longer, its value is returned in key.var.

For example, a search for key ABC produces a match with the first entry whose first three characters are ABC. If the
first such entry is ABC Company East, then a match is indicated, key.var is set to contain ABC Company East,
record.var is set to the associated record number, and status.var is set to zero. A match is not produced if the entry in
the index is shorter than the key supplied. For example, the entry AB is not considered a match.

Note: The actual keys are case-sensitive. This means that "ABC" does not equal "abc."

UniBasic Reference Guide



UniBasic Files 84

Mode 3—Search for the Next Highest Key

SEARCH/INDEX mode 3 is used to access data records alphabetically, or to search forward from a selected point in the
index. The selected index is searched for the first entry logically greater than the supplied key.var. If found, record.var
receives the data record number associated with the key, and status.var is set to zero. When no more entries are found,
record.var is unchanged and the status.var is set to two (End of Index).

For example, a search with key ABC returns the first entry logically exceeding ABC, such as ABC Company East.
Subsequent mode 3 searches using the same key might yield entries such as ABC Company West, Dynamic Concepts,
and Dynamic Conversions.

To search an entire index, start by setting key.var to a null string, and perform mode 3 commands until status.var is set to
2.

Note that a mode 3 search yields the first entry greater than key; a mode 3 with the key ABC does not return ABC itself
if it exists. It is best to perform a mode 2 search first when you want to include the starting key in your search.

Mode 4—Insert a New Key into an Index

SEARCH/INDEX mode 4 insert new keys into an index. The selected index is first searched for an entry exactly
matching key.var. If found, record.var is set to the record number associated with the key and status.var is set to one.

If no match is found, and sufficient space exists within the selected index, key.var is inserted in the index using the
record number supplied in record.var as a pointer to the data record. Successful insertion is indicated by a zero in the
status.var . If no space exists within the selected index, the status.var is set to two (End of Index).

Mode 5—Delete an Existing Key from an Index

SEARCH/INDEX mode 5 deletes existing entries from an index. The selected index is searched for an entry exactly
matching key.var. If found, the key is removed from the index, record.var is set to the record number associated with
the key and the status.var is set to zero (successful deletion).

If the exact entry is not found, the record.var is unchanged and status.var is set to one.

Following successful deletion of a key, the record should be returned for re-use using mode 1 with status.var set to 3.

Mode 6—Search for a Previous Lower Key

SEARCH/INDEX mode 6 is used to access data records in descending order, or backward from a selected point in the
index. The selected index is searched for the first entry logically less than the supplied key.var. If found, record.var
receives the data record number associated with key, and status.var is set to zero. If not found, record.var is unchanged
and status.var is set to two (End of Index).

UniBasic Reference Guide



UniBasic Files 85

For example, a search with the key XYZ returns the first key found logically less than XY Z, such as Solution Systems.
Subsequent mode 6 searches using the same key might yield keys such as Solution Concepts, Resources International,
etc.

Note that a mode 6 search yields the first entry less than key.var, so a mode 6 executed with XYZ will not yield the XYZ
itself if it exists. It is best to perform a mode 2 search first when it is desirable to include the starting key in your search.

To search an entire index, start by setting key to "\377\", and perform mode 6 commands until 2 is returned in status.var.

Mode 7—Reorganize Index

SEARCH/INDEX mode 7 provides for compatibility with older IRIS applications performing an index reorganization.
This mode is a non-operation and always returns a status.var of zero indicating success and allowing the older program
to run without error.

Mode 8—Specify B-Tree Insertion Algorithm

SEARCH/INDEX mode 8 retrieves or changes the B-Tree insertion algorithm for an index. If record.var is greater or
equal to zero, it's value is truncated to an integer and used to select the new insertion method for index. If successful, the
file's header is changed, and status.var is set to zero. If the record.var is outside the accepted range, status.var is set to
one, and no change is made.

If record.var is any negative value, the current insertion algorithm used for index is returned in record.var and status.var
is set to zero.

Value Type of Insertion Algorithm Invoked
0 Default. Selects random insertions and is used when keys in the index are inserted in any order.
1 Selects increasing insertions and is used when each key inserted in the index is greater than the

previous insertion. Types of keys in this category include sequential order numbers or date keys.
2 Selects decreasing insertions and is used when each key in the index is less than the previous insertion.

Changes are stored in the file's header and become effective immediately for the user storing the change. Other users
must first CLOSE and OPEN the file before the change takes effect.

The standard BUILDXF and MAKEIN utilities do not have options for setting the insertion algorithm.

By default, files are created for random insertions. Random insertions split B-Tree nodes when they are half full. This
provides a better balancing and room for future insertions.

When sequential keys are inserted (ascending or descending), the nodes should be split only when full. Extra space is
not required for later insertions between sequential key values.

The benefits of adding a mode 8 to your Application code include saving up to 50% on disk space; 25% increase in

performance on insertions, deletions and searches; and less need to run the ubcompress utility to release unused space
to the system.

UniBasic Reference Guide



UniBasic Files 86

Indexed File Errors & Recovery

If you accidentally delete the ISAM portion of an Indexed file, you can rebuild the file by the following steps.

Create a new Indexed file with a different name using the same parameters for number of Indices and
Key Lengths.

Write a small program to rebuild and insert the keys into the new temporary file. Only insert keys and
records, do not copy the existing data.

Use the Unix mv command to move the new temporary files ISAM portion as the old files ISAM file,
i.e.. mv TEMPFILE MYFILE or mv tempfile.idx myfile.idx. This command must be performed at
the shell. Do not use any utilities designed to operate on both portions of ISAM files, such as COPY

supplied with UniBasic.

If an error is encountered during ISAM file access, an exception (V2=5) status or BITS error #110 (Index file structure
error or svar dim < Key Length) may be printed. First, check to see if your string DIM is at least the size of the Key. If
so, Print the value of ERR(8) and check the following table for additional information. This table includes all of the
c-tree error codes. When using standard Indexed files, only a few of these errors are possible.

Code

Explanation of c-tree Status

0

10

11

12

13

14

15

16

17

18

19

20

21

22

Successful Operation, No error.

Initialization parameters require too much memory.

Illegal Initialization parameters: Either ISAMBUFS < 3, ISAMSECT <1 or ISAMFILES < 1.
Could not OPEN the file. The Index portion is missing, protected or locked by another process.
Cannot determine the file type - Corrupted file or Reversed Keys.

File appears corrupted and should be checked.

Data file has been compacted (CTCMPC), but not cleared through CTRBLD. Rebuild data file (but do
not force rebuild).

Not enough space to create file or invalid ISAM filename. ISAM filenames must have at least one
letter in the filename.

Could not create data file. Either no space exists or filename is an improper name.
Tried to create existing index portion filename.
Tried to create existing data portion filename.

Key length too large for node size. There must be room for at least 3 key values per node. The node
size is given by ISAMSECT *128. Default ISAMSECT is 4 resulting in 512-byte nodes.

Cannot create data file with record length smaller than 6 bytes.

File number out of range; Increase ISAMFILES environment variable.

UniBasic Reference Guide



UniBasic Files 87

23

24

26

28

29

30

31

32

33

34

35

36

37

39

40

41

42

45

46

48

49

50

Illegal Index Number specified.

Could not close file.

File number is not in use.

Trying to insert a key with a file byte pointer of zero.

High level c-tree function called with zero file byte pointer.

Selected file byte pointer is beyond the logical length of the file. If the pointer is correct, it is possible
that the ISAM header is damaged.

Next Record in delete chain does not have 1st byte set to ff (hex). Data File header may be corrupt, or
free records were overwritten by the application.

Attempt to delete the same record twice in a row. The record being deleted is already the top record
on the delete stack. Attempting to return records onto the delete stack more than once may corrupt the
file unless the PREALLOCATE option is set to 256.

File byte pointer is zero using high level c-tree function.

Could not find correct predecessor node. Indicates that an index insertion was interrupted before
completion. Rebuild index using ubcompress utility.

Cannot seek in the file - possibly out of disk space.

Cannot read in the file - possible cause: corrupted record position in file.
Cannot write to file - possibly out of disk space.

Record or node pointers have exceeded 2°32.

ISAMSECT environment variable was larger when this index was created. Buffers are too small for
nodes.

Could not unlock data record.

Could not obtain a data record lock. Probably the Unix number of locks is too small for the system.
Re-configure system.

Current configuration parameters inconsistent with the parameters at time of creation. File created
under a different Byte swap (Reverse), or file came from an incompatible machine.

Explanation of c-tree Status

Key length too large.
File number is already in use.

A function has been called for the wrong type of file, e.g.. a variable length record function used for a
fixed length file.

Could not write file directory updates to disk during file extension.

Could not lock index file node. Probably the Unix number of locks is too small for the system. Re-
configure the system.

UniBasic Reference Guide



UniBasic Files 88

51 Could not unlock an index file node.

52 Variable length and/or floating point keys disabled in CTOPTN.H.

108 Key number is out of range for the file.
113 Internal Lock Table overflow.
114 First byte of fixed-length data record found by ISAM routine equals delete flag. Attempt to write to a

non-allocated record. This exception only occurs when operating with PREALLOCATE = 4096.

124 Number of indices in index file does not match information stored in the UniBasic data file header.
Either the UniBasic header or the ISAM file is damaged.

Accessing non-UniBasic Files and Devices

Any Unix file may be opened for read/write access by a program. Access is limited by the permissions granted to the
user by the creator of the file. If the file is other than a Text File, certain programming precautions must be taken.

If the file is a character devicename, data may be read or written from/to the device usually a character at a time. If the
file is a block device, data must be read or written from/to the device a block at a time. A typical character device is a
terminal port such as /dev/tty01; a block device might be a magnetic tape drive such as /dev/rct0.

If the file contains other than ASCII data, process the file as binary using MAT READ, MAT WRITE, RDREL or
WRREL statements. Use the CONYV statement to view or alter data within a binary file.

IRIS BCD Data and Key Files

IRIS BCD Data files are standard Contiguous, Formatted or Indexed files whose records conform to IRIS data types.
String fields contain IRIS 8-bit strings, and numeric fields are in IRIS BCD precision.

IRIS BCD Key Files are Indexed Data Files whose keys conform to IRIS 8-bit form. Toggling is performed in and out
of each index to guarantee the proper insertion order when binary keys are used.

A file is an IRIS BCD data file if the attribute <Q> has been set. Access to IRIS BCD files adds a small amount of
overhead (4%) during access of string fields.

Afile is an IRIS BCD Key file if the attribute <K> has been set.

Creating IRIS BCD Data Files

IRIS BCD files are created using BUILD or CREATE statements. The Supplemental Protection Attributes <Q> and
<K> force the new data file to be maintained using IRIS BCD records and/or IRIS 8-bit keys respectively.

Setting the environment variable PREALLOCATE option 32 forces all newly created data files to contain IRIS BCD
data records or keys.

UniBasic Reference Guide



UniBasic Files 89

The IRIS Conversion Utilities automatically create IRIS BCD Data files for all converted Contiguous, Formatted,
Indexed or Polyfiles where a record definition is not given. IRIS style keys may also be preserved during the con-
version.

During conversion, PREALLOCATE options must be cleared. Perform the conversion and then set the options as
desired.

The following conditions might be reasons to force the creation of new files in IRIS BCD data record or key format:

1. Conversion of an existing end-user's system when the application is totally unknown. Set both <K>
and <Q> conditions globally in PREALLOCATE after converting all files. Assume all files contain
Binary Keys. You may omit binary key conversion and setting <K> if you are sure binary keys are
not used.

2. The application makes use of MAT READ / MAT WRITE statements to expand files or copy records
to history files without regard to the record format. This condition is not supported between mixed
Base 10000 and IRIS BCD files. Required toggling and/or conversion is performed one-sided resulting
in corrupted data in the destination file. These types of operations are permitted only when both files
are of the same class (BCD/ Base 10000). Set global <Q> BCD Data using PREALLOCATE options
if some of the files have the <Q> attribute following an IRIS Conversion.

3. The application moves data between num.vars and str.vars using a specially designed CALL. Again,
this condition is not supported between mixed Base 10000 and IRIS BCD files. Required toggling
and/or conversion is performed one-sided resulting in corrupted data in the destination file. Set global
<Q> BCD Data using PREALLOCATE option if some of the files are <Q> following an IRIS
Conversion. In rare cases, Dynamic Concepts may recommend the use of the environment variable
BCDVARS if the special CALL does not support mixed file operations.

Accessing IRIS BCD Data Files

Accessing IRIS BCD Data files is identical to normal Contiguous, Formatted, or Indexed file access. Most applications
require no modifications to run with a mixture of IRIS BCD and normal data files.

To preserve the record integrity of both standard and IRIS BCD data files, incoming data (read operation) is converted
(if necessary) to match the variable format used by the program. Outgoing data (write operation) is converted (if
necessary) to the format of the destination file.

For str.vars, incoming data is bit-8 toggled from an IRIS BCD file. Outgoing data is again toggled if written to the same
or another IRIS BCD file. Transfer to a normal Base 10000 file does not require toggling. String access to/from IRIS
BCD files add about 3% overhead to the transfer.

For num.vars, array.vars and mat.vars, incoming data is placed directly into the variable, and its internal type is changed
to the corresponding BCD precision. For example, a variable dimensioned to 4% may internally switch back and forth
between precision %4 and %10; See also Numeric Variable Precision. No overhead is required for these operations.

If you transfer a single element of an array.var or mat.var, that element is converted instead of converting the entire

array.var or mat.var. This operation is negligible, consisting of a load and store of the variable from one data type to
another.

UniBasic Reference Guide



UniBasic Files 90

Outgoing num.vars, array.vars and mat.vars are converted to the format of the file; that is, Base 10000 or IRIS BCD.
Conversion is only performed when a variable's current precision does not match the type of file. This conversion is
negligible, simply changing the storage format and not the size occupied by the data.

Each Base 10000 precision has a corresponding BCD precision occupying the same size. Base 10000 does provide
additional digits of significance and extra digits may be lost converting from Base 10000 to IRIS BCD. Typical IRIS
programs are not affected since they are designed for this lower number of significant digits.

If the environment variable BCDVARS is set, all num.vars, array.vars, and mat.vars are allocated and stored internally
using BCD precisions (%7-%10). In this mode, conversions are eliminated when all files are IRIS BCD format.

When a file contains IRIS style 8-bit keys as indicated by the Supplemental Attribute <K>, keys are inserted and
maintained in the indices in 8-bit form. Toggling is performed to and from the index and is negligible. This condition is
required when an application utilizes binary keys and the internal toggling corrupts your programmed insertion order.

An example is when keys contain data both below and above \200\. For example the IRIS Key: \177\\200\\201\ is
stored in UniBasic as the string \377\\300\\001\ which alters its order when a sequential search of an index is performed.

See also: PREALLOCATE option 64, Creating IRIS BCD Data Files

Universal Data Files

Universal Data files are IRIS BCD style Contiguous, Formatted or Indexed files which are platform independent. The
files are accessible across all Unix platforms. In addition, they are usable on a Windows system with version 3.0 and
higher of dL4 for Windows. Packed data should be avoided for maximum platform independence.

Text files are essentially platform independent, except Unix uses a 'LF' and Windows/DOS uses a 'CRLF" as the line
terminator.

A file is a Universal data file if the attribute <U> has been set. The size of a Universal data file is limited to 231 bytes or
by the size of the file system. On most operating systems, a Universal file can be created as a “huge” file if the attribute
<H> is set. The size of a “huge” file is limited only by the available space on the file system.

It is not necessary to run ubrebuild as Universal data files do not use deleted record lists. The ISAMOFFSET

environment variable is ignored and the user may write data at any location in the record. The ISAMSECT
environment variable should be set to a value of 8 or less (8 is recommended).

Creating Universal Data Files

Universal data files are created using BUILD or CREATE statements. The Supplemental Protection Attribute <U>
forces the data file to be maintained using Universal records and/or Universal keys.

Universal Indexed Data Files have their keys stored in a companion Index file that has the data file name with a .idx
extension, as opposed to the traditional method of using the uppercase of the filename.

Setting the environment variable PREALLOCATE option 8192 forces creation of a Universal data file. Setting
PREALLOCATE option 16384 forces creation of Huge Universal data files.

UniBasic Reference Guide



UniBasic Files 91

Accessing Universal Data Files

Accessing Universal Data files is identical to normal non-Universal Contiguous, Formatted, or Indexed file access.
Applications can run with a mixture of both Universal and non-Universal data files.

The ubcompress utility may be used to reduce the size of the index portion of a Universal Indexed file.

Special UniBasic Files

Special files are maintained and referenced during a UniBasic session. These files are:

errmessage Error Messages; BASIC Error descriptions.
sys/term.xxxx Terminal Input/Output CRT Translation.

Error Message File: errmessage

All BASIC and system error messages are stored in the system Text File errmessage. This file must be in the directory
search path specified by the Environment Variable LUST and is a simple Text File with the format:

n:i:Text String for Message

The n indicates the default error number as defined in Appendix C of this guide. The optional i field specifies the IRIS
error number to be returned by SPC(8) whenever the error is indicated. A default table of IRIS error numbers may be
found in Appendix C.

Error codes above 256 correspond to internal Unix errors returned to BASIC. When a system error has no equivalent, a

negative error number is returned for SPC(8) and ERR(0). The negative number corresponds to the actual Unix system
error. For further information on Unix errors, refer to errno values in your Unix system documentation.

UniBasic Reference Guide



UniBasic Files 92

$TERM Files: term.xxxx

Each terminal under UniBasic is assigned a Terminal Type as defined by the environment variable TERM.

When UniBasic is launched, or following the execution of the ! command, a term file is opened and read into memory to
affect input and output translation for the terminal. The term file is located within the LUST using the filename
term.$TERM, where $STERM is the value of the environment variable TERM. For example, if the value of $STERM is
tvi925, the file term.tvi925 is located.

An error is generated at startup, or following the ! command if the term file cannot be opened. No output translations
are performed and standard input translation characters are not defined.

See also: Terminal Translation File $TERM Files, Input/Output

UniBasic Reference Guide



Device Input and Output 93

Device Input and Output

Port Numbering

The Unix system does not provide Ports or Port Numbering in the traditional sense. Each process may or may not have
a tty character device opened for input and output. When signing onto the system, your process has a system tty channel
opened which is connected to your terminal.

A port number is a unique value from 1 to 1023 assigned to your terminal when launching a UniBasic session. The port
number is required for communication between applications and users by the SIGNAL, SEND and RECV statements.

Upon initial entry, a message queue is created, a port number is established. When the session terminates, the message
queue is deleted and the associated port number becomes available again. A port number is established by the
successful completion of one of the following steps:

1. If the Environment Variable PORT is defined, its value selects the port number for this session. If
another UniBasic process is already established as the same port number, your session terminates with
an error message.

2. If the Environment Variable PORTS is defined, the list is searched for the system tty name and, if
found establishes the port number for this session. The system tty name assigned to your terminal is
available using the Unix command: who am i.

3. The system tty name is interpreted searching for trailing digits to use as an identifying port number.
For example, tty23 selects port number 23. Many systems use system tty naming conventions such as
ttyla, ttylb, etc. These usually require definition of the environment variable PORTS to ensure
consistent selection of a port number.

If a port number cannot be established using one of the above steps, the message queues are scanned backwards from
the value of the Environment Variable MAXPORT (default 999) for the first unused port number.

An error is generated, and the session is terminated if you attempt to utilize a port number already signed on and in use.
You may initiate multiple UniBasic sessions, with different port numbers, from the same terminal..

Suppose you have an application error and wish to launch another session without going to another terminal. While in
BASIC program mode, issue the command:

IPORT=nnn ; UniBasic

where: 'nnn" is an unused port number.

To cancel secondary session(s), issue a BYE command.

UniBasic Reference Guide



Device Input and Output 94

Phantom Ports

A phantom port is any UniBasic session which is not connected to a character tty. That is no tty is opened for the
process. All input for the session must be transmitted from another port number, and output must be re-directed to a file
or device or it is discarded.

Communication to a phantom port is restricted to the statements SEND, RECV, PORT, CALL $TRXCO, CALL 98,
and SIGNAL. An application may control any active UniBasic process whether or not it has an opened system tty
device.

A phantom port is initialized using either CALL $TRXCO or the PORT statement. A port number is supplied for
these operations. The active message queues are interrogated to determine whether an active process is already assigned
to that port number. If so, an error status is returned to the parent and no process is launched. If the port number is not
in use, a phantom port initialization proceeds.

Commands may be transmitted to a phantom port or an interactive port number which has an active message queue
entry. When transmitted to an interactive port number, commands become input to the interactive process. Data is
echoed on the terminal as if it were entered on the keyboard.

If the port number does not have an active message queue, a copy of your process is forked (duplicated). The new child
process immediately severs its connection to you as the parent. It assumes your environment and default working
directory, but closes the system tty channels re-directing all input and output to the /dev/null file. A new message queue
is created for the specified port number which now becomes a phantom port . It is available to all other users for
communication and transmission of commands.

Note: Commands may only be transmitted to a port number which is actively running a UniBasic process
and has an assigned Message Queue.

Simply defining /dev/tty23 to be port number 23 does not provide for communication until port number 23 actually
launches a UniBasic process. To send commands to an interactive port, first login to Unix and launch a UniBasic
process.

When connecting modems or other non-keyboard devices that you wish to control using CALL $TRXCO or PORT
statements, configure your Unix system to automatically launch a UniBasic process on a known port number for
communication. You might also communicate with a modem or other device by directly opening the device, and using
standard READ and WRITE statements.

See also: Launching UniBasic Ports at Startup.

Accessing Drivers ($LPT) and Pipes

A pipe may be opened for input to or output from a BASIC program. An output pipe is the mechanism whereby another
Unix process is started and your output to a channel pipes the data as standard input to the new process. An input pipe
is the mechanism whereby another Unix process is started and its output becomes your input on the opened channel.

UniBasic Reference Guide



Device Input and Output 95

To open a pipe, the filename must be the name of an executable Unix program or shell script, that is, the permissions of
the file must include 'x'. To open an input pipe, the filename is preceded by two dollar-signs ($$name); an output pipe is
preceded by a single dollar sign ($name).

Unlike IRIS or BITS, the $ character is not part of the filename. It is a flag indicating the desire to access another
process using a pipe. The filename does not select a data file, but instead selects the name of a Unix executable
command or shell script. If you must specify a full Unix pathname, the $ or $$ must be the first character in the
filename string, such as $/bin/ls. When opening pipes to processes found within your defined directory search list, as
defined by the Environment Variable LUST, the $ or $$ may be the first character of the string, or the first character of
the filename, such as $23/Ipt or 23/$Ipt. In general you may establish a pipe to any command accepted by the shell, such
as Is, cat, or Ipt.

Printer driver scripts ($LPT) are examples of output pipes. Your application opens $LPT. The LUST is searched for
the filename "Ipt". If the file is executable, it is started as a process and a pipe is es