

 UniBasic Reference Guide

 UniBasic Reference Guide

This document is intended for users of UniBasic IRIS or UniBasic BITS.

Information in this document is subject to change without notice and does not represent a commitment on the part of
Dynamic Concepts Inc. (DCI). Every attempt was made to present this document in a complete and accurate form. DCI
shall not be responsible for any damages (including, but not limited to consequential) caused by the use of or reliance
upon the product(s) described herein.

The software described in this document is furnished under a license agreement or nondisclosure agreement. The
purchaser may use and/or copy the software only in accordance with the terms of the agreement. No part of this guide
may be reproduced in any way, shape or form, for any purpose, without the express written consent of DCI.

© Copyright 2006 Dynamic Concepts Inc. (DCI). All rights reserved.

UniBasic is a trademark of Dynamic Concepts Inc.
dL4 is a trademark of Dynamic Concepts Inc.
Dynamic Windows is a trademark of Dynamic Concepts Inc.
BITS is a trademark of Dynamic Concepts Inc.
IRIS is a trademark of Point 4 Data Corporation.
c-tree is a trademark of Faircom.
IQ is a trademark of IQ Software Corporation.
Windows is a trademark of Microsoft Corporation.
AIX is a trademark of International Business Machines Corporation.
SCO is a registered trademark of The Santa Cruz Operation, Inc.

 Table of Contents i

 UniBasic Reference Guide

About this Guide ..1
Conventions..2

Installation & Configuration..3
Configuring Unix for UniBasic ..3

Number of Processes ..3
Number of Open Files ..3
Number of Open i-nodes ..4
Number of Locks..4
Message Queues ...4

Unix Accounting & Protection System ..6
Creating a Unix Account for UniBasic...6
UniBasic Security & Licensing ..6

Software Licensing ...7
Hardware Licensing..8

Loading the Installation File...8
Loading the UniBasic Installation File ...9
Loading the UniBasic Development File..10

ubinstall - Installing UniBasic Packages; ...11
Errors During Installation...14

Configuring a UniBasic Environment ..15
Directories and Paths ..15
Filenames and Pathnames...16
Organizing Logical Units and Packnames..16
Environment Variables ...17
Setting up .profile for Multiple Users...26

Command Line Interpreter ...27
Launching UniBasic From Unix; ...27
Terminating a UniBasic Process...28
Licensing a New Installation; ...29
Changing the SSN Activation Key...30
Launching UniBasic Ports at Startup..31
Configuring Printer Drivers..33
Configuring Serial Printers...35
Configuring Terminal Drivers ..36
Creating a Customized Installation Media..36

Introduction To UniBasic ..38
Data ..38

Numeric Data..39
Numeric Precision ..39
Special Notes on %3 and %6 Numerics ...40
Integers Stored in Floating-Point Variables ...41

String Data and Literals -"str.lit"..41
CRT Mnemonics and Expressions - crt.expr ..41

Statements, Statement Numbers & Labels ...42
Immediate Mode...42
Statement Numbering ...42
Multiple-Statement Lines ...43
Inserting, Changing & Deleting Statements ...43

Variables...44
Variable Naming Conventions ...44
Subscripted Variables ...45
Arrays and Matrices..45

Numeric, Array and Matrix Variables ..46

 Table of Contents ii

 UniBasic Reference Guide

Automatic Dimensioning Numeric Variables...46
Re-Dimensioning Numeric Variables...47

String Variables ..47
Subscripted Strings ...48
String Arrays ..48
Dimensioning String Variables...48
Re-Dimensioning String Variables...48

Expressions...49
Operator Precedence...49

Operator Precedence Table...49
Predefined BASIC Functions ...50

Operators Used in Expressions;..55
Unary Operators + -..56
Arithmetic Operators ^ * / % + - ..56
Concatenation Operators + , ...56
Relational Operators = <> > >= < <=..56
Boolean Operators AND OR..57
String Operator USING..57

Field Descriptors...58
Leading Characters ...58
Floating Characters...58
Numeric Characters ..59
Commas;...59
Decimal Points..60
Post Signs; ..60
Numeric Split..60

String Operator TO...61
Numeric Expressions..61
String Expressions ..61
Rules Governing String Processing..62
String Assignment; ...63

UniBasic Files ..65
Introduction to Files ...66
Filenames and Pathnames...67
File Attributes, Protection and Permissions..67

Using IRIS Protections ...68
Using Unix Permissions Directly ...68
BITS Attributes ..68
Supplemental Protection Attributes ..69

Accessing Data Files Through a Channel...70
Channel Expression - chn.expr...71

Record Locking ..72
Text Files ..73

Creating Text Files ...73
Accessing Text Files...73

Saved BASIC Program Files ..74
Contiguous Data Files ..74

Creating Contiguous Files ..75
Accessing Contiguous Files..75

Tree-Structured Data Files..75
Creating Tree-Structured Files ...76
Accessing Tree-Structured Files...76

Formatted (Item) Data Files..76
Creating Formatted ITEM Files..77
Accessing Formatted ITEM Files ...77

 Table of Contents iii

 UniBasic Reference Guide

Indexed Data Files ..78
Indexed File Creation ...80

Accessing an Indexed Data File ...81
Mode 0 - Index Definition ..81
Mode 1—Miscellaneous Index Information...82
Mode 2—Search for a Specific Key...83
Mode 3—Search for the Next Highest Key..84
Mode 4—Insert a New Key into an Index..84
Mode 5—Delete an Existing Key from an Index ...84
Mode 6—Search for a Previous Lower Key...84
Mode 7—Reorganize Index..85
Mode 8—Specify B-Tree Insertion Algorithm...85

Indexed File Errors & Recovery...86
Accessing non-UniBasic Files and Devices ...88
IRIS BCD Data and Key Files..88

Creating IRIS BCD Data Files ...88
Accessing IRIS BCD Data Files...89

Universal Data Files ...90
Creating Universal Data Files...90
Accessing Universal Data Files ..91

Special UniBasic Files..91
Error Message File: errmessage...91
$TERM Files: term.xxxx...92

Device Input and Output ...93
Port Numbering ..93
Phantom Ports...94
Accessing Drivers ($LPT) and Pipes..94
Printer Drivers ..96
Mail Drivers..97
Terminal Translation File $TERM Files ...98

$TERM Flags and Switches ...98
Defining $TERM Mnemonics ..102

Mnemonics Translated for Output..102
CRT Mnemonics...103

Mnemonics for Keyboard and Auxport;...104
Mnemonics to Clear & Reset the Terminal ..105
Mnemonics Applied to the Cursor Position..106
Mnemonics to Control Attributes ...107
Mnemonics to Control Color ..108
Mnemonics to Transmit Data; ..108
Miscellaneous Mnemonics ...109
Special Mnemonics for I/O Control ...110
IRIS Mnemonics Not Supported ..111

$TERM Extended Graphic Mnemonics ...112
Table of Extended Graphics Octal Codes...112

$TERM Input Character Processing...113
Cursor Tracking Mode ...115
Using Dynamic Windows...116

Using Protected Characters & PC Monitors ...117
Mnemonics Simulated During Window Tracking..118

UniBasic Commands...121
Starting & Ending Statement Numbers ..121
Processing in Command Mode...122
! Command ...124

 Table of Contents iv

 UniBasic Reference Guide

/ Command BITS only ...125
AUTO...126
BASIC IRIS only...127
BAUD...128
BYE ..129
CD ..130
CHAIN "SAVE. . ." IRIS only ...131
CHANGE BITS only ...132
CHECK IRIS only...133
CLU IRIS only...134
CONTINUE..135
DEL BITS only ...136
DELETE IRIS only...137
DUMP ..138
EDIT...139
ERASE BITS only ...140
EXEC IRIS only...141
EXIT IRIS only...142
FILE..143
(Filename)...144
FIND...145
GET BITS only ...146
GO IRIS only ..147
HALT ...148
HELP ..149
LEVEL ...150
LIST..151
LOAD IRIS only...152
MERGE BITS only ...153
MSG ...154
NEW...155
OEM ...156
PACK BITS only ...157
PROTECT ..158
PSAVE ...159
RENUMB...161
RSAVE BITS only ...163
RUN..164
SAVE..165
SHOW ..166
SIZE..167
STATUS IRIS only...168
TIME ..169
UNASSIGN..170
USERS..171
VARIABLE..172
VERIFY..173
VSAVE BITS only ...174

UniBasic Statements ...175
Program Debugging Aids ...175

Single-Step Program Execution..175
Trace Mode...176
Program Breakpoints ..176

Statement Documentation Format ..177
BUILD #...178

 Table of Contents v

 UniBasic Reference Guide

CALL..179
CHAIN ...181
CHAIN READ..183
CHAIN WRITE..184
CLEAR # ..185
CLOSE # ..186
COM...187
CONV...189
CREATE #..191
DATA...192
DEF FN ..193
DIM ..194
DUPLICATE..196
EDIT...197
END..198
ENTER ...199
EOFCLR...200
EOFSET ...201
EOPEN ...202
ERRCLR...203
ERRSET ...204
ERRSTM ..205
ESCCLR...206
ESCSET..207
ESCDIS ..208
ESCSTM...209
EXECUTE..210
FOR ..211
GOSUB ..213
GOTO...214
IF ..215
IF ERR..217
INDEX #...218

Summary of INDEX Modes ...219
Detailed Table of INDEX Modes ...219

Table of INDEX status return values..221
INPUT ..222
INTCLR..225
INTSET ..226
JUMP..227
KILL...228
LET...229
LIB..231
MAT =..232
MAT +..233
MAT * ..234
MAT CON..235
MAT IDN ...236
MAT INV ...237
MAT TRN ..238
MAT ZER...239
MAT INPUT ..240
MAT PRINT...241
MAT RDLOCK #...242
MAT READ ...243
MAT READ # ..244
MAT WRITE #...246

 Table of Contents vi

 UniBasic Reference Guide

MAT WRLOCK #..248
MODIFY ..250
NEXT ...251
ON ..252
OPEN #...253
PAUSE ...254
PORT..255

Mode 0—Attach Selected Port ...255
Mode 1—Place an Attached Port in Command Mode..256
Mode 2—Transmit Command String to Attached Port ..256
Mode 3—Return Attached Port’s Operational Status...257

PRINT ..259
RANDOM ..261
RDLOCK #...262
RDREL # ..263
READ ...264
READ # ..265
RECV ...267
REM ...268
RESTOR...269
RETURN ..270
REWIND # ...271
ROPEN #..272
SEARCH ..273
SEARCH # ...274

Summary of SEARCH # Modes...274
Detailed Table of SEARCH # Modes...275

Table of SEARCH # status return values ...277
SEND..278
SETFP # ...279
SIGNAL ...280

Mode 1 - Transmit a message to another port ..281
Mode 2 - Receive messages sent to your port ..281
Mode 3 - Pause Program Operation ...281
Mode 5 - Receive System Signal..282
Mode 6 - Clear all outstanding signals ...282

SPAWN..283
STOP ..284
SUSPEND ..285
SWAP...286
SYSTEM ..288
TRACE...290
UNIT ..291
UNLOCK # ..292
WINDOW ..293
WRITE # ..295
WRLOCK #..297
WRREL # ...298

User CALLS..299
CALL $ATOE..300
CALL $AVPORT...301
CALL $CALLSTAT ..302
CALL $CKSUM ..303
CALL $CLU...304
CALL $DATE..305

 Table of Contents vii

 UniBasic Reference Guide

CALL $ECHO..306
CALL $ENV ..307
CALL $ETOA..308
CALL $FINDF ...309
CALL $INPBUF ..310
CALL $LOCK..311
CALL $LOGIC ..312
CALL $NCRC32..314
CALL $RDFHD ...315
CALL $RENAME..318
CALL $STRING ..319
CALL $SWAPF ...321
CALL $TIME...322
CALL $TRXCO ...323
CALL $VOLLINK...325
CALL 15...326
CALL 18/19 ...327
CALL 20/21 ...328
CALL 22/23 ...329
CALL 24...330
CALL 25...331
CALL 27...332
CALL 28...333
CALL 29...334
CALL 40...336
CALL 43...337
CALL 44...338
CALL 45/46 ...340
CALL 47...341
CALL 48/49 ...342
CALL 53...343
CALL 56...344
CALL 59...345
CALL 60...346
CALL 65...347
CALL 72/73 ...348
CALL 126...349
CALL 127...350

Supplied Utilities..352
BATCH ..353
BUILDXF...354
CHANGE ...356
COPY ...357
DIR ...358
FORMAT ...360
KEYMAINT...362
KILL...365
LIBR...366
loadlu ..368
lptfilter ..369
MAKE ..371
MAKECMND ..372
MAKEHUGE ...374
MAKEIN ..375
makeosn..377

 Table of Contents viii

 UniBasic Reference Guide

makesp..378
MFDEL ..379
PORT..380
QUERY ..381
SCAN ...382
TERM...383
ubcompress ...384
ubconvertfiles ...385
ubrebuild...387
ubterm...388
ubtestlock..389
WHO ..390

Appendix A - ASCII CODES ..391

Appendix B - CRT Mnemonics394

Appendix C - Error Numbers ..398
IRIS Error Numbers ...401
System Error Numbers ...403

Appendix D - Port as Device...404

Index..408

 About This Guide 1

 UniBasic Reference Guide

About this Guide
This guide is written for experienced BASIC programmers. It is a reference that includes a brief introduction to
UniBasic and information on files and file handling, UniBasic commands, statements, calls and utilities. If you need ele-
mentary information about programming in BASIC, please refer to one of the many books available on that subject.

The terms and conventions used for demonstrating commands and BASIC statements in this guide provide a consistent
format.

This guide covers UniBasic version 8 and greater.

 About This Guide 2

 UniBasic Reference Guide

Conventions
Literal elements of a UniBasic command, utility, statement, and unix command, utility or shell Environment Variable are
shown in bold type.

Metalinguistic variables are shown in italic type for clarity and to distinguish them from elements of the language itself.

 OPEN # channel expression ; filename string

Mono-spaced type is used to display screen output and keyboard input commands and program examples.

 LIBR [$LPT]

The right and left brace characters ({optional items}) indicate an item that is optional.

 LIST {-v}

A series of three periods (...) indicates that the preceding item can be repeated as many times as desired.

 KILL filename {filename...}

 Selection of one of a group of items is shown within parenthesis separated by
|. Choose only one; WINDOW ON or WINDOW off. The parenthesis are not part of
the syntactical form.

 WINDOW (ON | OFF)

This guide has been grouped into topical sections. Whenever a topic or function of another section is referenced, that
topic is followed by a See also: reference for the section where it may be found.

For example:

 When OPEN is used to access a data file ...

 See also: OPEN

In this example, a reference to the UniBasic language element OPEN informs the reader to find the complete text of
OPEN by using the index.

When the information may be found in documentation other than this guide, for example:

 To relocate the file, issue the Unix cp command. ...

the sentence includes a descriptor identifying the command and other documentation to reference. In this example, the
user is referred to the Unix documentation.

 Installation & Configuration 3

 UniBasic Reference Guide

Installation & Configuration
The installation of UniBasic under Unix is an interactive process. Upon completion, UniBasic and other supplied C
utilities are placed into the directory /usr/bin. A master directory ub is created with a system logical unit, containing
DCI supplied drivers ($LPT) and system processors (BUILDXF, QUERY, MAKEIN, etc.). Following installation, any
user familiar with the IRIS or BITS systems can operate UniBasic and feel quite comfortable. Before you can convert
an existing end-user, or install a new system, you will require more Unix knowledge than is provided in this guide.

Configuring Unix for UniBasic
Prior to installation for an end-user, several Unix system parameters may require re-configuration for multi-user
operation. This process varies from system to system. When purchasing from a UniBasic Distributor, inquire whether
these parameters have been pre-configured for your needs. If changes are required, most systems include a system
administrator shell to assist you in necessary reconfiguration. For specific information, contact your manufacturer or
distributor before changing any system parameters.

The group ID and user ID must be less than 65536.

Number of Processes

Each program or command, including login (getty) or a copy of UniBasic, is called a process. Unix maintains a table of
all active processes on the system. The UniBasic statements SWAP, SPAWN, and CALL 98 (phantom port operations)
initiate additional processes. Opening a printer may invoke as many as 5 processes temporarily. If the maximum
number of system processes is exceeded, an error message may be reported to the console (such as NO MORE
PROCESSES for SCO-Unix systems), or UniBasic may generate a negative (system) BASIC error to the application.

To accommodate Windows, SWAP, SPAWN and print jobs, set the number of processes no less than the number of
users * 5. Applications that provide linkage to other Unix applications (such as IQ, Word Processing, etc) may require
additional processes per user. The current processes may be displayed using the Unix ps -ef command.

Number of Open Files

Unix maintains tables for all opened files on the system. Each process requires a minimum of three (3) channels referred
to as: standard input, standard output and standard error. In addition, a process may require additional channels if other
files or devices are opened for access. UniBasic itself is an example of a process under Unix. For each additional con-
current process, an additional (3) channels minimum are required.

UniBasic requires a total of 4 channels per user process. These include the standard (3), plus one for the error message
file (ERRMESSAGE). In addition, each device or data file opened requires one system channel; Indexed files require 2
channels.

See Also: Indexed Data Files

 Installation & Configuration 4

 UniBasic Reference Guide

When the configured number of system-wide channels is exceeded, an error message may be reported to the console
(such as NFILE for SCO-Unix systems), or the program may generate a negative (system) BASIC error.

To compute the approximate number of channels required for your system, multiply the Number of Processes * 3 to
yield the minimum number of channels. Add to that result the average number of opened channels per-user times the
number users. Remember to count each Indexed file as two channels, and include provisions for other applications, such
as IQ.

Example: An 8-port system with 10 open files per user and 50 processes, might require 300 open files.

Number of Open i-nodes

Unix maintains a table of opened inodes (or header blocks). Each unique file or device opened requires one entry. Ten
users accessing the same file typically share the same open i-node.

Number of Locks

Unix maintains a table of read and write locks placed on files by individual processes. Each locked region requires one
entry in this table. A locked UniBasic data file record is an example of an entry in the lock table. Indexed file key main-
tenance temporarily requires several locks for the various levels in the ISAM tree structure. A minimum of 5 locks per
process should be adequate for most installations.

Message Queues

For all inter-process communication, UniBasic relies on Unix message queues. Each DCI product creates a message
queue at startup to transmit and receive data between users. Such messages include:

 • SIGNAL 1 & 2 and SEND/RECV data between ports

 • CALL 98 and PORT statement commands and status

 • PORT ALL MONITOR status requests

 • CALL $INPBUF type-ahead data returned to parent process

 • MSG command text

 • Security communications

On most systems, the Unix command ipcs may be used to display information about message queues. Each message
queue is identified by a unique 32-bit number, usually displayed as an 8-character hexadecimal value.

 Installation & Configuration 5

 UniBasic Reference Guide

DCI products are identified by our own numbering sequence, which when viewed in hexadecimal, take on an
appearance such as DC00pnnn. The digits correspond to:

 DC Dynamic Concepts Product
 00 Always zero

 p DCI Product ID:
 0 Passport daemon
 1 UniBasic IRIS
 4 IQ
 5 dL4

 nnn UniBasic port number, in hexadecimal, associated with this queue. For example, port 15 is displayed
as "00F".

See also: Terminating a UniBasic process

Message queue requirements for UniBasic are based on the number of concurrent users and overall message traffic on
the system. The default values on many systems are sufficient to support a few users, but certainly will need to be
increased for large installations. If they are not configured, UniBasic may fail at start-up, possibly with a message such
as "Bad system call."

The following 7 parameters affect message queues on most systems. The actual parameter names may vary:

MSGMNI Maximum number of message queues. Configure based upon the maximum number of concurrent
UniBasic users plus phantom ports plus other DCI products such as IQ for Unix users plus one for the
passport security daemon.

MSGMAX Maximum size of a message in bytes; at least 516.

MSGMNB Maximum number of bytes per message queue. Set to the maximum allowable value; typically 32768.

MSGTQL Maximum number of outstanding system wide messages. Suggested setting is at least 256, but may
be adjusted if message activity is known to be greater or smaller.

MSGSSZ Size (in bytes) of a message segment. Memory for message data is divided into segments of the
defined size. A value of 32 is recommended.

MSGSEG Number of message segments within the system. MSGSEG * MSGSSZ determines the total number of
bytes reserved for message data. The recommended formula is MSGSEG = (MSGTQL *
512)/MSGSSZ. For 256 UniBasic concurrent messages, the value would be: (256 * 512) / 32 = 4096.

MSGMAP Number of entries in the message map table. Each entry represents a contiguous free area in the
message segments. The recommended formula is MSGMAP = MSGSEG/8 which, using our example,
would be 512. If UniBasic reports "Communication buffer is full" when the actual number of
outstanding messages is < MSGTQL, first increase MSGMAP. If that doesn't correct the error,
increase MSGSEG.

AIX Note: There are no user-configurable message queue parameters on AIX. The parameters are hard-coded in
the kernel, and seem adequate for most installations.

 Installation & Configuration 6

 UniBasic Reference Guide

The following points must considered during configuration:

 • Free message space must be available on the system. If the queues become full, additional users,
including phantom ports, cannot be launched into UniBasic or IQ. In addition, existing users may be
prevented from performing SWAP, SPAWN, CALL 98 and PORT statements, as well as commands
such as PORT ALL MONITOR.

 • A processes queue and any waiting messages are deleted if and when the port exits normally. If a
process is killed, it cannot delete its queued messages.

 • The configuration guidelines shown above consider only UniBasic requirements. They do not include
requirements of other Unix applications which rely on message queues.

Unix Accounting & Protection System
Access to Unix files is regulated by file permissions. Permissions are generally read, write, and execute (other
permissions and attributes exist, but are not important for discussion here). These permissions are applied against three
levels: The owner/creator of the file, other users in the same group as the creator, and other users in different groups.
The permissions are either expressed as letters (rwx) or numbers (4 2 1) added together. When expressed as letters, a
nine-character field represents the three levels; numbers are shown as three digits.

Each user gains access to the system through a login user name which is assigned to a user number; the user id.
Normally, no two users share the same login user name or user id. Each user id belongs to a group. Group numbers are
equated to names in the Unix system file /etc/group, and user id numbers are equated to login id's in the file /etc/passwd.

Creating a Unix Account for UniBasic
Prior to installation, a master (manager) account must be created to own the UniBasic distribution files, programs and
directories. Most systems supply a menu-driven administration program to assist with user account management. Please
refer to the System Administrator's Guide included with your operating system. Before proceeding, please ensure that
the following is completed; bracketed information is user-selectable:

 • Create a login id, [UniBasic], belonging to a new group, [UniBasic], with its own home directory,

[/usr/ub].

See also: Configuring a UniBasic Environment

UniBasic Security & Licensing
You may select either Hardware or Software licensing (security) for an installation of DCI software. Both are controlled
by the daemon, /etc/passport, which is automatically launched by UniBasic. Whereas Software licensing is based upon
information derived during installation, Hardware licensing is based upon the external DCI Passport™ device. Passport
is not part of UniBasic and must be installed separately.

 Installation & Configuration 7

 UniBasic Reference Guide

In either case, each UniBasic installation is identified by a unique 32-bit license number, generated by the Passport
daemon. This license number, along with a DCI supplied Software Selection Number (SSN) activates your installation
for various DCI products and configurations.

A license number is expressed as an 8-character hexadecimal value, such as 99D04832. The first two characters
represent a specific operating system and/or hardware platform, in this example 99 = SCO Unix, for which the license is
granted. Licenses are not transferable to other platforms.

A special directory, /etc/DCI, is created during installation to maintain security specific information and files for use by
all Dynamic Concepts software products. Typically, the following text files are recorded within the directory:

• ssn DCI activation key for this installation.

• osn OEM activation keys enabling encrypted application software.

• passport.cmd Command text used to initiate the Passport daemon.

• passport.log Log file maintained by the Passport daemon with security information, licensing methods and
errors.

If the installation utilizes software security, one additional binary file is created:

• license License number information for systems installed with Software licensing.

Warning: Modification, deletion, renaming or moving the license file will possibly deactivate a software license
number.

Configuration of licensing is performed during installation of Passport, or by later usage of the ppconfig utility (refer to
the Passport User’s Guide for more information) .

Software Licensing

Software licensing is based upon information derived from the system by the /etc/passport daemon. When launched for
the first time, a license file, /etc/DCI/license is created by the daemon to record the unique license number for this
installation. Although several types of software licensing methods are supported, the type is fixed by DCI for each
specific hardware and operating system platform. The actual type used on a system is recorded in the Passport Log file.

Software licensing is more fragile than Hardware licensing because the unique 32-bit license number may change due to
any number of conditions, including, but not limited to, any of the following:

 • Replacement of a disk drive and/or restoration of all data

 • Upgrade and/or replacement of the operating system

 • Disturbing the /etc/DCI/license file

 • Replacement of a serialized CPU board

 Installation & Configuration 8

 UniBasic Reference Guide

In installations where third-party support personnel might disrupt licensing, installation of Hardware licensing is
recommended.

Should your system lose it's license, a new license number will be generated automatically. Contact your supplier with
your old and new license numbers for a replacement.

Hardware Licensing

Hardware licensing is based upon the connection of a Passport device to an unused serial RS232 communication channel
on the computer. Each Passport device is pre-programmed with its own unique 32-bit license number and any given
SSN for that license number is perpetual. The Passport device and associated SSN may be installed on another like
platform at any time.

For information concerning physical Passport installation and testing, please refer to the documentation supplied with
the device.

Loading the Installation File
A UniBasic installation file is normally supplied as a compressed cpio archive file. The installation file can be
downloaded from www.dynamic.com or the /dist/pub directory of ftp.dynamic.com. If an installation file is first
downloaded on a PC and then copied to a server, be certain to perform a binary transfer of the file. The file is named
using the format pp-ub-vvvv.Z or pp-ubdev-vvvv.Z where “pp” is the platform code (such as “99” for SCO OpenServer
5) and “vvvv” is the version number (such as “8.1”).

For example, the AIX installation file for UniBasic 8.1 is named 07_ub_8.1.Z. After signing on as root and copying the
installation file to /tmp, the commands to load this distribution would be:

 cd /tmp
 uncompress 07_ub_8.1.Z
 cpio -iavcdu <07_ub_8.1

On some systems, particularly Linux systems, the cpio options will have to be changed to omit the “c” option:

 cpio -iavdu <6D_ub_8.1

If the command is successful, a list of filenames is displayed as the data is loaded into the /tmp directory.

 Installation & Configuration 9

 UniBasic Reference Guide

Loading the UniBasic Installation File

Verify that you are signed on as root and defaulted to the /tmp directory. Issue the following commands to load the
installation file:

 uncompress filename.Z (if the filename ends with a “.Z”)
 cpio -iavcdu < filename (i.e. 99_ub_8.1, 6D_ub_8.1.4, etc.)

A list of filenames similar to the following should be printed:

ub ub/sys/buildxf ub/irislist
ub/loadlu ub/sys/copy ub/license.txt
ub/makesp ub/sys/dokey ub/email.mail
ub/sys/batch ub/sys/keymaint ub/email.sendmail
ub/sys/clk ub/sys/lpt.bits ub/sys/change
ub/sys/dir1 ub/sys/make ub/sys/dir
ub/sys/format ub/sys/makeitem ub/sys/dsp
ub/sys/libr ub/sys/pdp ub/sys/kill
ub/sys/lpt.sample ub/sys/query ub/sys/lpt.iris
ub/sys/makein ub/sys/term.ansi ub/sys/makecmnd
ub/sys/port ub/sys/term.wyse60 ub/sys/mfdel
ub/sys/term ub/ubconvert ub/sys/pdphelp
ub/sys/term.wyse50 ub/ubconvertfiles ub/sys/scan
ub/ubcompress ub/ubterm ub/sys/term.tvi925
ub/ubrebuild ub/ubtestlock ub/sys/who
ubinstall ub/errmessage ub/ubkill
ub/README ub/sys ub/unibasic
ub/lptfilter ub/sys/attr ub/sys/term.linux

 Installation & Configuration 10

 UniBasic Reference Guide

Loading the UniBasic Development File

Verify that you are signed on as root and defaulted to the /tmp directory. Issue the following commands to load the
installation file:

 uncompress filename.Z (if the filename ends with a “.Z”)
 cpio -iavcdu < filename (i.e. 99_ubdev_8.1, 6D_ubdev_8.1.4, etc.)

A list of filenames similar to the following should be printed:

license.txt ubdev/unibasic.o ubinstall
ubdev ubdev/var.h ubdev/Release.h
ubdev/call1.c ubdev/Makefile ubdev/call105.c
ubdev/call11.c ubdev/call10.c ubdev/call120.c
ubdev/call121.c ubdev/call114.c ubdev/call123.c
ubdev/call126.c ubdev/call122.c ubdev/call18.c
ubdev/call19.c ubdev/call15.c ubdev/call20.c
ubdev/call21.c ubdev/call2.c ubdev/call23.c
ubdev/call24.c ubdev/call22.c ubdev/call27.c
ubdev/call28.c ubdev/call25.c ubdev/call3.c
ubdev/call30.c ubdev/call29.c ubdev/call44.c
ubdev/call45.c ubdev/call43.c ubdev/call47.c
ubdev/call48.c ubdev/call46.c ubdev/call5.c
ubdev/call51.c ubdev/call49.c ubdev/call56.c
ubdev/call57.c ubdev/call53.c ubdev/call60.c
ubdev/call65.c ubdev/call59.c ubdev/call7.c
ubdev/call72.c ubdev/call68.c ubdev/call76.c
ubdev/call77.c ubdev/call73.c ubdev/call81.c
ubdev/call82.c ubdev/call78.c ubdev/call96.c
ubdev/call97.c ubdev/call88.c ubdev/callavport.c
ubdev/callcimi.c ubdev/call99.c ubdev/calldate.c
ubdev/callenv.c ubdev/callclu.c ubdev/calldev.c
ubdev/callhelp.c ubdev/callinpbuf.c ubdev/callmemcmp.c
ubdev/callphil.c ubdev/callrpcs.c ubdev/callswapf.c
ubdev/calltrack.c ubdev/callwindow.c ubdev/callwlock.c
ubdev/comm ubdev/comm/comm.h ubdev/crt.h
ubdev/ctree ubdev/comm/libcomm.a ubdev/ctree/ctport.h
ubdev/decode.h ubdev/ctree/ctifil.h ubdev/extern.h
ubdev/dl4.h ubdev/eval.h ubdev/misc.h
ubdev/files.h ubdev/math.h ubdev/runtime.h
ubdev/pcode.h ubdev/read_me ubdev/term101.h
ubdev/pdn.c ubdev/term0.c ubdev/ubdef1.h
ubdev/str.h ubdev/ubdef.h ubdev/ubport.o
ubdev/timer.h ubdev/ubdefs.h ubdev/usercalls.c
ubdev/ubdef2.h ubdev/unix.h

 Installation & Configuration 11

 UniBasic Reference Guide

ubinstall - Installing UniBasic Packages;
ubinstall is a shell-script designed to run under the borne shell only. If the command does not execute immediately,
enter the command: chmod 500 ubinstall and try starting ./ubinstall again. If ubinstall still fails to begin operation,
verify that you are running under the borne shell (usually the file /bin/sh). You can usually start a borne shell by typing
/bin/sh.

If a license has not already been installed, Passport should be installed on the system before installing UniBasic.
Passport is not included in the UniBasic installation. Please see the Passport User’s Guide for information on installing
Passport.

After the desired distribution media is loaded, enter the command:

 ./ubinstall

ubinstall will display the following:

Installation for "UniBasic" BITS/IRIS Business BASIC emulation

All Rights Reserved. Copyright (C) 1987 - 2006 by:
Dynamic Concepts Inc. Aliso Viejo, California USA
Installing the following packages:

ubinstall will locate all packages loaded for installation. Your display should include one or more of the following
packages:

 UniBasic BITS/IRIS Business BASIC emulator
 UniBasic Development

Do you wish to continue? (Yes or No, default = Yes)

If this is a re-installation, ubinstall checks the revision of UniBasic currently installed in /usr/bin:

Checking old UniBasic... Level = 7.2
Checking new UniBasic... Level = 8.1

"/usr/bin/unibasic" already exists. If you install this version, the current
version will be renamed and saved as "/usr/bin/ub7.2".

Do you wish to continue? (Yes or No, default = Yes)

A response of NO terminates the installation process. /tmp will still contain the installation files. All existing UniBasic
files and data are unchanged. You may initiate the ubinstall operation at a later time without reloading the media.
Many systems, however, remove the files in the /tmp directory whenever the system is shutdown and subsequently
restarted.

The next phase assumes you have previously created an account to own the UniBasic distribution files. This master
account is the group manager of the UniBasic group, and the owner of the HOME directory and sys directories (Logical
Unit 0) inclusive of all files. Additional utilities placed into the /usr/bin directory are also owned by UniBasic.

 Installation & Configuration 12

 UniBasic Reference Guide

Part II) Accounting Information

UniBasic is distributed with a set of system utilities, an error message file,
sample terminal drivers, printer scripts, etc. These files have permissions
making them generally accessible to all users, but are installed into the user
and group you select.

Enter the user name to receive the distribution files: (default = "unibasic")

Enter the user name previously created as the UniBasic group manager.

Part III) System directory

The system directory is where the distribution files are placed and where the
.profile for UniBasic is created or modified. It is normally placed in your
account's HOME directory. Other logical units required by your application are
best placed in HOME also, unless they should be elsewhere for security or space
reasons. The default HOME for new installations is "/usr/ub".

However, the choice of "/usr/ub" is only a default; any directory name on any
file system can contain UniBasic logical units, subject to access permissions.

Enter directory to contain system files: (default = "/usr/ub")

If this is a re-installation to the same HOME directory (/usr/ub in this case), a warning similar to the following is printed
to avoid overwriting any files or programs normally supplied by DCI that may have been customized by you:

Note: "/usr/ub/sys" already exists.
Installing will overwrite the following files:

attr dokey lpt.bits mfdel term.tvi925
batch dsp lpt.iris pdp term.wyse50
buildxf email.mail lpt.iris.sco pdphlp term.wyse60
change email.sendmail lpt.sample port who
clk format make query
copy keymaint makecmnd scan
dir kill makein term
dir1 libr makeitem term.ansi

If you have made custom modifications to any of these files, you may want to
abort the installation at this point and make copies. Otherwise, you can
continue and update them to the latest revision.

Do you wish to continue? (Yes or No, default = Yes)

A response of NO terminates the installation process. /tmp will still contain the installation files. All existing UniBasic
files and data are unchanged. You may initiate the ubinstall operation at a later time without reloading the media.
Many systems, however, remove the files in the /tmp directory whenever the system is shutdown and subsequently
restarted.

Part IV) Run-time options

Several options in UniBasic are configurable through use of "environment
variables". These are generally set up in the file ".profile" in your HOME
directory, and are also changeable on-demand from the Unix shell. None are
required to be set up; defaults are used if not specified.

 Installation & Configuration 13

 UniBasic Reference Guide

Variable Description

BASICMODE Specifies the operating environment for UniBasic. I=IRIS, B=BITS.
(default = IRIS).

 Select the default emulation mode for users. IRIS mode provides for complete emulation of IRIS
commands, syntax and visual operation. CTRL+C, Scope mode and Basic modes are enabled.
Selecting BITS mode still permits execution and programming of IRIS applications, however
command formats are BITS style.

SPC5 Value to be returned by SPC 5 (account number): (default = 65535)

 Choose the value to be returned to your programs for this user whenever SPC 5 function is performed.
Since the Unix group, user and protection scheme is numerically different, you are permitted to
specify this value rather than have to create a special Unix account number to return your desired
value. When different users require different SPC 5 values, the system is easily changed to test who
signed on, and set a different value.

DATESEP Character used to separate MM/DD/YY strings: (default = "/")

 Choose the normal date separator used by your applications.

CURRENCY Character used to replace $ in PRINT USING statements:(default = "$")

 Select an alternate currency character to be replaced when $ is used in USING formats.

WINDOWS Maximum numbers of windows open per user. (default = "20")

 If your application uses Dynamic Windows, enter the maximum number of opened windows permitted
for each user.

EUROPEAN Mode for date verification calls (CALL 24, 27, 28). 0 = MM/DD/YY, 1
= DD/MM/YY. (default = "0")

 For European dates: 31/12/88, choose option 1

You may tailor these Environment Variables as well as a number of other configuration options by later editing the file
HOME/.profile. For further information on configuration parameters, refer to Configuring a UniBasic Environment.

Do you wish to automatically run UniBasic after login? (y/n) (default = "n") y

This configures an automatic launching of UniBasic whenever signing onto an account that executes this standard
HOME/.profile. You can also specify a BASIC program to start by editing the last line of the .profile script.

See also:: Launching UniBasic from Unix.

Installation started: Mon Mar 5 17:42:08 PST 1990
 Creating directory "/usr/ub/sys"...Done
 Installing configuration options in "/usr/ub/.profile"...Done

DCI strongly encourages usage of BCD file types for future file
compatibility and portability. Please refer to UB Reference Guide
for details on PREALLOCATE environment variable values.

 Installation & Configuration 14

 UniBasic Reference Guide

Note: If this is a new installation, the environment variable PREALLOCATE is set to 32 by the ubinstall
program.

 Installing UniBasic in "/usr/bin"...Done
 Installing distribution files in "/usr/ub/sys"...Done

Creating directory "/usr/ub/ubdev"...Done
Installing development source files in "/usr/ub/ubdev"...Done

Installation completed: Mon May 5 17:42:23 PST 1998

To run UniBasic, logout ("exit" or "^D") and login to "unibasic". Then type "unibasic".

Finally, the /tmp directory is cleared. If an error occurs while removing the directory, the following message is printed:

There has been an error removing the distribution directory. Type <CR> to
continue, or Q to quit.

The installation process has successfully performed the following procedures:

 1) Placed the required files in /usr/bin: UniBasic, ubcompress, ubconfig, ubkill, ubrebuild, ubterm,
lptfilter, and makesp.

 2) Placed into $HOME: errmessage - UniBasic error message file.

 3) Placed into $HOME/sys: All system commands, LPT scripts, drivers and terminal control files
(term.tvi925, term.ansi, etc).

 4) Created the full $HOME/.profile environment and startup file.

 5) Optionally created the directory ubdev under $HOME if UniBasic Development files were installed.

Errors During Installation

If, for some reason, you did not load the files into the /tmp directory, an error message is printed and you are asked for
the actual directory where you loaded the installation file:

 Distribution files not found in "/tmp/ub". Make sure you have loaded all files

into the /tmp/ub directory.

If you are not logged in from root and attempt to run ubinstall, an error message notifying the user is printed and the
installation procedure is aborted.

 "ubinstall" must be run from the super-user (root) account.

 Installation procedure aborted.

If you have not created the account to own the UniBasic files, an error is generated and the installation procedure is

aborted.

 Installation & Configuration 15

 UniBasic Reference Guide

 You must create an account under which UniBasic can be installed. Refer to

the System Administrator Guide for your system. Most systems have a menu
driven program to assist with account management referred to as the System
Administrator Shell. This program is known on some systems as "sysadmsh",
"sysadm", "adm", "va", etc. and must be run as super-user (root).

 Installation procedure aborted.

If the installation was successful, sign off root, and sign on using the UniBasic master login id . Running from root level
while performing conversions or building files may render those files protected and inaccessible from other accounts.

Configuring a UniBasic Environment
When you login to Unix, the system typically executes two shell program files. The first is /etc/profile, owned by root,
followed by any optional user .profile (dot profile) in the user's HOME directory.

The root /etc/profile usually includes a definition for PATH; the directory search path for commands entered at the shell
(The system Command Line Processor). It may also contain commands to print a banner, news of the day or mail.

The user's HOME/.profile contains definitions of environment variables, and special commands unique to the particular
user signing on to the system. This may include changing the default working directory, and/or automatically launching
an application environment such as UniBasic. During ubinstall, the .profile is modified within the HOME directory
defining only the required configuration environment variables. The following sections describe configuration options,
using Environment Variables, for UniBasic.

All users created with an identical HOME directory automatically run the same .profile at login. When creating
multiple user accounts, you may default all users to the same HOME directory, or copy the supplied default .profile to
each of the users newly established HOME directories. Once copied, modify the environment variables (such as LUST
or SPC5) specific to that user accordingly.

During installation, the directory HOME/sys is created to contain the sys logical unit (0). Other logical units may be
created under HOME, or in another file system entirely.

Directories and Paths

A Unix file system directory is tree-structured beginning at the level known as root. Files are accessed by supplying a
pathname in the form dir1/.../filename through the tree. Since IRIS and BITS applications have been designed for a
single level directory, UniBasic provides a Logical Unit Search mechanism to facilitate single to multi-level directory
organization. An Environment Variable may be defined specifying the Unix directories to search for Logical Units
and/or Packnames. The environment variable named LUST (Logical Unit Search Table) in the .profile is used to define
the paths to the final level directories with unit numbers (or packnames).

 Installation & Configuration 16

 UniBasic Reference Guide

Filenames and Pathnames

Filenames are converted to a series of pathnames, appended one at a time to the entries defined by the Environment
Variable LUST (Logical Unit Search Table) until a match is found. Standard BITS or IRIS filenames are converted to
lower case characters; the Unix standard. Filenames beginning with / are assumed to be full Unix names, and no
conversion or logical unit search list is performed. The form pack:file is converted into pack/file. Account branch
characters (%&#, etc) and account [grp-usr] suffixes are discarded. Filenames in the form 0/filename are converted into
sys/filename; other files in the form lu/filename remain as is except leading zeros are dropped from the lu number.

Note: An ISAM file is made up of (2) separate files; the lower-case filename holds the data portion and an
uppercase filename is created to hold the ISAM portion. (In the case of Universal files the ISAM
portion is the filename with a .idx extension.) Filenames that do not contain at least one letter cannot
be used for ISAM data files. See Indexed Data Files.

Organizing Logical Units and Packnames

The following illustration shows various ways to organize directories. You simply list all of the paths in the LUST
variable to your final logical unit or packname directories. A null path (leading or trailing colon) is replaced by your
current default working directory.

 /(root) /(root)
 usr acct usr acct
 ub progs files ub 2 3 4
 sys 1 2 ar ap ar ap sys 1
 1 1 2 2

The rightmost example shows the simplest structure. Logical Unit zero (sys) and 1 (containing application programs)
are under the path /usr/ub. Data files are on units 2, 3 and 4 under a separate file system (or disk drive) referenced
(mounted) as /acct. The search path for this configuration would be:

LUST=:/usr/ub:/acct:/usr/ub/sys

In the leftmost example, the sys or LU 0 directory as well as Logical Units 1 and 2 are under /usr/ub. Both Programs
and Files are separated into their own directories (progs and files) with duplicate logical units 1 and 2 underneath.
Assuming all files are accessed as "lu/filename", the appropriate search path for this configuration would be:

LUST=:/usr/ub:/acct/progs/ar:/acct/progs/ap:/acct/files/ar:/acct/files/ap:/usr/ub
 /sys

In both cases, you may specify paths to a specific directory if your applications do not specify a hard-coded LU. The
entry /usr/ub/sys is normally included as the last entry in LUST to force a search of LU 0 when a command is entered;
such as LIBR or DIR.

Other default units can be selected as well, but it is recommended that they be at the end of the LUST to minimize
searches. Always construct the search paths in a way that minimizes the total number of searches done for each
CHAIN, OPEN, etc.

 Installation & Configuration 17

 UniBasic Reference Guide

Environment Variables

This section discusses the user-configurable UniBasic Environment Variables. Definitions are added to, and exported
from, a user's .profile when the default value is insufficient. It is unnecessary to include definitions when a variable's
default value is adequate.

ALTCALL Defines the set of BASIC CALL numbers used within your application that have equivalents
as a different number. For example, your application uses CALL 64 to verify date inputs.
UniBasic includes a CALL 24 functionally compatible for your requirements. Setting
alternate 64=24 invokes a CALL 24 whenever the application requests CALL 64. Multiple
CALLs can be defined separated by colons, i.e.: ALTCALL 64=24:62=22 See CALL.

AVAILREC Defines the numeric value to be returned whenever an INDEX / SEARCH Mode 1 requests
the number of available records in an ISAM file. If AVAILREC is defined, its value is
always returned. When undefined, the number of available records is computed by
subtracting the number of active records from the created or current file size. See also:
Indexed Data Files.

BASEYEAR Defines the system Base Year to be returned for the function SPC 20. It is also used to
compute the hours counter returned for the TIM 2 function. The default for BASEYEAR is
1980 unless specified in the environment. Because Unix systems maintain clock values
beginning in 1970, you may set BASEYEAR to any value from 1970 to the present year.
Setting this value outside this range will result in very large (or negative) values for these
functions.

BASICMODE Selects the desired operating environment. The default is IRIS emulation with separate
SCOPE and BASIC Program command modes. By setting BASICMODE=BITS, you op-
erate in a BITS environment, that is both commands and BASIC statements are performed at
a single command prompt.

 The NEW command defaults to IRIS or BITS syntax based upon the BASICMODE
selected. The NEWI or NEWB commands override the default BASICMODE for creation
of new programs. Either BASICMODE runs both types of programs.

 Program Files are flagged for IRIS or BITS execution automatically. Text files accessed
using LOAD or MERGE take on the type of the current mode. The BITS GET or GETI
commands allow you to choose the encoding and runtime format for the text files you access.

BCDVARS If defined and non-zero, all BASIC variables are stored in memory using IRIS BCD format.
BCDVARS is required when special CALLs indiscriminately copy data between numeric
and string variables by straight memory copy. Do Not set this environment definition without
specific instructions from your Distributor or Dynamic Concepts Inc. See also: IRIS BCD
Files.

BITSPROMPT Change the default prompt * displayed in BITS mode. Format is:
BITSPROMPT='replacement string'

CURRENCY Define a single character to be output by USING whenever the $ operator is used. Format is:
CURRENCY=replacement character.

 Installation & Configuration 18

 UniBasic Reference Guide

DATESEP Define a single character other than '/' to separate MM/DD/YY or DD/MM/YY strings.
Format is: DATESEP=replacement character.

DXTDSIZ Specifies the number of records to extend an Indexed file when the data portion is full. The
default is 1 record. During creation of an indexed file, this value (or default) is read and
stored in the file header. Later expansion of the data portion is based upon this size. Once
created, this parameter cannot be changed for a file. Depending on your application,
changing this value and IXTDSIZ can have some effect on performance.

 See also: IXTDSIZ, and Indexed Data Files.

EURINPUT Selects the programming mode used for USING. The default (or zero) mode requires
programs to use comma and period in the form: #,###.## When set to one, programs use the
international form: #.###,##.

 See also: USING and EUROUTPUT

EUROPEAN Mode for date input/output formats; 0 for USA Format: MM/DD/YY, 1 for the international
format: DD/MM/YY.

EUROUTPUT Selects the output mode for USING. Periods and commas are reversed at output. The default
(or zero) mode outputs in the format: 1,234.56. When set to one, commas/periods are re-
versed; output is represented by the form: 1.234,56.

 See also: USING and EURINPUT.

GOSUBNEST Selects the maximum number of GOSUB and RETURN nesting levels in any program.
Default is 8 levels deep.

FORNEXTNEST Select the maximum number of FOR and NEXT nesting levels in any program. Default is 8
levels deep.

IBITSFLAG Set to 1 to eliminate the standard IRIS errors: Channel Already Opened (on OPEN
Statement), and Selected Channel is not OPEN (CLOSE Statement). An OPEN issued to an
already open channel performs an implied CLOSE of the channel first.

INPUTSIZE Size in bytes of the input buffer. This size limits the length of a BASIC statement, LOAD,
GET and other operations, such as Long CHAIN, that require the Input buffer.

ISAMBUFS Number of buffers allocated for shared memory ISAM files. This parameter is unused at the
time of this writing. DO NOT USE THIS VARIABLE.

ISAMFILES Maximum number of opened Indexed file directories. For each file opened, one entry is
required for each Directory (index) plus 1 for the data file. The default value 40 supports 8
indexed files open with an average of (4) directories (indices) each. If this value is too small,
the error Illegal Channel (or ISAMFILES value too small) is printed.

ISAMMAXSECT Determines the maximum C-tree node size that can be read. The node size is given by
ISAMMAXSECT *128. Default ISAMMAXSECT is 8 supporting up to 1024-byte nodes
such as those used by dL4.

ISAMOFFSET Define the displacement within ISAM records for maintenance of a system Deleted Record
Flag and Delete Link List pointers. Change this offset (Default 0) when your applications

 Installation & Configuration 19

 UniBasic Reference Guide

write data within the first 5 bytes of a record following deletion. This offset is not used with
Universal Data files.

 See also: Indexed Data Files and Universal Data Files.

ISAMSECT Determines the C-tree node size. The node size is given by ISAMSECT *128. Default
ISAMSECT is 4 resulting in 512-byte nodes.

Note: Following deletion of a record in a Non-Universal Data file, DO NOT WRITE (clear) the entire record
or the delete list will be corrupted.

IXTDSIZ Specifies the size in bytes to expand a file's Index portion when the index is full. The default
is 512 bytes. During creation of an indexed file, this value is read and stored in the file
header. All further access and expansion to the file's index portion is based upon this size.
Once a file is created, this parameter cannot be changed for that file unless the file is rebuilt
using a new IXTDSIZ value. Depending on your application, changing this value along with
DXTDSIZ (and then rebuilding a file) can have a great effect on performance.

 See also: DXTDSIZ
LOCKRETRY Record lock retry counter. A value of zero (default) provides for unlimited record lock return

(aka IRIS Revision 7). Any other positive value selects the number of retries (in 5 second
intervals) attempted prior to issuing a Record Lock error to the application.

 See also: Record Locking
LONGVARS Change the default (0) setting to provide for the global use of long variable names. When set

to 1, long variable names are allowed globally; setting 0 disables long names. The variable
command may be used to override this default at any time.

LUST Logical Unit Search Table. Defines the entire series of Unix paths to search for program and
filenames in the form filename, lu/filename or pack:filename. If this parameter is not defined,
only the current working directory is searched. Filenames beginning with / are assumed to
specify the entire path to the file and the LUST definition is not used. The following table
illustrates the search paths used for a simple filename and lu/filename.

 LUST=:/usr/ub:/ub/sys:/usr/ub/1:/usr/acct:/usr/acct/2

 filename pack:file or lu/file

 filename lu/filename
 /usr/ub/filename /usr/ub/lu/filename
 /usr/ub/sys/filename /usr/ub/sys/lu/filename
 /usr/ub/1/filename /usr/ub/1/lu/filename
 /usr/acct/filename /usr/acct/lu/filename
 /usr/acct/2/filename /usr/acct/2/lu/filename

 LUST should be constructed to minimize number of searches required to locate programs and

files. If an application under IRIS or BITS defaults to a specific logical unit containing
programs or data, set the current working directory to that same location. This is ac-
complished by including a cd pathname command within the .profile.

 Installation & Configuration 20

 UniBasic Reference Guide

Note: The maximum number of entries in the LUST is 24.

If all file and program access is in the form lu/filename, or pack:filename, define LUST to
provide the path to the directory containing the actual numbered (or named) logical units
only.

 If you rely on the IRIS or BITS LU Search for other Logical units, then you must include full

paths directly to each directory.

 To ensure the fastest access to programs and files, determine whether your application

performs more OPEN or CHAIN statements. List your entries in LUST accordingly. If
most filenames include a Logical Unit or packname, list entries terminating at the directory
containing the lu, and finally list direct paths to each named or numbered directory.

MAXACCSLEEP Define accuracy vs. performance of the Unix sleep timers utilized by PAUSE, SIGNAL 3,
INPUT TIM, record locking, etc. Since many Unix systems provide timer accuracy only to
the nearest second, UniBasic employs the following software method to ensure accurate
tenth-second timers:

 First, the specified delay is rounded down to the nearest whole second. If at least one-second
of delay is warranted, the process sleeps, allowing other processes to run, for that number of
seconds. Following the sleep period, UniBasic 'spins', i.e. wastes CPU time, by watching the
clock for the remaining partial second.

 Most applications are not timing critical. Substantial system wide performance is realized by
configuring delays to round up to the nearest whole second. That is, a delay of 5 tenth-
seconds is rounded to a full second.

 MAXACCSLEEP defines the delay value, below which, exact accuracy is required. Delays
at or above this value always round to the next whole second. A value of zero, the default,
provides the highest accuracy at the expense of additional system overhead. A value of one
always rounds, etc. To ensure accuracy on all delays below two seconds, set the value to 20.

 Some systems support highly accurate timers without the requirement to waste CPU time,
including SCO Unix, NCR Tower 7xx/8xx, MIPS and Motorola 88000. These systems
default, automatically, to 65535 which enables the system specific timer. On systems that do
not support accurate timers, the value defaults to zero.

MAXPORT Change the default automatic port number assignment to a value other than 999. The
maximum port number is 1023. Used for automatic port number assignment by the SPAWN
statement, and during sign on when PORT and/or PORTS are undefined. Set to 99 to pre-
vent automatic assignment of 3-digit port numbers.

 See also: PORT, PORTS and Port Numbering and Phantom Ports.

MAXVARS Control the maximum number of variable names that can be used within a program. By
default, 348 unique variable names may be used within each program. Setting MAXVARS
to a number limits the number of variable names to that number. This value is only checked
when a program statement is entered adding a new variable to a program. Setting
MAXVARS to 93 ensures backwards compatibility to IRIS or BITS. Setting MAXVARS to

 Installation & Configuration 21

 UniBasic Reference Guide

the string “extended” increases the normal limit from 348 to 1113. The increased limit is only
effective for programs that are newly created while MAXVARS is set to “extended”.
MAXVARS does not need to be set in order to load, run, or modify a program created with
the extended variable table.

MSC7 Define the numeric value to be returned by the MSC(7) function. If MSC7 is not defined (or
defined as 65535), your UNIX group number * 256 plus the user number is returned.
MSC(7) will yield unpredictable results when the group or user numbers are greater than 255.

PFCHAR Define a single replacement character for any @ character terminating a filename. Format is:
PFCHAR= replacement character. When PFCHAR is not defined, the trailing @ character
is ignored and terminates a filename. Therefore, the filenames DATA and DATA@ both
select the same filename. This default operation is recommended as a method of preventing
@ characters from becoming part of a Unix filename. @ is not a portable filename character,
and its use may interfere with some Unix shell commands.

 On some IRIS systems, users may have nearly identical files, such as DATA and DATA@.
Defining this option removes the requirement to modify applications and filenames.

 To define this option, choose a single character to replace @, such as PFCHAR='-'. In this
example, any attempt to BUILD or OPEN a filename such as DATA@, results in an
operation to DATA-.

Note: This option should only be utilized on systems where a blind conversion is being performed. It will
safeguard against conversion errors when an IRIS system has nearly identical data and poly filenames.
Resellers converting known systems are advised to rename or delete conflicting filenames. Most
often, duplications are the result of an older Indexed file (itself no longer in use) being recreated as a
Polyfile.

Once files have been built with this substitution in effect, the option must remain set, or all program
occurrences of the @ must be changed to the specified replacement character.

 See also: Setting up .profile for Multiple Users.

PORT Force the current session to operate as a specific PORT number, i.e. PORT=23. The value of
PORT can also be set to the string “any” in order to ignore the terminal name and use the
first available port number (starting down from the maximum port number). The maximum
Port number is typically 1023 unless your system is licensed for a greater number of users.
The value “any” is sometimes used within a profile script to prevent telnet pseudo-devices
from conflicting with users logging in on serial lines.

PORTS Define a specific port numbering order. The format of this definition is:
 PORTS=tty00:tty1b:#7:tty1c . . .

 In this example, Port 0 is tty00, Port 1 is tty1b; starting at Port 7 is tty1c leaving ports 2-6
unused. When neither PORT nor PORTS is defined in the environment, port numbers are
assigned based upon the tty name (tty23 is port 23). If a name conflicts with an existing port

 Installation & Configuration 22

 UniBasic Reference Guide

(or a port already in use), a number is assigned backwards starting at MAXPORT. To
prevent automatic assignment, all system tty device names not in the form ttynnn (where 'nnn'
are digits) should be listed. Ports conforming to the normal numbering conventions need not
be defined.

 See also: Port Numbering and Phantom Ports.

PREALLOCATE This variable contains several flags which, when added together, define options for
processing data files.

 Options fall into two categories, runtime and permanent. Permanent options are indicated by
•. Runtime options affect current file operations when enabled. Permanent options affect all
future access to files created when that option was enabled. Permanent options are stored
within the file's header and typically define file limits or data storage formats.

 1 Preallocate all blocks for contiguous files and initialize to zero bytes. You might set this
value on a new system to force files to occupy physically contiguous space on the disk. Note:
Indexed files store keys in a separate file, and may be built too large using older style IRIS or
BITS creation algorithms. If this flag is set, modify your file creation sizing algorithms.
Runtime option.

 2 Do not allow writing past the original created size of a contiguous file (no expansion).
Runtime option.

 4 When expanding a contiguous file, do not fill in all records between current end of file and
new record to write. ** Runtime option.

 See also: Contiguous Files.

 8 Check Formatted files and return a Record Not Written error if a record has never been
written or contains only null (zero) bytes. Runtime option.

 16 When expanding a Formatted file, do not fill in all records between current end of file and
new record to write. ** Runtime option.

 See also: Formatted Files.

 • 32 Always BUILD and CREATE new files in IRIS style BCD record format. This flag may be
required if: a) data files were converted from IRIS and b) your application indiscriminately
copies entire records from one file to another using variables other than the actual field
specification. For example, a MAT READ of a string or 1% array. Setting this flag for new
installations forces creation of potentially transportable data records for future relocation to
other hardware platforms. Permanent option for files created while enabled.

 See also: IRIS BCD Files.

Note: DO NOT set this mode during IRIS or BITS conversions.

 Installation & Configuration 23

 UniBasic Reference Guide

 • 64 Always BUILD and CREATE indexed files in IRIS/BITS 8-bit key format. Forces keys to
be stored in exact IRIS/BITS format. This flag is required when applications utilize binary
information in the keys. DO NOT set this mode during conversion of files from IRIS or
BITS. Permanent option for files created while enabled.

 See also: IRIS BCD Files and Indexed Data Files.

Note: DO NOT set this mode during IRIS or BITS conversions.

 128 Restrict Indexed files from dynamic expansion. When built, the number of records specified
to BUILD or CREATE is retained in the file header as the maximum number of records for
the file. The status E=3 is returned from SEARCH # and INDEX# when the file dy-
namically expands to this record number. Runtime option.

 See also: Indexed Data Files.

 256 During Indexed File Record Deletion, check for record already deleted. When deleting
records and adding them to the delete chain, this runtime flag forces an initial check of the
delete flag prior to deletion. If the record is already flagged as deleted, an exception status
(E=1) is returned, and the record is not added to the deleted record list. This flag may be
required if your applications arbitrarily delete records not currently in use. Runtime option.

 512 Permit writing past the record boundary of an Indexed file in a single operation. Normally,
error 144 is generated whenever a single write operation will cross a record boundary. This
option should only be used when the application is certain that all records to be written are
previously allocated, otherwise the file's deleted record list might be corrupted. This option is
runtime in nature, affecting all open Indexed files. Runtime option.

 • 1024 Always BUILD and CREATE new files in IMS style BCD record format. This flag may be
required if: a) data files were converted from IMS and b) your application indiscriminately
copies entire records from one file to another using variables other than the actual field
specification. Permanent option.

Note: DO NOT set this mode during conversion of files from IRIS or BITS.

 See also: IMS BCD Files.

 2048 Reserved for future use. DO NOT enable this option within your application.

 4096 Prevent all write operations to deleted records within Indexed files. Prior to each write
operation, the record's delete flag is checked. If the record is flagged as deleted, set ERR(8)
c-tree status to 144 and return BASIC error 123. Runtime option.

 Installation & Configuration 24

 UniBasic Reference Guide

Note: Formatted and Contiguous, including Indexed, files are typically created containing a 512-byte header
and no data records. For Contiguous and Indexed files, the number of records specified to BUILD or
CREATE is stored within the header for use by CHF and runtime-limiting PREALLOCATE
options. Only when PREALLOCATE option 1 is set are records physically allocated at creation.

Prior to each write operation, the number of records between the current physical end-of-file and the
end of the record being written is computed. Missing (intervening) records are automatically written
to the file. This process may take several seconds depending upon the number of intervening records
that must be written.

When setting PREALLOCATE to prevent intervening record allocation, only the record to be written
is allocated. Reading any non-existent record results in the transfer of a null data without error.
Although these files are completely valid, warning messages may be printed by the Unix command
fsck (File System Check) when 'gaps' are detected in the structure. These files are sometimes referred
to as sparse files.

Within Formatted files, PREALLOCATE option 8 is used to interpret null records as Records not
written.

 • 8192 Always BUILD and CREATE new files as a Universal type file. The file will contain IRIS
style BCD data. If this flag is set, the 32 and 64 option flags are ignored. Permanent option.

 • 16384 Always BUILD and CREATE new files as a Huge Universal type file. The file will contain
IRIS style BCD data. If this flag is set, the 32 and 64 option flags are ignored. Permanent
option.

SCOPEPROMPT Choose an alternate prompt while in SCOPE Command Mode (BASICMODE=IRIS only).
The default prompt # is replaced using the form: SCOPEPROMPT='replacement
characters'.

SPC5 Define the numeric value to be returned whenever the SPC(5) function is called. If SPC5 is
not defined as an environment variable (or set to 65535), your UNIX group number * 256
plus the user number is returned. The SPC(5) function will yield unpredictable results when
the group or user numbers are greater than 255.

 See also: Setting up .profile for Multiple Users.

SPC7 Define the numeric value to be returned whenever the SPC(7) function is used. If SPC7 is
not defined as an environmental variable, zero (0) is returned.

STRING Select alternate string processing for BASIC to match HAGEN Business Basic. To invoke
HAGEN String Processing, use the form: STRING=HAGEN.

TABFIELD Change the number of spaces between comma fields in PRINT statements from 20 to the
new numeric value specified.

 Installation & Configuration 25

 UniBasic Reference Guide

WINDOWS Define the maximum number of Windows that may be opened by this user. If WINDOWS is
defined, the main screen is counted as the first Window. Each WINDOW requires approx-
imately 64 bytes of storage for the array. As Windows are created, memory is allocated
based upon twice the number of characters in the Window. The main screen occupies (80
*24 *2) characters of memory for a 80 column, 24 row screen.

 See also: Windows and Output Considerations, WINDOW, CALL $WINDOW, and
MSC Functions.

WARNING: THE FOLLOWING UNIX ENVIRONMENT VARIABLES MAY BE EXAMINED OR
CHANGED AS REQUIRED. HOWEVER, CHANGING THESE VARIABLES WILL LIKELY
AFFECT THE OPERATION OF OTHER UNIX APPLICATIONS.

HOME The home directory of the user, i.e. /usr/ub.

HZ The clock rate used internally by the Unix system. For most systems, this value is either pre-
defined to the compiler or is already in the environment. This value is used to compute
certain TIM and SPC functions; the BYE command and pause durations less than 1 second.
Do not change this variable unless incorrect times are reported by the above noted functions.

 See also: MAXACCSLEEP Environment Variable.

TERM Many applications, including UniBasic, retrieve the value of this variable to select a terminal
driver for screen operations. While many applications rely on the Unix termcap or terminfo
drivers, UniBasic developers have the flexibility of their own driver system.

 See also: Configuring Terminal Drivers

PATH The Logical search path for Unix commands issued to the shell. PATH=:path:path:path: ...
The PATH is only referenced when shell commands (or Unix commands) are entered while
in command mode. To open pipes without supplying the full pathname (i.e. DUMP $more),
append PATH definitions to LUST, i.e.: LUST=$LUST:$PATH

Note: The following are useful Unix commands that may be of interest to the user. For more detailed
information, consult your Unix documentation.

stty Command to reset terminal configuration, Baud rate, parity, backspace and control characters,
xon/xoff protocol, character length, mapping of return to return-linefeed, etc.

 Installation & Configuration 26

 UniBasic Reference Guide

 Unix typically assigns the characters BREAK and DELETE for QUIT and INTERRUPT
functions used to abort a process. These functions are reset upon entry to UniBasic to the
characters ^D [EOBC] and ESCAPE.

When a Unix command is performed from UniBasic (Command mode, SYSTEM statement),
the functions are reset to their initial Unix definitions for the duration of the system
command. Some users find it desirable to use ESC and ^D for both system and UniBasic
commands. The stty command may be executed from within the .profile to change the default
Interrupt and Quit functions.

Note: To ensure proper terminal operation, incoming stty parameters are saved whenever a UniBasic process
is launched. Issuing stty or similar commands, within UniBasic, have little effect since UniBasic
restores and resets these parameters. Certain changes are permitted, using the ! command, such as
changing the baud rate.

cd $HOME/1 Command within .profile to set the user's default Logical Unit to 1 when LU 1 directory is
below HOME.

umask Set to zero to provide for pass through protections to Unix. Any non-zero value forces Unix
to XOR supplied protection digits with this umask value. For example, if umask=7, then all
lower protection digits are cleared. See File Attributes, Protection and Permissions for a
complete discussion of the Unix protection system.

ulimit The ulimit command sets the upper limit (in blocks) for files created on the system. Set this
value to the largest allowed value to allow your applications to control file size. If this value
is set too low, a Write Error will be given when a file reaches this maximum size. This value
may be defined in /etc/profile, as part of the user's account or within the Kernel. Contact your
supplier if this value is too small for your needs.

Setting up .profile for Multiple Users

When multiple users default to the same HOME directory, you may insert statements within .profile to determine the
login name used, and configure environment variables accordingly. The following statements might be added to
HOME/.profile.

To set a different SPC5, MSC7 or LUST (Logical Unit search path) based upon the user signing on:

case $LOGNAME in
 "doug") SPC5=32774;LUST=$LUST:/usr/drive1;;
 "laura") SPC5=32896;LUST=$LUST:/usr/drive2;;
 "mike") SPC5=32768;LUST=$LUST:/usr/drive3;;
 *) SPC5=16384;; #Default other users.
 esac

 Installation & Configuration 27

 UniBasic Reference Guide

The previous example configures different SPC5 values and alters LUST, appending to its previously defined value the
additional search of drive1, drive2, or drive3 only for doug, laura or mike. By appending a previous base value, it is
unnecessary to redefine the entire LUST specification for each user. A total re-definition would take the form:

 LUST=/usr/ub:/usr/ub/sys:/usr/drive1.

For further information , refer to the Unix manuals on Shell Programming.

Command Line Interpreter
Two separate command line interfaces are provided within a running UniBasic process. Command Mode is signified by
the prompt character # (SCOPEPROMPT) printed at the left margin. System commands (UniBasic or Unix) and
program names may be entered while in Command Mode.

BASIC Program Mode is entered by the BASIC Command and has no prompt character. Programming and debugging
is performed while in BASIC Program Mode.

#ls Issue Unix Directory command
#LIBR {param} Command Mode example
READ var.list BASIC Program Mode example

It is also possible to configure all commands for operation from a single command mode by setting
BASICMODE=BITS. In this configuration, a single prompt * (BITSPROMPT) is always displayed at the left margin.

*ls Issue Unix Directory command
*LIBR {param} Command Mode example
*READ var.list BASIC Program Mode example

Launching UniBasic From Unix;
SYNOPSIS: Launch a UniBasic Process

unibasic {-ffilename} {-Ffilename} {-Pfilename} {-Xfilename} {-s} {-o} {-t}

DESCRIPTION

Start a UniBasic session on your terminal. The current environment is read for all pertinent variables, a Port Number
is established, a Message Queue is created and the terminal modes are reconfigured. If this is to be an interactive
keyboard session, the terminal is placed into command mode.

filename is an optional name of any BASIC program file. The specified filename must be in the current working
directory, or in one of the supplied pathnames specified in the environment variable LUST. The filename may also
include a lu identifier, or be a full Unix pathname beginning with '/'.

The -f switch is used to immediately execute the named program file. If the specified program terminates or an error
occurs, the terminal remains within UniBasic in command mode.

The –F switch is also used to immediately execute the named program file. However, if the specified program
terminates using STOP, BYE, SYSTEM 0, END, CHAIN "", non-trapped ESC, [EOBC] (CTRL+D) or an abortive
error, the session is terminated, and control returns to the point UniBasic was launched; see below.

 Installation & Configuration 28

 UniBasic Reference Guide

The –P switch is identical to –F except no terminal translation will be used and the UniBasic startup messages are
suppressed.

The –X switch is used by DynamicXport to run UniBasic applications and must not be used outside of that
environment.

The -s switch requests entry of a new Software Selection Number (SSN). The SSN might be changed when you are
installing additional terminals, installing additional products (such as IQ) or converting a demonstration License into a
paid-up License of UniBasic.

The -o switch requests the entry of a new OEM Selection Number (OSN). The OSN is used to control execution of
one or more dealer-protected software packages.

The -t switch requests the entry of a new OEM Selection Number (OSN) similar to the -o switch. This OSN is
considered temporary and is not stored into the system. The -t option is used when the owner of protected software
wants to temporarily grant access to the source code. This access is restricted to the single terminal issuing the -t
switch.

When a session terminates using BYE, SYSTEM 0 or 1, or an aborting condition using the -Ffilename, the process is
exited, and all terminal characteristics are reset to the incoming values. If the UniBasic session was started from the
shell, then the shell is resumed. If launched from the .profile using a UniBasic {switches} command, the .profile
resumes at the following statement. To return the user to login mode at process termination, place an exec UniBasic
{switches} command as the last line of the .profile.

EXAMPLES
unibasic -f menu
unibasic -s
unibasic -F program | tee savefile

ERRORS
No SSN currently entered
Demonstration system, not for resale
License number from ssn does not match actual license
Cannot allocate sufficient memory
Cannot initialize ISAM. Check ISAMBUFS/ISAMFILES definitions
Cannot open term.xxx file. No CRT translation in effect!
Error loading CRT file term.xxxx. No CRT translation in effect!
Could not open 'errmessage', no error messages available!
Too many users; max = n
Port n is already signed on and in use

See also: Environment Variables, Entering an SSN, PORT, PORTS, CRT TERM Files, Program Files, Port Numbering

Terminating a UniBasic Process
Once initiated, an interactive UniBasic process remains active until terminated. Interactive, as well as Phantom Port,
termination is provided for with the SYSTEM 0 and BYE commands.

Non-interactive UniBasic processes, such as those launched using UniBasic -F or SPAWN, terminate when the
specified program stops execution.

 Installation & Configuration 29

 UniBasic Reference Guide

All of the above (normal) methods provide for a graceful termination of UniBasic. Open files and devices are closed,
the Message Queue is removed, the terminal driver is reset to the modes present upon entry and the process terminates.

Abnormal termination, resulting from the following events, may require operator intervention before other tasks may be
performed:

 • Memory Fault - core dump

 • Hardware failures.

 • Receipt of a non-supported signal. UniBasic supports the signals HANGUP(1), TERMINATE(15),
SYSCHILD, SIGPIPE, INT, QUIT, SIGUSR1, SIGUSR2. Any other signal may cause abnormal
termination.

The following functions may be performed manually, from the failing terminal, when an orderly shutdown did not
occur. From a remote location, only the Message Queue must be deleted, after which you should kill any remaining
processes, including the shell, associated with the port.

 • Issue the Unix command: stty sane and press CTRL+J or RETURN if the terminal is misbehaving.

 • Issue the Unix command: ipcs to review, and ipcrm to remove the Message Queue for the offending
port.

 • Issue the Unix command: ps to determine and kill any remaining suspect processes under the port's
control.

 • Sign off and back on to reset all terminal parameters before re-launching another UniBasic process.

See Also: Message Queues

Licensing a New Installation;
If this a new installation, you may be asked to enter an SSN the first time UniBasic is launched:

$ unibasic

UniBasic Level 8.1
All Rights Reserved. Copyright (C) 1987 - 2006 by:
Dynamic Concepts Inc. California USA

No SSN currently entered

Enter Software Selection Number (SSN), RETURN to remain the same

If you do not yet have an SSN, press [RETURN] to invoke a single-user grace period. A special warning about the
grace period is printed periodically until you enter an authorized SSN.

To obtain an authorized SSN for this installation, contact your supplier with the following information:

 • License Number displayed

 • Number of ports desired

 • Type of system

 • End-User name

 Installation & Configuration 30

 UniBasic Reference Guide

 • Options, other DCI products such as IQ runtime, IQ development or IMT.

SSN entry is space and case insensitive. After entering all characters, press [RETURN]. You will be prompted to enter
the User Name. Enter the name exactly as printed on the SSN License Agreement. Entry of the name is case and space
sensitive. Backspace may be used to correct input errors.

Following entry of the SSN and User Name, immediately issue a BYE command, and restart UniBasic. If the SSN was
accepted, the command mode prompt is displayed. If you are again asked to enter an SSN, either an error occurred
during entry, or the License Number does not match the supplied SSN Report.

The SSN contains the licensed configuration for the specific License Number. Currently, an SSN includes
Demonstration options (Permits operation for up to 90 days), the number of concurrent Ports that may run UniBasic, and
additional information to enable IMT and IQ.

Note: When using Software Licensing, the license number is keyed to your specific system. Prior to updat-
ing the operating system (Unix), or replacing or re-formatting your disk drive, contact your distributor
or Dynamic Concepts concerning the deactivation and replacement policy for your license.

Changing the SSN Activation Key
Prior to changing a system's SSN, verify that you have a copy of the existing SSN number, as contained within the file
/etc/DCI/ssn. Prior to installing a new SSN, you may print this text file, or use the Unix cp command to make a copy of
this file. You will need root permission to access this special file.

To change an existing SSN, for example to add additional users, enable additional products or convert a demonstration
license into a full license, issue the command:

 ssnmaint

Any existing SSN is displayed.

Enter the new SSN (case and space insensitive) and Customer Name (space and case sensitive). After pressing return,
command mode is entered.

Following entry of the SSN and User Name, restart UniBasic.

A new ssn can also be entered by using the command: unibasic -s

See also: Launching UniBasic from Unix.

 Installation & Configuration 31

 UniBasic Reference Guide

Launching UniBasic Ports at Startup
You may provide for turn-key operation whereby Unix automatically launches terminals directly into UniBasic, and/or
your application. Start-up is performed at system initialization (IPL) or whenever a terminal is evicted or a user signs
off.

This feature may be used for interactive or phantom (background) jobs.

The following instructions apply to most Unix based non-server environments.

Make the following changes for each port to be initialized:

 1. When starting an interactive terminal, change the getty command inside the /etc/inittab entry for the
terminal to:

 login unibasic </dev/ttyxx >/dev/ttyxx 2>&1

 where 'xx' is the system tty name.

 2. Change the .profile to set the necessary tty options. The PORTS environment variable should be
defined within .profile to ensure the same port number assignment for each automatic startup.

 a. .profile based upon a Login User Id: Create a login 'ubauto' with the same $HOME directory, group
and user id as your 'unibasic' login. Then add a single line in .profile to handle all automatic startup
ports:

 [$LOGNAME = ubauto] && stty sane

 ---or---

 b. .profile based upon which tty when ports require different settings:

 case `tty` in
 *tty01) stty 9600 sane ;;
 *tty02) stty 1200 sane ;;
 esac

 3. When starting a phantom port, change the command to:

 PORT=n login unibasic </dev/null >/dev/null 2>&1

 where 'n' is the desired port number for the process. No changes are required to .profile. You may
also include PORT=n for interactive ports when the PORTS environment variable is not defined, or
special numbering for each process is desired.

The 'login unibasic' forces a direct login and execution of the .profile as if the login id 'unibasic' was entered on a
terminal.

The .profile must contain the line exec unibasic as the last line to launch the session. The initial copyright is printed and
the session is waiting input at command mode. You may also force a starting program using the form:

exec unibasic -f program.

 Installation & Configuration 32

 UniBasic Reference Guide

See also: Setting up .profile For Multiple Users, PORT, PORTS, Port Numbering and Phantom Ports,

Launching UniBasic from Unix, Port Number

 Installation & Configuration 33

 UniBasic Reference Guide

Configuring Printer Drivers
Two printer drivers are supplied for use with your applications; lpt.iris and lpt.bits. An additional file lpt.sample
documents various modifications and sample printer drivers.

lpt.iris is designed for applications requiring locked printers. Users attempting access to a locked device receive an
error until it is available.

lpt.bits is designed for multi-user spooling applications. Both drivers are similar and may be used with either IRIS or
BITS applications.

You may examine and change the driver saving copies using the filenames required by the application, i.e. lpt1, lpt2, etc.
A driver must use a lower-case filename and be stored within a directory listed in the LUST Logical Unit Search Table.
Do not place a $ as the first character of the filename. The $ is a flag recognized by UniBasic as a request to open a pipe
to an executable file.

For a printer driver to operate correctly, it should be owned by the master UniBasic account with the permissions 555.
Before using the driver, issue the Unix command: chmod 555 filename to set the proper permissions. If further
modifications are necessary, issue chmod 666 filename, perform editing as required and reset the permissions to 555.
The following is a line by line description of the supplied lpt.iris printer script. It is designed to run as an executable
shell-script under the borne shell only. It operates as a pipe, taking as its standard input data transmitted by PRINT #
statements.

 #lock LPT - Printer Driver for UniBasic

If the first line begins with '#lock', locking is employed to guarantee single user access to the device. Typically required
for check or form printers.

Note: No tabs, spaces, blank lines or other characters may exist before the '#lock'.

#Module: lpt Level: 1.2 Modified: 7/18/88

Comment indicating revision of supplied lpt script.

 trap "" 1 2 3
 INODE=`ls -i $0`
 INODE=`expr "$INODE" : ' *\([0-9]*\)'`
 LOCKFILE=/tmp/lk.$INODE
 trap "rm $LOCKFILE" 0

Setup for cancellation, and signals. Determine the filename of the lock file built, and setup to remove the lock file on
script termination.

 OPENSTR='\c'

Define the string of characters to be sent to the printer when opened. The \c is a special flag for the Unix echo command
to avoid sending a return and line-feed following the characters. Enclose within single quotes; characters as themselves,

 Installation & Configuration 34

 UniBasic Reference Guide

\0nn for octal using 7-bit form, such as \015 for carriage return; \? special characters such as \n new-line, \r return, \f
form-feed. For a complete list, refer to your Unix documentation on the echo command.

 CLOSSTR='\f\c'

Define the string of characters to be sent when all output is complete. The same rules apply as with OPENSTR.

 FILTER='lptfilter BX \010'

Define output filtering. Supplied by Dynamic Concepts, lptfilter provides output translation. Modify the data between
quotes to contain 'lptfilter' and pairs of parameters representing data sent by the application, and replacement strings.
The above example changes all BX mnemonics (Begin Expanded Print) to the replacement string ASCII character 10
(octal). For additional information, see also lptfilter. lptfilter prints directions for its use when typed as a command at
command mode, or at the shell.

 PTRDEV='/dev/lp00'

Define the device to actually receive the finalized data sent by this script. To send the data through the spooler, this line
would contain the actual spool command within single quotes, such as lp -s.

 PTRBAUD='9600 opost onlcr istrip ixon cs8 -parenb'

Define for a serial port the baud rate and other characteristics required to define the port for the printer. The above
options indicate 9600 baud, process post output, change new-line to carriage return, strip high bit, Xon/Xoff protocol,
etc. This string is not required for parallel printers, and it is not used (only defined) in our example. See also:
Configuring Serial Printers below.

Standard Parallel Operation to device:
 (echo "$OPENSTR";cat -;echo "$CLOSSTR") | $FILTER >$PTRDEV

Standard Parallel Operation to a spooler:
 (echo "$OPENSTR";cat -;echo "$CLOSSTR") | $FILTER | $PTRDEV

Standard Serial Operation to device:

(stty $PTRBAUD >$PTRDEV <&1; echo "$OPENSTR"; cat -; echo "$CLOSSTR") |
$FILTER > PTRDEV

Create a sub-shell to perform the following processes under the process of the script itself:

 1. Invoke echo to transmit the defined opening string.

 2. Invoke cat getting its input from standard input (the pipe).

 3. Invoke echo to transmit the defined closing string.

All of the output from the sub-shell process is optionally piped again through lptfilter and finally redirected to the
selected device or through the spooler.

If lptfilter is required, add the command | FILTER immediately following the close parentheses before the >PTRDEV
or |PTRDEV respectively. If not, remove the | FILTER command. This increases the speed of the script, preventing
an additional process from starting.

By opening the lpt printer, we have started the process sh (shell) to interpret the script, another sub-shell to perform
items 1-3. The sub-shell will have echo or cat opened and running until the BASIC program closes the channel.
Finally, the optional lptfilter process may be running. If you have directed output to the spooler, additional processes
may also be started.

 Installation & Configuration 35

 UniBasic Reference Guide

The entire operation is quite fast, and easily configured. For special applications, you might write in C a printer driver
specifically for your needs.

See also: Pipes, lptfilter, filename

Configuring Serial Printers
In the previous section, each time the printer is opened the Unix stty command is sent to initialize the device. With
some printers, this may cause problems such as overflowing buffers, or losing flow control when the device is turned
off-line or out of paper.

If you experience problems with serial printers, check the following conditions:

 1. Is the printer set for Xon/Xoff protocol, and if so, does the PTRBAUD definition contain the option

for ixon?

 2. Is the printer set for DTR protocol, and if so, is the wiring correct for the mux, and does the mux

support this protocol ?

 3. Is the script properly set for serial operation including the Unix stty command as the first command

within parenthesis?

These conditions should be checked by your installer with a break-out box. You may also have to check with the
manufacturer of the printer, system and mux to verify that your configuration and use is supported by the hardware and
Unix drivers.

If you continue to have problems:

 1. Modify the PTRDEV definition to specify a temporary file for printer output, i.e. /tmp/printerdata.

Run your report and examine the contents of the file to verify that the data is being correctly sent by
the application through the lpt script.

 2. From command mode or shell, use the Unix Commands stty and cat to configure the port and direct

the data to the device:

 (stty options; cat /tmp/printerdata >/dev/...)

 3. Once you are able to print data, modify the script using the same parameters remembering to reset

PTRDEV to the desired device name.

If printing works, but the printer occasionally loses data or overflows on multiple jobs, it may be necessary to remove
the Unix stty command from the script. Follow the above example for a parallel printer. Next, add the following code
to the system file /etc/rc or other Unix startup file:

 (stty ; while : ; do sleep 40000; done) </dev/... &

Insert the proper parameters following stty, and </dev/... is the name of the physical device driver, such as /dev/tty23.
This must be a background process as indicated by the terminating '&'.

 Installation & Configuration 36

 UniBasic Reference Guide

It should be noted that these changes are only required on systems redirecting data to a physical device, i.e. PTRDEV, is
the actual name of a device driver.

When configuring a printer for use with the spooler, these changes are not required.

Configuring Terminal Drivers
Terminal drivers translate keyboard and display mnemonics between applications and various brands of terminals.
When launching a UniBasic process, the value of the environment variable TERM selects the terminal translation driver
for this session. A filename in the form: term.name is opened, where name is the value of the TERM variable.

Terminal files, typically stored within the sys directory, must use a lower-case filename and be within a path of the
LUST environment variable. If a matching terminal driver is not located, an error is printed and no terminal translation
functions are available for that session.

Four terminal driver files are supplied for use with your applications; term.ansi, term.tvi925, term.wyse50 and
term.wyse60. term.ansi is designed specifically for use with ANSI style terminals and the primary monitor supplied
with many systems. The other drivers are for use with Televideo 925, Wyse 50 and Wyse 60 terminals respectively.
These may be duplicated and modified for use with other TERM definitions. The Unix cp command may be used to
make additional copies of these drivers. For example, to create a Televideo 910 driver, issue the command:

 cp term.tvi925 term.tvi910.

Any standard editor, such as vi may be used to adjust the new driver file accordingly.

For a terminal driver to be properly recognized, it must have read-permission enabled and be located within the path
specified by the environment variable LUST. Once configured, it is recommended that only read-permission remain
enabled to prevent corruption.

The names assigned to the TERM environment variable are usually defined in the /etc/inittab or /etc/gettydefs files.
Refer to your Unix system documentation for additional information relating to equating TERM names with terminal
drivers.

See also: Terminal Translation Files $TERM files

Creating a Customized Installation Media
You may customize the supplied DCI Installation program, ubinstall, to include provisions to install your applications,
data files, printer and terminal drivers.

To ensure proper operation of DCI supplied products, your customized installation procedure should be added to the
existing ubinstall script. Failure to perform all of the steps contained therein can lead to problems in an installation.

Within the /tmp directory during installation, the files at the level /tmp/ub are moved into /usr/bin, except for the system
error message file errmessage.

Files at the level /tmp/ub/sys are moved into HOME/sys as defined during installation.

 Installation & Configuration 37

 UniBasic Reference Guide

Directories at the level /tmp are not moved. Directories at the level /tmp/ub are moved to HOME/ub.

Files in ubdev (UniBasic Development) are moved under HOME/ubdev.

To create a custom version:

 1. Follow the installation instructions on the various DCI supplied installation files (omitting the entry of
the ubinstall command).

 2. Move copies of custom printer drivers, system BASIC programs and any other sys or LU 0 custom
items into /tmp/ub/sys using the Unix cp command.

 If you have a complex .profile, such as one containing settings which are not prompted during
ubinstall, place a copy of that .profile into /tmp/ub . It will be necessary to modify the ubinstall script
to accommodate this option. Add code in the script following the move of the errmessage file to
HOME to move your custom .profile in a similar manner. Be sure that the code is inserted after the
initial creation of a .profile. Properly coded, installation will replace the default file with your
customized .profile.

 3. Under /tmp/ub, create any directories that are to be placed under the HOME level on your customer's
systems. Even if these directories are empty, the cpio command will create them for you during instal-
lation.

 4. Use the Unix cp command to move copies of program and data files into the associated installation
directories under /tmp/ub. You may use the ln command (link) instead of cp to reduce disk space re-
quirements.

 5. Use the Unix commands ls, chown, chgrp, chmod to verify and set the permissions, user id, and
group id of your directories and files. Verify that your LPT scripts have the x attribute (i.e. 555). It
is recommended to select a default group and user id, as is the case with DCI supplied programs and
files. During installation, ubinstall changes the group and user id of the supplied DCI files and
directories to the prompted owner/manager of the UniBasic installation.

 6. Modify the supplied ubinstall script to automatically create and/or move your directories to the
desired location (optional). Also add code to allow for other directories loaded at the level /tmp to be
installed or moved onto another file system, drive or directory.

 7. Your /tmp directory is now ready to be copied onto a master distribution archive file. Issue the
following commands from root:
cd /tmp

 find . -print | cpio -ovc >filename

Note: If you prefer to use the Unix tar command, that format is acceptable for your master media. Change
your installation instructions accordingly.

 Introduction To UniBasic 38

 UniBasic Reference Guide

Introduction To UniBasic
UniBasic is a formal language used to communicate with a computer. It is in the family of computer languages that have
been designed using Dartmouth BASIC (Beginner's All-purpose Symbolic Instruction Code). Unlike the binary
language of the computer, however, BASIC is easy to learn and use. And like any language, UniBasic has a set of rules,
syntax, and conventions. This chapter introduces the rules, syntax, and conventions for UniBasic programming.

UniBasic has two basic modes of operation; Command mode and Program mode. Command mode is the outer shell of
UniBasic, just above the unix operating level. While in the Command mode you can type BASIC commands that deal
with the system and the UniBasic environment.

One of the commands that you can enter while in the Command mode is BASIC.

UniBasic lends itself to a variety of applications. The computer operates as a calculation or programming device. In
immediate mode, the computer works as a calculation device, and executes instructions directly as they are entered. In
BASIC programming mode, instructions are not executed until the computer is instructed to run them. In this form, the
BASIC instructions comprise a program that can be stored for later use.

A program is a set of computer-recognized instructions that perform a desired series of operations. For example, a
payroll preparation system written in BASIC is a program that a computer can execute.

Data
Data is the information that is supplied for a program to produce a result. Data may come from outside the system, or it
may be in the computer memory as a result of a previous computation. An important characteristic of a data element is
its type. In UniBasic there are two basic data types; numeric and string.

Numeric data is made up of numbers that can be manipulated by arithmetic operators. String data is comprised of any
ASCII character. Although string data may contain numeric characters, there can be no direct arithmetic manipulation
of string data. There is a special type of string data called CRT mnemonics and expressions. This group of data is used
to control video terminal functions.

Both numeric and string data can have two forms; constants and variables. A constant is data that is used by a program
and does not change. An example of this form of data is the mathematical constant pi. This is the ratio of the
circumference of a circle to its diameter, and is approximately 3.14159. A variable is a storage area that contains the
current value assigned to the name associated with it.

Example:
 PI = 3.14159 variable equals constant

 Fed_ID$ = "31-555642" variable equals constant

 A = A + 1 variable equals expression

 C = A + B variable equals expression

 D$ = A$ variable equals variable

 Introduction To UniBasic 39

 UniBasic Reference Guide

Numeric Data

Numeric data is operated and stored in binary integer, Binary-coded-decimal (BCD) or base 10,000 (decimal). The valid
range for numbers is approximately 10-64 thru 1063 with 20-digit precision. All arithmetic calculations are performed
to this degree of accuracy, although results may be truncated depending on the type of variables used and its precision.
Numeric values supplied in statements are referred to as numeric constants.

Very large or small numbers are expressed using floating-point E-notation (scientific notation).

E-notation is used for output whenever a number’s decimal point does not lie among its 16 most significant digits.
Numeric data may be entered using E-notation at any time.

For example, the large value: 13429178952112216
is output as: 1.342917895211222E+16

and is read "One point three four ... times ten to the sixteenth power".

The small value: .00000000000000000034
is output as: 3.4E-19

and read as "3.4 times ten to the negative nineteenth power."

Numeric Precision

Several numeric data representations are supported, with differing representation, accuracy and performance. The ten
numeric precisions determine the storage representations and the valid range of values for all numeric variables.

Prec Data Bytes Significant Range of values supported
 % Type req'd Digits by precision

 1 Integer 2 5 ±32768
 2 Integer 4 10 ±2,147,483,648
 3 Decimal float 6 9-12 ±.999999999999 E±63
 4 Decimal float 8 16 ±.9999999999999999 E±63
 5 Decimal float 4 6 ±.999999 E±63
 6 Decimal float 12 17-20 ±.99999999999999999E±63
 7 IRIS BCD 1% 2 4 ±7999
 8 IRIS BCD 2% 4 6 ±.999999 E±63
 9 IRIS BCD 3% 6 10 ±.9999999999 E± 63
 10 IRIS BCD 4% 8 14 ±.99999999999999 E±63
 11 IMS BCD 2% 4 6 ±.999999 E±63
 12 IMS BCD 3% 6 10 ±.9999999999 E± 63
 13 IMS BCD 4% 8 14 ±.99999999999999 E±63

The default precision for variables is based upon the type of program running. IRIS programs default internally to %5
(2-word floating), while BITS programs default to %4. Newly created BITS programs may specify any of the above
precisions in a DIM or COM statement.

 Introduction To UniBasic 40

 UniBasic Reference Guide

IRIS programs may specify one of 4 precisions in the form 1%, 2%, 3% or 4%. These precisions map to %1, %5, %3,
and %4 respectively. When the environment variable BCDVARS is enabled, the precisions map to %7, %8, %9 and
%10 forcing all variables to be processed in BCD. This option is only required in applications performing unique
processing of internal BCD formats (such as indiscriminate moving of data between numeric and string variables using
CALL 72/73).

During file access, variable precisions are internally changed as data is read or written between IRIS BCD files and other
integer or Base 10000 data files. This process eliminates conversion of numeric data during READ and WRITE.

See also: IRIS BCD Files

Proper selection of variable precision is required when memory space is limited. For example, a 1,000 element array
using Double-precision %4 requires 8,000 bytes of program space (1,000 X 4 words X 2 bytes per word). The same
array using one word per element (%1) requires only 2,000 bytes. It is best to choose precisions based upon the worst-
case data you expect to place in the variables. Precision affects the amount of bytes required in data files to hold a given
variable during normal READ and WRITE operations.

Special Notes on %3 and %6 Numerics

The number of significant digits retained by %3 and %6 varies depending upon the number of integer versus fractional
digits being represented. To determine whether the precision can correctly represent a specific number, locate the
required number of integer or fractional digits in the first column. The second column then gives the maximum number
of digits for the other (fractional or integer).

Accuracy limitations using %3 format:
 1 8 7 4
 2 8 8 4

 3 8 9 0
 4 8 10 0
 5 4 11 0

 6 4 12 0

Accuracy limitations using %6 format:
 1 20 11 12
 2 20 12 12
 3 20 13 8
 4 20 14 8
 5 16 15 8
 6 16 16 8
 7 16 17 0
 8 16 18 0
 9 12 19 0
 10 12 20 0

The %6 form is the most speed-efficient of all floating-point representations but also requires the most memory space.

 Introduction To UniBasic 41

 UniBasic Reference Guide

Integers Stored in Floating-Point Variables

If, when a value is packed into %3, %4, or %6 form, the value is within the double-precision signed-integer range, word
0 is cleared and the value is instead stored into words 1 and 2 in %2 integer form If two such values are operated upon,
integer arithmetic is used, which can be performed faster than floating-point arithmetic. If the result value is again
within the %2 range, it will be packed as such when stored back into a variable.

Integer arithmetic is not performed if:

 Either operand is in floating-point form
 or
 A divide operation is performed

The adjustment between integer and floating-point arithmetic is totally user-transparent. However, use of integer
arithmetic greatly enhances the net speed of program calculations, many of which are integer-type operations (A=A+1,
etc.).

String Data and Literals -"str.lit"

A string is defined as a sequence of zero or more ASCII characters. Strings range in length from 0 to 65534 bytes
(characters). Strings within programs are enclosed in double quotes and referred to as string constant str.lit. A zero byte
is used internally to denote the logical end of a string.

Each str.lit is governed by the following rules:

 1. The str.lit must begin and end with double quotation marks (").

 2. Any character may be expressed using its octal ASCII value enclosed within backslashes, for example
"\215\". Non printable and special control characters that perform an immediate keyboard function
(such as backspace) must be entered in this fashion to be included as data.

 3. All printable characters represent themselves except \ (backslash).

 4. Each \334\ is replaced with a single backslash.

 5. Each pair of single quotes (' ') are replaced by a single double quote (").

See also: ASCII Codes and Input Character Processing

CRT Mnemonics and Expressions - crt.expr

CRT mnemonics and expressions, crt.expr, are used in conjunction with a CRT term file to provide control of video
terminal functions such as clear-screen, reverse-video, etc. CRT mnemonics appear in one of two forms:

 • A set of one or more 2-character codes enclosed in single quotation marks ('). Each code can be
preceded by an optional count value.

 • A cursor address in the form: @num.expr, num.expr;. Addresses are given in the form column, row
from origin 0,0 home (upper-left of screen).

 Introduction To UniBasic 42

 UniBasic Reference Guide

 For example:
 'CS' Clear screen

 'CS10ML' Clear and move left 10 positions.

 @5,5;’CL' Position to column 5, row 5 and clear line

 @10,L; Position cursor to column 10, row L.

 'BG'"\107\"'EG' Output a graphics sequence.

See also: Using Dynamic Windows, Terminal Translation: CRT CODES $TERM Files for a complete
discussion on defining your terminal for use with Windows, Mnemonics, Cursor Positioning and
Extended Graphics.

Statements, Statement Numbers & Labels

All BASIC program instructions are called statements. They have the general form:

 stn {label:} statement { \ statement }

where: stn is a valid statement number 1 to 99999999.
 label: is a valid statement label followed by colon.
 statement is any valid BASIC statement.
and {\...} is the separator for multiple statements.

Immediate Mode

Any BASIC statement entered without a stn is executed immediately. This type of operation is termed immediate mode
and provides for interactive debugging, calculator, or single-step operations. Most statements may be executed in
immediate mode; some cannot simply because of their nature. For example, FOR without a matching NEXT is
prohibited. Each statement documented indicates whether it is available in immediate mode.

Statement Numbering

Each line begins with a statement number (stn) and ends with the [EOL] end of line character. The stn must be an
integer in the range 1 thru 99999999 and is used to indicate where within the program to insert the line.

Following the stn may be a statement label. The label may be from 1 to 32 characters in length consisting of letters,
digits, and underscore. A label must begin with a letter or underscore and end with a colon.

Throughout this guide, stn is used to indicate selection of either a statement number or label. If a label is not explicitly
defined for a statement, the stn is considered both the statement number and label.

A statement is one instruction to be executed by the computer, such as printing a list of values. A program line is a line
consisting of one or more BASIC statements.

 Introduction To UniBasic 43

 UniBasic Reference Guide

Program lines may only be entered while in BASIC program mode. Program lines may be entered in any order. They
are sorted automatically into ascending statement number order. A stn is always required when entering or changing a
statement, even if the statement includes a label.

For example, the following lines assign values to variables. Spacing between keywords and around variable names is
required if LONGVARS or VARIABLE modes are set to accept long variable names. If long variable names are not
enabled, the system will accept statements without regard to spacing:

 5A=0
 10 LET A=10
 20LETA=10
 30 ASSIGN_VALUES: LET ZERO_VALUE=7

Let is assumed if not given, as in example line 5. If long variables is not enabled, line 20 is identical to line 10. If
enabled, the variable name "LETA" is assigned the value of 10. The actual statement in this case would be "LET
LETA=10."

See also: LET statement

Multiple-Statement Lines

Several BASIC statements may appear following a single stn.. Each statement is separated by a \ and termed a sub-
statement . Sub-statements are numbered on each line starting with 1 and are identified as a sub-stn. For example:

 100 PRINT TOTAL;J \ GOTO 140

When using multi-statement lines, certain programming effects must be noted. Conditional branching (GOTO,
GOSUB, ON) may only select the first sub-statement of any line. Branching to sub-statements (other than the first) is
only provided by the JUMP statement. Refer to the following statements for further considerations:

 DATA ERRSTM ESCSTM GOSUB
 IF ERR JUMP ON GOTO
 REM RETURN IF

Inserting, Changing & Deleting Statements

Insertion of new program lines is accomplished by selecting a new stn between two existing stn's . For example, to
insert a new line between 10 and 20 above, select a stn from 11 to 19 such as:

 14 LET Q=16

Fractional stn's are not allowed. The entire program may be renumbered as necessary using the RENUMBer command.

 Introduction To UniBasic 44

 UniBasic Reference Guide

To replace an existing statement, simply enter the stn to replace followed by the new BASIC statements. The new line
replaces the existing.

 30 LET Z=7
 30 LET Z=6 replaces LET Z=7

To modify part of an existing line, use the EDIT command. Simple changes, insertions or deletions are easily
performed without re-typing the entire line. In addition, EDIT may be used to correct a line entered with an error.

To delete an existing program line, type the stn only, and press [EOL] (usually return). This process deletes one
program line at a time:

 20

Multiple lines are removed using the DELETE/ERASE commands. To delete all lines of a program, use the NEW
command.

Examples:
 OPEN #0, "$LPT", #3, "PAYROLL"
 DIM A$[100],R$[100],3%,DATA_ARRAY[32]
 SEARCH #3,3,1;A$,R1,E \ PRINT R1,E
 READ #3,R1;R$ \ MAT READ #3,R1,104;DATA_ARRAY

See also: Statements and Calls

Variables
BASIC is an algebraic language, with data values operated upon and stored in storage areas called variables or vars. In
UniBasic there are two types of variables. The first is a numeric variable and the second is a string variable.

Variable Naming Conventions

In UniBasic there are two types of variable names; a short var and a long var. The default is the short form: letter or
letter+ digit for numeric variables, and letter or letter+ digit +$ for a string variable. Any variable ending with a dollar
sign is automatically recognized as a string variable.

To use the long variable names, the global environment variable LONGVARS is set, or you may issue the command:
VARIABLE +. A long variable is named by a letter followed by up to 31 additional characters which may be letters,
digits or underscore.

Lower-case letters are equivalent to their upper-case counterparts. Some examples of variable names include:

 A B0 DATA_VALUE
 A$ B0$ PHONE_NUMBER$

By default, up to 348 different variable names may be used within each program. This value may be restricted or
increased through the use of the environment variable MAXVARS, which defaults to 348. When you enter a program

 Introduction To UniBasic 45

 UniBasic Reference Guide

statement that includes a previously unused variable name, the variable count is compared to MAXVARS. If the defini-
tion of this new variable will exceed the limit, the following error is displayed:

 Too many variables defined

Once a variable name is in the internal variable table, it is not removed even if all occurrences of its use are removed. A
program must be dumped to ASCII form and re-loaded (see the DUMP/LOAD/GET commands) in order to release
unused variable names. To increase the number of variable names beyond 348 (to 1113), the MAXVARS environment
variable must be set to “extended”. The number of variables will only be increased in newly created programs. To
increase the number of variables in an existing program beyond 348, the program must be dumped to text and then
reloaded while MAXVARS is set to “extended”.

If you exceed the number of variable names allowed, use the VARIABLE command to locate one or more variables that
could be removed from the program. Manually (or using an editor), remove all occurrences of the deleted variables.
Next, DUMP the program to text, perform a NEW, and finally reload (LOAD or GET) and resave the program.

Subscripted Variables

Certain variables permit the use of a numeric subscript. In the second example below, subscript defines the beginning
byte of a variable, while subscript2 defines the ending byte of the subscript. A subscript is given in the form:

[subscript]
 or

[subscript1, subscript2]

These subscripts may be any numeric expressions which, following evaluation, are truncated to integers. Subscripts are
allowed on numeric variables, arrays and matrices, and string variables. An error is generated if a supplied subscript is
outside the range of the variable referenced.

Arrays and Matrices

An array is a list of numeric data elements. A matrix is a two-dimensional table. Array and matrix elements are
numbered origin zero for selecting individual elements. Therefore, an array dimensioned [10] actually contains the 11
elements [0] thru [10].

Matrices also have row and column zero. The 4 X 4 matrix shown above contains the 25 elements:

 [0,0] [0,1] . . . [0,4]
 .
 .
 [4,0] [4,1] . . . [4,4]

The example below shows a four element array (list) and a 16 element matrix (4 by 4):

 Array[4] Matrix [4,4]

 0 0 0 0 0 0
 1 0 1 2 3 4

 Introduction To UniBasic 46

 UniBasic Reference Guide

 2 0 5 6 7 8
 3 0 9 10 11 12
 4 0 13 14 15 16

Note: Most MAT statements do not operate on row and column zero elements; they use origin one. So, for
the purposes of matrix arithmetic, a 4 X 4 matrix actually has 16 usable elements. The MAT READ
and MAT WRITE statements do transfer row and column zero.

Numeric, Array and Matrix Variables
A numeric variable is one of three types: simple, array, or matrix.

A simple numeric variable var or num.var is one that will store a single numeric value.

 For example: A B4 INPUT

An array variable array.var may contain many values, which are operated upon either as a whole (MAT), or
individually by selecting a single element or subscript. The subscript addresses a single array element by its number (0-
n).

 For example: A[3] B4[36] INPUT[0]

A matrix variable mat.var may also contain many values, which are operated upon either as a whole (MAT), or
individually by selecting two separate subscripts. The two subscripts together address a single matrix element by its
position, i.e. row and column number (0-x,0-y).

 For example: X[9,2] B4[15,28] INPUT[0,10]

All subscripts are origin zero. If an array.var or mat.var is referenced without subscript, each missing subscript defaults
to zero (excepting MAT Statements defined to operate upon the total variable).

 For example: If A is an array, then A = A[0].
 If B is a matrix, then B = B[0,0] and B[x] = B[x,0].

In most other contexts, the terms array and matrix are used interchangeably. In this guide, we will restrict the usage of
array to indicate one-dimensional and matrix to indicate two-dimensional.

Automatic Dimensioning Numeric Variables

A variable’s type and precision are selected when dimensioned, either explicitly (DIM or COM statements), or
implicitly by its initial usage, termed Auto-Dimensioning. All auto-dimensioned variables take on the default or last
specified precision from a DIM or COM statement. A simple num.var is auto-dimensioned to hold a single value. An
array.var is auto-dimensioned to hold 10 elements, and a mat.var to hold [10,10] elements. All numeric variables are
initialized to zero when dimensioned.

 Introduction To UniBasic 47

 UniBasic Reference Guide

 LET A=0

performs an automatic dimension of A to a simple variable at the current precision.

 LET A[6]=0

performs an automatic dimension of A[10] at the current precision.

 LET A[6,3]=0

performs an automatic dimension of A[10,10] at the current precision.

Re-Dimensioning Numeric Variables

Once any num.var, array.var, or mat.var is defined through explicit DIM or COM, or automatic dimensioning, its
precision cannot be changed. When a matrix variable used in a MAT statement includes subscripts, the subscript values
are interpreted as a new working size for the selected matrix. This new size can not require more total elements than the
original dimension. For example, a matrix originally dimensioned as [10,10] has 121 elements. Some examples of legal
new working sizes would be:

 [50,1] [2,40] [40,2] [20,4] [3,3] [7,6] . . .

The new working space will now remain in effect for the remainder of the program, or until changed again. A change in
working size does not affect variable precision, or file access statements.

If you attempt to re-dimension a two-dimensional array (matrix), to (-1,-1) a subscript error is reported.

String Variables
Variables used for string data are denoted by a dollar sign following the variable name.

 A$ D5$ X0$ DATA_VALUE$

A string variable str.var must be explicitly dimensioned before it may be referenced in statements in a program. A str.
var can be dimensioned only once, by using a DIM or COM statement . The dimensioned size represents the maximum
size in bytes (characters) allowed for the variable. A str.var may also be passed from one program to another using
CHAIN READ, in which case it may not be included within a DIM or COM statement.

A str.var is initialized with all zero bytes when dimensioned, and so has a logical length of zero.

See also: LEN function

A str.var may contain any ASCII Characters. Each str.var is terminated by the ASCII character \000\. The logical
length of any str.var is equal to the number of characters from a starting position up to, but not including the terminator.

 Introduction To UniBasic 48

 UniBasic Reference Guide

Subscripted Strings

String subscripts are used to access certain portions of a string by position. String positions are numbered starting at 1.
String subscripts may be any numeric expressions that, when truncated to integers specify character positions between
and including 1 and the dimensioned length of the str.var.

A str.var given by its name alone (B$) refers to the entire string, from the first position up to the first zero byte.

A str.var given with a single subscript (B$[14]) refers to all bytes from the starting position up to the first zero byte.

A str.var given with two subscripts (B$[14,22]) refers to all bytes between and including the two positions selected up to
the first zero byte. Therefore, two equal subscripts (B$[8,8]) specify a single byte position within the string.

A str.var may also contain binary information including zero-byte terminator characters. Certain statements are
provided for manipulation of binary strings, CALL $STRING, MAT, CONV, ASC and CHR. These functions and
statements may be used to operate upon an entire string or substring. The LEN function may not be used with binary
strings since the first zero byte is considered a terminator.

String Arrays

String arrays are not directly supported, but can be emulated using formulated subscripts. For example, if a string array,
A$, is to contain N strings of L characters each, the required dimension is:

 DIM A$[N*L]

and any given element E of the array can be accessed by:

 A$[E*L+1,E*L+L]

Dimensioning String Variables

String variables must be declared in a DIM or COM, or CHAIN READ statement. Attempting to use a string variable
not previously dimensioned produces an error. No auto-dimensioning of string variables is supported.

Re-Dimensioning String Variables

Once a str.var is defined, its size may not be changed. Any attempt to dimension the variable to a smaller or larger size
results in an error. A re-dimension of the same size is permitted, without an error.

 Introduction To UniBasic 49

 UniBasic Reference Guide

Expressions
There are two types of expressions: numeric expressions and string expressions. A numeric expression num.expr is
considered any group of numeric variables, constants, functions, and/or operators returning a numeric result. A string
expression str.expr is considered any group of string variables, constants, functions, CRT expressions and/or operators
to be concatenated (linked together) returning a string result. Any statement may incorporate the use of string or
numeric expressions as long as the final result matches the format of the statement, or the variable chosen to store the
result.

Operator Precedence

Expressions are evaluated according to the precedence documented in the Operator Precedence Table. Operators on the
same level are evaluated from left to right in the expression, however parentheses can be used to override this hierarchy.

Operator Precedence Table

(highest) + - and Functions Unary + - and FUNCTIONS evaluated R-L
 ^ Exponentiation Left-to-Right
 * /% Mult, Divide, Modulo Left-to-Right
 + - Add, Subtract Left-to-Right
 TO String TO string Left-to-Right
 USING number USING string Left-to-Right
 , + String concatenation Left-to-Right
 < <= > >= <> expr relation expr Left-to-Right
 AND relation AND relation Left to Right
(lowest) OR relation OR relation Left to Right

For example:

 EXPRESSION EVALUATES AS RESULTS WITH
 3+4*5 3+(4*5) 23
 (3+4)*5 (3+4)*5 35
 14/7*10/2 ((14/7)*10)/2 10
 3^2*4 (3^2)*4 36
 "3"+"B" 3 concatenate B 3B
 ‘CSBP’+’BU’ CS BP BU Clear Screen, begin protect & underline

Functions are evaluated before any arithmetic operations are performed.

 Introduction To UniBasic 50

 UniBasic Reference Guide

Predefined BASIC Functions

Many built-in functions are included which can be used within numeric or string expressions. Functions produce a
result based upon a given value, termed an argument. The result, as well as the argument can be string or numeric
depending on the function in question. A function’s general form is:

 FUNCTION argument

where FUNCTION is the three-letter function name, and argument is the variable or expression to be operated upon.

Note that the argument may or may not be enclosed within parentheses. Parentheses are only required when the
argument is itself an expression, as functions are evaluated on a higher precedence than other arithmetic operations.

For example:

 100 LET A=ABS X+2

In this case, the ABS function is evaluated before the 2 is added. The statement:

 100 LET A=ABS(X+2)

performs the addition before applying the function.

The function itself can appear within another expression, provided its result is compatible with the surrounding
expression, e.g. a function producing a numeric result is invalid within a string expression.

 B$+INT(X)+C$

is by itself invalid unless the numeric result of the function INT is cast into a string result, for example:

 B$+STR(INT(X))+C$

All pre-defined functions are documented below in alphabetical order. The first column identifies the function name
(ABS, TAN, etc.), the second defines the argument type (string/numeric), and the third the result type. The function’s
operation is then described at the right.

Name Arg Res Operation

ABS num num Absolute Value of the argument.

ASC str num ASCII value of specified character in string. Characters are toggled and returned in
BITS/IRIS 8-bit format unless Binary Input mode is enabled by SYSTEM statement or
'IOBI' mnemonic.

ATN num num Arctangent in radians.

CHN num num Same as CHF.

 Introduction To UniBasic 51

 UniBasic Reference Guide

Name Arg Res Operation

CHF num num Various parameters of an open file or device. The argument must be the channel
number (0-99) of an open channel plus a constant greater than 100 to select mode. The
Channel Modes are shown in the following table, and 'xx' refers to the desired channel
number.

 0xx num Total number of records contained within the file. This value can be used also as the first
record number not contained in a file. For Contiguous files, this is the larger of the initial
number of records specified in BUILD/CREATE or the current number of records. If
the file has a First Real Data Record, that value is included in this size.

 1xx num Record number of current file position. For an item file, mode 100 yields the last record
number written.

 2xx num Byte displacement into record of current file position.

CHF 3xx num Record Length in words for IRIS Applications, or (0) representing the channel status
word for BITS Applications.

 4xx num Memory location of UniBasic T_chan structure for this channel.

 5xx num Open File’s record length in bytes.

 6xx num unused, returns 0.

 7xx num unused, returns 0.

 8xx str Filename of file opened on channel.

CHR num str Supplies the ASCII character selected by the argument value for BITS applications. The
argument is supplied in IRIS/BITS 8-bit format and toggled to conform to the internal
character representation. If Binary Output is enabled SYSTEM statement or 'IOBO'
mnemonic is in effect, no toggling is performed.

CHR num num Returns the ‘characteristic’ value for IRIS applications. This is an integer exponent X
such that: 10X-1 <= argument < 10X.

COS num num Cosine in radians.

DET --- num Determinant of the last matrix inverted. See the MAT INV statement.

ERR num num Various values pertaining to error, ESCape and interrupt branching. When using this
function within IRIS programs, the argument must be parenthesized to prevent
misinterpretation as an IF ERR statement. The argument selects:

 0 num Last error number in BITS error format

 1 num stn of last BASIC error.

 2 num stn of last ESCaped statement.

 3 num stn of last interrupted statement.

 4 num sub.stn of last error, ESC, or interrupt.

 5 num sub.stn of last BASIC error.

 6 num sub.stn of last ESCaped statement.

 7 num sub.stn of last interrupted statement.

 8 num Last Index File Structure error identifier.

 Introduction To UniBasic 52

 UniBasic Reference Guide

Name Arg Res Operation

ERM num str Supplies the selected message from the user message file currently selected Returns null
if no user message file is selected. See CALL 40.

EXP num num Exponential, the constant e to the power given (eX).

FRA num num Fractional portion of argument. For example: FRA(4.5) yields 0.5.

INT num num For a num.arg returns the greatest integer less than or equal to the argument. For
example: INT(4.5) yields 4, while INT(-4.5) yields -5.

INT str str For a str.arg. returns the ASCII value of the first character in the string. This is
functionally identical to the ASC function.

IXR num num Integer radix base 10 of the argument. For example: IXR(1000) returns 3.

LEN str num Length of string in characters. Length is computed from optional starting subscript to
first zero-byte terminator.

LOG num num Logarithm base e of the argument. Logarithm in any base B can be achieved using the
theorem: logBX=logeX/logeB.

MAN num num Decimal mantissa of the argument in base 10.

MEM num num Supplies data from the selected location in main memory; presently this function returns
0.

MSC num num Miscellaneous numeric functions. The argument selects the value returned; -1
returned for unimplemented functions:

 0 num Your current Port number.

 1 num Logical input element last accepted.

 2 num UniBasic revision level.

 3 num stn of last GOSUB instruction. Value is returned and removed from the stack.

 4 num Reserved for future use.

 5 num Current screen tab column counter.

 6 num Current unused variable space.

 7 num Returns the environment variable MSC7, or the Unix Group number * 256 + User
number if MSC7=65535 or is undefined.

 8-17 Reserved for future use.

 18 num The constant PI (3.141592653589793).

 19 num The constant e (2.718281828459045).

 20 num Maximum channels per user; returns 64.

 20-29 Reserved for future use.

 30 num stn of current BASIC statement.

 31 num sub.stn of current BASIC statement.

 32 num crt_type value from current term. file.

 Introduction To UniBasic 53

 UniBasic Reference Guide

Name Arg Res Operation

MSC 33 num Number of columns in the open window.

 34 num Number of rows in the open window.

 35 num Size of environment variable INPUTSIZE.

 36 num Reserved for future use.

 37 num Maximum port number supported.

 38 num Number of Total Users.

 39 num European date flag.

 40 num max-x value from current term. file; Number of columns for your CRT

 41 num max_y value from current term. file; Number of rows for your CRT

 42 num Window nesting level. Number of open Windows. On an ANSI monitor, a default of 1
window is always opened.

MSF num str Miscellaneous string functions. Argument selects the value returned:

 -1 str UniBasic revision 8-character string. 5.8.2.3 returns 05080203, 5.3 returns 05030000.

 0 str System date and time in international format: dd mon year hh:mm:ss

 1 str Current working directory path

 2 str Text description of last BASIC error.

 3 str System date and time in IRIS/US format: mon dd, year hh:mm:ss

 4 str Path and filename of the current BASIC program loaded into memory. If the returned
string does not begin with '/', the program name is relative to your current working
directory. The full name must be assembled by concatenating MSF(1) and MSF(4) .

 5 str Returns the name of the parent BASIC program, when the current program was invoked
by SWAP.

NOT any num Logical NOT. Returns 1 if argument is zero or null, or zero if not.

RND num num A pseudo-random number X is generated in the range 0 < X < argument.

 See also: RANDOM statement for more on pseudo-random numbers.

SGN num num Signum function. Returns the sign of the argument, where:

 -1 if argument < 0

 0 if argument = 0

 1 if argument > 0

SPC num num Special numeric functions used by IRIS applications. The argument selects the value
returned, or a -1 is returned for unimplemented functions:

 Introduction To UniBasic 54

 UniBasic Reference Guide

Name Arg Res Operation

SPC 0 num CPU time used this session in tenth-seconds.

 1 num Connect time used this session in minutes.

 2 num Hours since a base date of 1980. This value is computed assuming all months have 31
days.

 3 num Current tenth-second of the hour.

 4 num UniBasic revision level.

 5 num Returns the environment variable SPC5 or the Unix Group number * 256 + User number
if SPC5=65535 or is undefined.

 6 num Your current Port number.

 7 num Returns the environment variable SPC7.

 8 num Last BASIC error number in IRIS format.

 9 num Current stn being executed.

 10 num stn where last BASIC error occurred.

 11 num Current Logical Unit number. The last directory name in the current working directory is
returned as a number.

 12 num Logical Unit number of the current program. The last directory name in the current
programs pathname is returned as a number.

 13 num crt_type value from current term. file.

 14 num stn of last GOSUB instruction. Value is returned and removed from the stack.

 15 num Return and clear the last BASIC error number in IRIS format.

 16 num stn of last GOSUB statement. Value is returned and left on the stack; non-destructive
read, whereas SPC 14 is destructive.

 17 num Length of last character-limited INPUT.

 18 num System base year; always returns 1980.

 19 num UniBasic License Number in decimal.

 20 num System base year; Returns the default 1980 or the value of the Environment Variable
BASEYEAR.

 21 num Length of the input buffer environment variable INPUTSIZE.

 22 num Available program space in words. Returns a large constant to reflect virtually unlimited
space.

 23 num Return the current library logical unit number. A -1 is returned if no current library, or if
it is non-numeric.

 24 num Statement number stn of last END, STOP or SUSPEND statement.

SQR num num Square root function. Returns the square root of the argument. An error is generated if
the argument is negative.

 Introduction To UniBasic 55

 UniBasic Reference Guide

Name Arg Res Operation

STR num str Convert the numeric value into a string result. No leading or trailing spaces are
provided.

TAB num str Return the required number of spaces terminated by a zero byte to move the terminal to
the column specified by the argument.

TAN num num Tangent of the argument returned in radians.

TIM num num Returns various Time functions as numeric values. The argument specifies the function
to perform:

 0 num CPU time used this session in seconds.

 1 num Connect time used this session in minutes.

 2 num System real-time hours since base date. Normally adjusted using a base year of 1980.
To change the value returned, see the environment variable BASEYEAR.

 3 num Current tenth-second of the hour.

 4 num Current date in the form: MMDDYY where MM is the month (1-12), DD is the day of
the month (01-31) and YY is the year such as 89.

 5 num Current date in the form YYDDD where DDD is the day of the year (1-366).

 6 num Number of days since 0 January 1968.

 7 num Current day of week (0=Sunday, 6=Saturday).

 8 num Current year in the form YY, such as 89.

 9 num Current month; 1=January, 12=December.

 10 num Current day of the month ; 1-31.

 11 num Current hour of the day; 0-23.

 12 num Current minute of the hour; 0-59.

 13 num Current second of the minute; 0-59.9.

 14 num Current date in the form: MMDDYYYY where MM is the month (1-12), DD is the day
of the month (01-31) and YYYY is the year such as 2001.

 15 num Current date in the form YYYYDDD where DDD is the day of the year (1-366) and
YYYY is the year such as 2001.

 16 num Current year in the form YYYY, such as 2001.

VAL str num Convert the string argument to a numeric value. An error is generated if the argument is
null or does not contain a valid numeric value.

See also: DEF FNx for information on custom User-Defined functions within a program

Operators Used in Expressions;
Several classes of operators are provided for use within expressions. Operators are evaluated either right to left, or left
to right and have a strict evaluation precedence. Parenthesis may be used to change the precedence of an operation.

 Introduction To UniBasic 56

 UniBasic Reference Guide

 Unary operators + -
 Arithmetic operators ^ * / % + -
 Relational operators < <= > >= = <>
 Concatenation operators + ,
 Boolean operators AND OR
 String operators USING TO

Parenthesis may be used to override the default evaluation order of any expression.

Unary Operators + -

The unary operators (+ -) are used to change the sign of an argument. They are evaluated Right-to-Left and have the
highest precedence. The + is a non-operation, and the - changes a negative value positive or a positive value negative.

Arithmetic Operators ^ * / % + -

Arithmetic operators follow unary operators in the precedence of an expression. The highest precedence is given to (^)
invoking exponentiation, which is essentially repeated multiplication. A value yx is read, "take the value y raised to the
power x." In simpler terms, multiply y by itself x times. Exponentiation has the highest precedence of all of the
arithmetic operators and is evaluated Left-to-Right.

Next, (* / %) which selects multiplication, division and mod. The mod operator % returns the remainder of a division
of the two operands. This is calculated as (x - INT(x/y)*y). 10%2 yields 0, 10%3 yields 1, etc. These operators are
evaluated from Left-to-Right after exponentiation.

Finally, (+ -) addition and subtraction are the lowest precedence of the arithmetic operators. These are also evaluated
from Left-to-Right.

Concatenation Operators + ,

Concatenation operators are used to link string expressions together. The result of concatenating two string expressions
is the combination of both expressions into a single string expression. Each concatenated string is appended to the end
of the current expressions result. "This" +" That" results in the string: "This That", etc.

The concatenation operator (+) may be used in any expression involving strings, and IRIS programs may also use the (,)
concatenator in LET and IF statements.

Relational Operators = <> > >= < <=

All relational operators are evaluated on an equal precedence and all group Left-to-Right. Their result is said to be True
(one) if the relation is true, and False (zero) if the relation is false. Relational operators can be used in IF statements or
as part of a boolean expression. The format is: expression relation expression, where relation can be any of the
following:

 Introduction To UniBasic 57

 UniBasic Reference Guide

 = Equal
 <> Not Equal
 > Greater Than
 >= Greater Than or Equal To
 < Less Than
 <= Less Than or Equal To

When relationals are used for numeric comparisons, it is easy to understand that the comparisons are strictly based upon
the numeric values compared. All comparisons are made using the same 20-digit significance as printed. No additional
hidden digits interfere causing printed values to differ from internal representation as is typical with systems utilizing
binary instead of decimal floating point operations.

When relationals are used in Boolean expressions, they result in a numeric result of one if the relation is true, and zero if
the relation is false.

String variables and literals are compared using the ASCII code of each character, one character at a time. If the strings
are not subscripted to control their length, then they are evaluated using the current logical length (from any optional
starting position up to the first zero-byte terminator). Strings are equal only when they are exactly equal in length and
contents. When a shorter string is compared to a longer one, and they are equal up to the length of the shorter string, the
shorter string is said to be less than the longer string. If, during comparison, two characters do not match, the left string
is said to be less than the right string if the ASCII code of the mismatched character is less than the ASCII code of the
right strings character.

See also: Appendix A for a complete list of ASCII codes and their numeric values

Boolean Operators AND OR

The Boolean operators AND/OR are processed Left-to-Right and are used to compare several relational expressions
together. AND has a higher precedence than OR. The format of these operators is: expression AND expression, or
expression OR expression. The result is true (one) for AND if both expressions are true, or true (one) for OR if either
expression is true.

String Operator USING

The USING operator groups Left-to-Right and results in a formatted string result from a numeric expression. The
format of this operator is:

 numeric expression USING string expression.

The numeric expression is evaluated first. Next the string expression is evaluated and used to 'format' the numeric
expression into a string result.

The format string is scanned, and any characters which are not field descriptors are copied to the destination until a
format field is seen. Characters which can begin a format field are: $ # + - & *. Other field descriptors (, ! CR DB) are
treated as text and are copied until a starting character is seen. After formatting a result, the remaining characters in the
format string (up to the start of another format field) are copied to the destination.

 Introduction To UniBasic 58

 UniBasic Reference Guide

Each format field is made up of certain characters describing the formatting to be done. These are called field
descriptors. Numeric items are formatted according to the rules governing each descriptor. If an item cannot be for-
matted according to the field given, the field is output filled with asterisks (*). This generally occurs when a number is
too large to be expressed with the number of digits available in the field.

Field Descriptors

Field descriptors for a format field fall into seven categories:

 • Leading characters

 • Floating characters

 • Numeric Characters

 • Commas

 • Decimal Points

 • Post Sign

 • Numeric Split

Leading Characters

A field can begin with one or two leading characters. The available leading characters are:

 LEADING OUTPUT
 $ $ always
 + + if item >= 0; - if item < 0
 - space if item >= 0; - if item < 0

The $ can be combined with either + or - for a two-character leading group. Note that all three leading characters are
also valid as floating characters. A group of two or more identical characters is considered a floating character
designation. You can change the character output of the $ leading character by setting the environment variable
CURRENCY to any printable character. You will still use the $ (or its ASCII equivalent) for your programming.

Floating Characters

A field can contain groups of floating characters. This character ‘floats’ and is eventually executed just before the first
digit output. The available floating characters are the same as the leading characters ($, +, -) and are processed the
same.

 Introduction To UniBasic 59

 UniBasic Reference Guide

Note: Numeric formatting outputs a sign (+ or -) only if one is specified within the format field. If none is
given in the format, all items are output as positive, regardless of sign.

One extra floating character should be given in the format field in addition to the number given for the highest digit
count desired. One space is required for the execution of the floating character itself. The remaining floating characters
can be occupied by digits. For example, the format string “$$$$” can accommodate no number larger than 999, as one
space is required for the dollar sign itself.

Numeric Characters

A field can contain groups of numeric characters. The available numeric characters are:

 SYMBOL CHARACTER

 # Digit or space if leading zero
 & Digit, leading zeroes not suppressed
 * Digit or “*” if leading zero

Every numeric character given in a format field can contain a digit. For example:

Format: #### &&&& ***# ***#
 17 0017 **17 **17
 247 0247 *247 *247
 6140 6140 6140 6140
 0 0000 ***0 ***0

Commas;

A field can contain one or more commas which are output when significant. For example:

Format: ##,### #,###,### &,&&&,&&&
 768 768 0,000,768
 2,147 2,147 0,002,147
 ****** 1,034,957 1,034,957

Both the programming and output of commas and decimal points is controlled by the environment variables:
EURINPUT, EUROUTPUT. These parameters let you change the programming and output style respectively of
comma and decimal point fields. You may set either or both parameters for your desired effect.

See also: the Environment Variable: CURRENCY.

EURINPUT=1 ##.### #.###.### &.&&&.&&&
EUROUTPUT=1 2.147 2.147 2.034.957

 Introduction To UniBasic 60

 UniBasic Reference Guide

Decimal Points

A field can contain a period for an item’s fractional portion. The fractional portion will then follow and be truncated to
the number of digits specified. Only numeric descriptors (#&*) can follow the period, and all are processed as a
character. For example:

Format: ##.### ##.# ##.&& **.**
 74.000 74.0 74.00 74.00
 16.408 16.4 16.40 16.40

Both the programming and output of commas and decimal points is controlled by the environment variables:
EURINPUT, EUROUTPUT. These parameters let you change the programming and output style respectively of
comma and decimal point fields. You may set either or both parameters for your desired effect.

See also: the Environment Variable: CURRENCY

EURINPUT=1 ##,### ##,# ##,&& **,**
EUROUTPUT=1 16,408 16,4 16,40 16,40

Post Signs;

Post signs are only applicable to BITS programs. A field can be terminated with a post sign designator. The post signs
are:

 Sign output if item >=0 output if item <0

 + + if item >= 0 - if item < 0
 - space if item >= 0 - if item < 0
 DB DB if item >= 0 CR if item < 0
 DR DR is item >= 0 CR is item < 0
 CR two spaces if item >= 0 CR if item < 0

Format: +##.##+ ##.##- ##.##CR ##.##DB
 +47.24+ 47.24 47.24 47.24DB
 - 6.27- 6.27- 6.27CR 6.27CR

A sign can be output before and after an item. Page numbers using the field ---&- are output as -#- if the page numbers
are made negative. For example, page number can be -7- or -10-.

Numeric Split

Numeric Split is only applicable to BITS programs. A numeric item, such as a part number, date or government Social
Security Number, can be separated automatically (without dividing into separate numerics). The descriptor ! causes a -
to be output when significant. For example:

Format: &&&!&&!&&&& ##!##!## &&&!&&&&&&!&&
 130-42-1427 3-21-85 047-000065-24
 000-06-1217 12-24-86 050-000036-03

 Introduction To UniBasic 61

 UniBasic Reference Guide

String Operator TO

The TO operator is evaluated Left-to-Right and is used to specify part of a string expression. The general form is:

 string expression TO string expression

The string expression on the left is evaluated first and referred to as the source. Next the right string expression is
evaluated and shall be referred to as the pattern. The resulting string expression is generated by copying all characters
from the source up to and including the pattern string. If the pattern is not found within the source, then all characters
of the source become the resulting string expression.

For example, if you have a large block of text and wish to find the first sentence, you might use this operator to find the
result of:

 str.var TO ". " (Locate first period followed by 2 spaces).

Numeric Expressions
Numeric expressions are performed in either integer or 6-word decimal floating point. Each argument is unpacked into
the floating point register where all operations occur. The final result is maintained in the highest precision until the full
expression is computed. The result is finally converted into the format requested by the operation. This may include
truncation to an integer, or converted to the precision of a variable for storage of the result. An error can occur if the
destination precision is not large enough to store the final result.

For example:

 5 + 4
 P * 10
 VAL (A$)

String Expressions
A string expression str.expr is considered any group of string variables, literals, functions, CRT expressions and/or
operators to be concatenated (linked together) returning a string result. For example:

 T USING "#####"
 A$ + B$
 "Processing element: " + A$

All statements may incorporate the use of string or numeric expressions as long as the final result matches the format of
the statement. What this means, is that any statement (not just IF, PRINT and LET) that previously required a str.lit, or
str.var, may now contain any legal string expression. A variable is required only when a statement returns data into the
variable such as LET, INPUT, READ, etc. Numeric and string conversion is performed across an equal sign of the
LET statement, or through the VAL, STR, ASC and CHR functions.

The exact interpretation of the + operator is determined by the operand that precedes it, so that:

 Introduction To UniBasic 62

 UniBasic Reference Guide

 LET B$=A$+A

implies string concatenation, and the num.var A is converted to string automatically.

However, the reverse is not true:

 LET B=A+A$

implies addition but is an invalid expression. In this case, the conversion of A$ must be done explicitly, e.g.:

 LET B=A+VAL(A$)

String concatenation converts a numeric operand on the right from numeric to string. Numeric expressions do not
perform automatic conversion of string elements.

Note: The IRIS string concatenator ',' may only be used in IF and LET statements. To utilize string
expressions in all other statements, use the concatenator '+'.

 Examples:

 100 OPEN #0, P$+F$+"."+STR(SPC(5))
 200 ON VAL(A$) GOTO 100,200,300
 300 PRINT USING A$+".##"; D, E, F

Rules Governing String Processing
When using string items within a program, that is any str.var, str.lit, crt.expr, functions returning string values or
str.expr, the following rules are applied to operations:

• A string may contain any of the ASCII codes listed in Appendix A.

• A zero ASCII byte is used to terminate any string segment.

• str.lits using the form \xxx\ to represent ASCII characters perform an automatic toggle of the high-bit to insure
compatibility with IRIS and BITS applications externally, and Unix internally. When Binary Input or Output is en-
abled, this toggling is disabled for use in communications and raw binary processing.

• String variables must be DIMensioned, COMmon, or CHAIN READ prior to use. They may not be re-
dimensioned to other than the original declared size.

• String variables may be subscripted to select a starting and ending character position within a string. A single
subscript selects a starting point only. All strings terminate upon the occurrence of a zero-byte terminator, the
second subscript, or the physical dimension of a string.

• A full string is defined to be any reference to a string variable in which a single or no subscripts are supplied.

• A sub-string is defined to be any reference to a string variable using 2 subscripts.

 Introduction To UniBasic 63

 UniBasic Reference Guide

String Assignment;
When assigning data to a string using LET, the following rules are applied when using full strings:

• The source is truncated to the size of the supplied destination.

• A zero-byte terminator is inserted in the destination if the source is shorter than the destination.

• A zero-byte terminator may be placed within a string by specifying a single subscript in the form: str.var[x] = "".

When assigning data to a string using LET, the following rules are applied when using sub-strings in IRIS applications:

• When the source is shorter than the destination, the remaining characters within the subscripts are deleted.
Characters following the subscripted portion are shifted down to immediately follow the shorter source. (IRIS
Mode).

• When a zero-byte is overlaid in the destination, it is pushed forward to the first character position following the
length of the source copied. This may cause a zero-byte to be placed into the first character position beyond the
second subscript if the source exactly fills or is larger than the destination.

When assigning data to a string using LET, the following rules are applied when using sub-strings in BITS applications:

• When the source is shorter than the destination, the second subscript is ignored. Only the number of characters
supplied in the source are copied to the destination.

• When a zero-byte is overlaid in the destination, it is pushed forward to the first character position following the
length of the source copied if and only if the source string does not completely fill the destination. No bytes outside
the supplied subscripts are altered.

When assigning data to a string using LET, the following rules are applied when using sub-strings in IRIS applications
running with the environment variable STRING=HAGEN set:

• When the source is shorter than the destination, the second subscript is ignored. Only the number of characters
supplied in the source are copied to the destination. No shuffling down or overlaid zero-byte operations are
performed.

Other special string functions are available to the application:

• Concatenated strings are evaluated and treated as a single source string for LET. IRIS programs concatenate strings
in LET or IF statements by placing a comma between each str.var, str.lit, string function or crt.expr. For BITS ap-
plications, the concatenation operator + is used. The + operator may also be used for IRIS applications in
statements other than LET or IF.

• A string may be completely filled with a single character (or group of characters) except zero-byte terminators using
the form:

• str.var = str.expr (+ | ,) str.var, i.e.: A$=" ",A$ to space fill.

• A zero-byte terminator is placed into a str.var by supplying a single subscript for the destination, and a null str.lit as
the source, i.e. str.var = "". To fill a str.var with zero-byte terminators.

 See also: CALL 57 and CALL 60

 Introduction To UniBasic 64

 UniBasic Reference Guide

• Characters beyond the zero-byte terminator may be operated upon by specifying a starting subscript beyond the
zero-byte. Use the LEN function to determine the length of any sub-string.

• A number of special CALL Statements are available for string processing.

• Numeric data may be converted to string using the LET Statement, or in some cases the functions STR and CHR.

 UniBasic Files 65

 UniBasic Reference Guide

UniBasic Files
This section documents the types and usage of data files within UniBasic applications.

UniBasic differs from IRIS and BITS in its internal representation of numeric and string data within variables and files.
These differences, once understood, provide the user a totally compatible platform for moving IRIS and BITS programs
and data files without sacrificing the new features of Unix.

ASCII characters stored internally conform to 7-bit ASCII industry standard. 8-bit ASCII characters are reserved for
graphics, and crt mnemonics.

IRIS and BITS store characters as 8-bit strings in exactly the reverse format. All printable characters have bit-8 set, and
7-bit codes (less than 2008) are used for printer (or CRT) functions. A carriage return is represented as \215\ and code
\015\ represents CRT function #158.

Character processing is performed as follows:

Characters input from the terminal port are passed exactly as received. Most systems are configured to strip the parity
bit which, in effect returns 7-bit characters to the system. Unless you are sending/receiving binary data, verify that the
port is configured to strip this parity bit. The Unix command: stty -a command will display istrip if parity is being
stripped, or -istrip if 8-bit data is allowed.

Program statements, commands and filename comparisons must be performed using 7-bit characters for consistent
operation.

When a str.lit is entered, printable characters are stored as received. Characters entered using the \xxx\ octal
representation form are high-bit toggled except \0\ and \200\; i.e. \201\ is stored internally as \001\, and \001\ as \201\.
During display (such as LIST), the data is again toggled for display in the familiar form.

During output, printable characters less than \200\ are displayed directly. CRT translation is performed on all bytes
greater than \200\ sent to the screen. When these characters are transmitted to a file or device, no translation is
performed. Later screen display of this data performs the CRT translation, or a supplied lptfilter is available to provide
translation for device independence.

Since input characters are stripped and str.lits toggled internally, the application runs unmodified. Any \215\ in a
program is stored and output as a [RETURN], and \015\ is stored as \215\ invoking CRT function #15.

When obtaining the decimal ASCII code of a character using ASC or CALL $STRING, the internal value is again
toggled to match the IRIS/BITS format. A [RETURN] is the value 14110. CRT codes are returned as codes less than
128. This facility permits most applications which check the ASCII range of a character to operate transparently.

When generating ASCII data using the CHR or CALL $STRING functions, your supplied code is toggled to the new
internal format. In this way, the code 141 still generates a [RETURN] for your application.

This internal toggling is virtually transparent to all Business Application Programs. All normal comparisons of strings,
input and records work as before. String comparison is always performed in 8-bit format to ensure compatibility when
operating upon binary strings.

 UniBasic Files 66

 UniBasic Reference Guide

To facilitate operation with true binary data, the toggling feature for ASC, CHR, and CALL $STRING is automatically
disabled when Binary Input or Binary Output modes are enabled. Binary Input and Output modes are available using
SYSTEM and the IO mnemonics

Note: System or special applications that manipulate binary data using CHR, ASC or $STRING may yield
unpredictable results when Binary Input/Output is not enabled since the resulting top bits will be
toggled.

To pack or unpack binary data when not operating in Binary mode, use the CONV statement. If this statement is not
acceptable, a CALL is provided to toggle data within a string according to the same rules described above to minimize
changes to these special system programs. For example:

 A$ contains a binary string:
 CALL 60,3,A$!Toggle the top bits
 ...proceed as normal, processing the data with ASC/$STRING

 A$ contains binary data built from $STRING or CHR function
 CALL 60,3,A$!Toggle data into actual binary

Introduction to Files
A file is a pre-selected area of the disk to be considered a single data storage entity. Files allow data to be stored and
retrieved by programs, and retain their data indefinitely. A device is an external storage medium such as a hardcopy
printer, magnetic tape, or terminal screen.

Maximum file size is limited by the host operating system. Usually, a file may contain a maximum of 231 bytes. On
many operating systems, files can be created as “huge” files to exceed this limit. Some systems may have a limit set
upon the number of blocks a file can contain. This value is available using the command ulimit. Following
installation, verify that this value is not restrictive for your applications.

All files are logically divided into equal sections called records. Record division allows data to be accessed via its
record number. Each record is made up of a selected number of bytes (characters), and all records in a given file are of
equal length. When a file is created, the creator specifies this record length in bytes or words (byte-pairs). Data records
may be any even length from 2 to 65534 bytes. All files have a record length, whether accessed by record or not. Saved
BASIC programs, for example, are given an arbitrary record length of 65534 bytes.

Record numbers usually start at zero, meaning a file with five records has record numbers 0, 1, 2, 3, and 4. Individual
bytes within each record are also numbered from zero. BASIC statements allow access to specific bytes within any
record by giving a byte displacement.

To access a file, a link is made to the file using a channel number in the range 0 to 99. All communication is via the
channel number linked to the file or device. The link is made using one of the statements BUILD, CREATE,
EOPEN, OPEN, or ROPEN.

 UniBasic Files 67

 UniBasic Reference Guide

Several types of data file structures are supported, each with its own rules governing access and modification. The types
of files available to UniBasic are:

 Universal Data Files
 Contiguous Data Files
 Tree-Structured Data Files
 Formatted Item Files
 Indexed Keyed Files
 Saved BASIC Program Files

UniBasic can also read and write dL4 Portable Indexed Contiguous, Contiguous, or Formatted files. All other files are
assumed to be Text Files and are accessed according to the rules contained herein.

Filenames and Pathnames
A filename is the name given to a file, and is made up of lower-case letters, digits, dash (-) or periods (.). Upper-case
characters are converted to lower-case automatically. Other characters, although allowed by Unix are not permitted in
standard UniBasic filenames.

A pathname is a series of Unix directory names separated by /, terminated with a filename, such as: /usr/ub/23/payroll.

Standard filenames are converted to a series of pathnames, appended one at a time to the entries of the LUST (Logical
Unit Search Table) until a match is found.

Filenames beginning with / are assumed to be full pathnames and are passed directly to Unix. LUST is not used, and no
conversion is performed.

The form pack:file is converted into pack/file. Account branch characters (%&#, etc) and account [grp-usr] suffixes are
discarded.

Filenames in the form 0/filename are converted into sys/filename; files in the form lu/filename remain unchanged
excepting the omission of leading zeros in the lu number, i.e. 023/filename becomes 23/filename.

To replace an existing filename, append an ! character to the filename.

File Attributes, Protection and Permissions
Access to files on the system is controlled by the file attributes or permissions given by the creator for access to a file by
other users on a system. The default attributes under Unix are made up of 3 octal digits. The first digit affects the
owner/creator of the file. The second digit controls other users in the same group, and the third digit controls access to
all other users. The digits are as follows:

 4 Allows reading of a file
 2 Allows writing to a file
 1 Allows execution of a file (for shell scripts and C programs)

The digits are combined to select the desired protection. A 6, for example permits reading and writing to a file; 666
allows reading and writing by all levels. The default permission (when none are specified) is 666 permitting reading and

 UniBasic Files 68

 UniBasic Reference Guide

writing by all users. To facilitate a different default protection (such as IRIS <77> protection against all but owner),
change the umask setting in /usr/ub/.profile. This mask is a 3-digit mask that removes permission digits passed on
CREATE and BUILD. The first digit should be 0 to allow the owner unlimited access to the file. The second and third
digits control masking for other users in the same group and other users in different groups as follows:

 4 Remove read permission.
 2 Remove write permission

To simulate IRIS default <77> protection, set umask to 066.

Using IRIS Protections

IRIS protections <pp> are processed as follows. A 6 is selected for the owner/creator, the first digit is applied to users in
other groups, and the second digit is applied to users in the same group. Note that privilege levels are not supported in
Unix; the same group equates to the same privilege, and other users in other groups applies to users at lower privilege
levels.

The IRIS digits are mapped as follows:

 4 Remove Read permission
 2 Remove Write permission
 1 Ignored

A <77> protection results in the Unix protections <600>, <70> maps to <660> and <33> to <644>.

Using Unix Permissions Directly

A 3-digit permission value may be passed directly to Unix. The BUILD and CREATE statements as well as the
CHANGE utility provide for specifying a full 3-digit protection value. The permissions are supplied using the format:
<ppp> as defined above.

See also: File Attributes, Protection and Permissions.

BITS Attributes

BITS attributes <PRWEO> may be specified and are converted into the appropriate Unix permission.

 P Set default 666 protection code
 R Remove Read permission at all levels except owner
 W Remove Write permission at all levels except owner

Other BITS attribute letters, such as: D, S, G, A, and B are accepted and ignored.

 UniBasic Files 69

 UniBasic Reference Guide

Supplemental Protection Attributes

Additional letter attributes are supported and must be placed before any numeric selections within the <> brackets.

 U Build a Universal data file which contains IRIS style BCD data. Unlike other IRIS BCD files, these
data files are the only ones that are platform independent.

 See also: Universal Data Files, PREALLOCATE environment variable and IRIS BCD Data Files.

 H Build a “huge” Universal data file. A “huge” file is a Universal data file that supports data or index
parts larger than 2 gigabytes in size. Huge files are not supported on some older operating systems.

 Q Build the file to contain IRIS style BCD data. Valid for data files only. Forces numeric data to be
stored in IRIS Binary-Coded Decimal form. Q is used for files transferred from IRIS without record
conversion..

 See also: PREALLOCATE environment variable and IRIS BCD Data Files.

 K Build the file to contain 8-Bit IRIS/BITS style binary keys. Data is toggled to 7-Bit format whenever
a key is retrieved into a string variable, and into 8-Bit format when new keys are inserted. This
attribute is required when a file has mixed key values both above and below \200\. Normal ASCII
keys do not require this special attribute. When converting files from IRIS, options are available to
force this condition.

 See also: PREALLOCATE environment variable and IRIS BCD Data Files.

 F The program is an IRIS BASIC program. This attribute causes the program to obey IRIS rules for
encoding syntax of BASIC Statements and Runtime considerations. This attribute is set automatically
during SAVE commands, and has no effect if set on data files. IRIS rules are applied for all runtime
and file-access statements.

 E The program is execute-only and cannot be listed. Valid for saved BASIC programs only. The
program may be executed, but all channels are closed and the program is erased from the user’s parti-
tion when aborted or completed. This attribute is used for system command programs written in
BASIC, such as LIBR.

 O The program is an overlay. When an overlay program is executed from command mode, UniBasic is
forked creating a child process to run this command. Upon termination for any reason, the child pro-
cess dies, and remaining type-ahead is returned to the original program. The original program is
restored as if the Overlay program was never called. Specifically, overlay protection is used for
BASIC program processors such as LIBR, QUERY, SCAN, etc.

 J Build the file to contain IMS style BCD data. Valid for data files only. Forces numeric data to be
stored in IMS Binary-Coded Decimal form. J is used for files transferred from IMS without record
conversion.

 Y Flag the file as an IRIS polyfile. Perform functions in bytes instead of words, and set a first real data
record of zero.

 Z Force usage of BITS numeric and string data in a “Huge” file. Warning: files using BITS data are not
portable between platforms.

 See also: PREALLOCATE environment variable and IMS BCD Data Files.

 UniBasic Files 70

 UniBasic Reference Guide

Accessing Data Files Through a Channel
Once a channel link is established, file access may be performed. The following statements are used to control channel
links, and transfer data to and from files.

BUILD # Build a new data or Text File.
CLEAR # Clear an open channel (same as CLOSE).
CLOSE # Close an open channel.
CREATE # Create a new data file.
EOPEN # Exclusively open a file for single access.
INDEX # Maintain the index portion of a file.
INPUT # Input ASCII input from a channel; BITS only.
MAT READ # Read {lock} a matrix / binary string.
MAT WRITE # Write {lock} a matrix/binary string.
OPEN # Open an existing file for reading and writing.
PRINT# Redirect normal PRINT format to a channel.
RDLOCK # Read and lock a record.
RDREL # Read a relative 512-byte block from a channel.
READ # Read {lock} data from a channel.
REWIND # Reset the channel to the first record and byte.
ROPEN # Open a file for Read-only, ignore locks.
SEARCH # Maintain the index portion of a file.
SETFP # Set the file position for sequential transfers.
UNLOCK # Unlock any locked record on a channel.
WRITE # Write {lock} data to a channel.
WRITE #x;; Unlock any locked record on a channel.
WRLOCK # Write and lock a record.
WRREL # Write a relative 512-byte block to a channel.

Note: Data transfer is governed by the file type for IRIS applications, and by the statement used for BITS
applications. Mixing statement types can have adverse effects on an application. Before using any
class of statement, refer to BASIC Statements and Appendix D CALLS in this guide for additional
information.

 UniBasic Files 71

 UniBasic Reference Guide

Channel Expression - chn.expr

SYNOPSIS:
STATEMENT #channel {,record {,byte displacement {,time-out}}};expr.list {;}

DESCRIPTION:

STATEMENT specifies any BASIC statement that performs an operation to a file or device, as described previously.

channel is any num.expr which, after evaluation is truncated to an integer and used to select one of 100 possible open
files. The channel must be in the range 0 to 99. Special channels are reserved for system use. Channel (-1) contains
the open BASIC program currently loaded. There is no open channel if this is an unsaved program. Channel (-2) is
used for special operations such as DUMP, LOAD and MERGE.

The channel may be the only parameter if it is followed by a semi-colon, i.e. #3;. Additional parameters are parsed
until the first semi-colon is seen. An error occurs if more than (4) parameters are supplied and a semi-colon
terminator for the channel expression is not specified.

The optional record is any num.expr which, after evaluation is truncated to an integer and used to select a starting
record number for the transfer. If the record expression is omitted, transfer will be sequential based upon the file
type, statement and emulation (IRIS/BITS) in force. Sequential access is always from the last byte transferred for
BITS applications.

When sequentially accessing records in IRIS applications, the following rules apply:

 RECORD ACTION PERFORMED

 omitted The record number used for the last access to this channel is incremented and used to select
the record. This mode reads sequential records of a file.

 -1 Performs identically to 'omitted' except that it serves as a place holder so that a byte
displacement may be specified.

 -2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

The optional byte displacement is any num.expr which, after evaluation is truncated to an integer and used to specify
the starting point in the record for the transfer. If the byte displacement is omitted, transfer begins with byte 0 of the
selected record.

The optional time-out expression is any num.var which, after evaluation is truncated to an integer and used as the
maximum time (in tenth-seconds) to wait for the selected record to become unlocked. If, after the specified time-out
the record is still locked, the error Selected Record is Locked is returned to the program. If the time-out is (-1) or
omitted, default record lock retry is governed by the environment variable LOCKRETRY. If this value is zero, retry
continues indefinitely. A non-zero value specifies the number of five-second periods to wait prior to issuing the
Selected Record is Locked error. Any time-out is terminated immediately upon the record becoming available.

The expr.list may contain a list of variables or expressions for the operation.

If the statement is terminated with a semi-colon, and the running program is an IRIS program, the selected record is
unlocked at the termination of the statement. Otherwise the record remains locked until another operation is
performed unlocking the record.

 UniBasic Files 72

 UniBasic Reference Guide

ERRORS:

Channel is not opened
Channel is already opened
Illegal Channel Number
Selected Record is Locked

See Also: CHF function, CHN function, Accessing Data Files Through a Channel, Introduction to Files

Record Locking
Record locking is a feature of the file structure to restrict access of a given record to a single user. Under Unix, this is
accomplished by first checking whether any other user has a lock on the same record on the same file. If not, the record
is locked while the statement performs its transfers. Upon completion of the transfer, the record is unlocked unless the
statement requested a continuing lock.

Record Locking is essential in applications where two or more users are trying to update the same information
simultaneously. The first user might be performing an inventory receipt, while the other is taking stock to fill an order.
Applications must be written to ensure that all updating operations are performed using Record Locking. When two or
more users attempt access, the first is given access, and additional users are suspended (or an error is given) until the
record is available.

For example, the first user is updating stock received into inventory. The part number is entered and its record is
locked. The second user entering that part number for an order is suspended. The first user enters the amount received
and the record is updated and unlocked. The second user continues unaware of the dual access. This assumes of course
that the first user didn't leave the record locked indefinitely.

A deadly embrace may occur when two or more users are attempting to access a record which is locked by the other.
Both users wait indefinitely for the other to unlock the record. For example, user 1 has locked the ABC Company
customer record and is attempting to read the parts file record for wool carpet. Meanwhile, user 2 has already locked
wool carpet and tries to read ABC Company. Each waits indefinitely for the other. Some Unix systems return a system
error (negative BASIC error) when a deadly embrace is detected.

You can avoid infinite suspension of a program by specifying a time-out or period of time (in tenth-seconds) to wait for
a locked record. If, after that amount of time the record is still locked, an error is generated to the program. For older
applications, set a system-wide time-out default selected when no individual time-out is specified in the statement.

The Environment Variable LOCKRETRY specifies this delay. If the value is undefined (or zero), programs wait
indefinitely for locked records (IRIS 7 style). A non-zero value indicates the number of five second intervals to wait
before generating an error to the application.

To perform an operation and lock a record in IRIS mode, simply omit the optional ';' at the end of the statement. To
perform the operation and unlock the record, include the trailing ';'. To unlock any previously locked record on a
channel without performing a transfer, issue the statement: WRITE #channel;;

In BITS mode, the statement controls Record Locking (READ, WRITE, PRINT, INPUT) for operations without
locking, and RDLOCK/WRLOCK for operations requiring locking. To remove any outstanding locks on a channel,
the UNLOCK # statement is used.

 UniBasic Files 73

 UniBasic Reference Guide

Note: Any locked record on a channel is automatically removed on any of the following:

 Closing the channel.
 Trailing semi-colon on the last operation (IRIS).
 Access to the same record without again locking.
 Attempted access to any other record.

Only a single record may be locked on any given channel. If you need to lock several at once, you
must open the file on separate channels.

Text Files
A Text file is a file comprised of ASCII characters terminated by a zero-byte. For purposes of random access, Text Files
are assumed to have a record length of 512 bytes. Data begins in the first byte of the file and there is no special
UniBasic header. Lines of text are separated by the Unix new-line (\12\) character. When Text Files are created, the
data is stored in Unix 7-bit ASCII format to ensure compatibility with all other Unix text editors, word processors or
other programs.

Creating Text Files

Text files are created using the BUILD statement. Standard Unix files are built using 7-bit data without any special
UniBasic header information. All Text files are accessible to any Unix text processor or command.

Accessing Text Files

Text files are typically accessed sequentially. When data is written to a Text File, carriage returns are converted into
new-line characters. A column count is maintained for the channel. Printable characters increment the column; return,
new-line or form-feed resets the counter to zero.

When TAB functions are used to the open channel (i.e. writing to a device such as a printer), the column is kept
separately from the column count of the screen. If writing to a file, a zero byte terminator is always maintained at the
end of the file. A zero byte is written and the file pointer is decremented such that each subsequent write operation
overwrites the trailing zero byte, and appends a new zero-byte at the end-of-file.

When reading data from a Text File, End-of-File is signified by the occurrence of a zero byte, regardless of whether data
exists beyond the zero-byte. BITS programs generate an End of File error (88), and IRIS applications simply receive a
null (empty) string.

When BITS applications read from Text Files, the normal statement used for sequential access is INPUT. Input
terminates on new-line or form-feed. No terminator is placed into the string. An empty string is simply a blank line in
the Text File. Carriage returns are stripped from the file and ignored.

 UniBasic Files 74

 UniBasic Reference Guide

When IRIS applications READ from Text Files, a null string indicates the end-of-file. Otherwise, carriage returns are
stripped from the file, and new-lines terminate the READ . All new-lines are converted into the string as \215\ carriage
returns. Additional special modes are available for IRIS applications reading Text Files. The optional record controls
the type of operation to perform:

 Record Action Performed

 omitted Access the next sequential byte of the file up to the first new-line character or size of the
string (whichever is smaller). Replace the new-line with \215\.

 -1 Same as 'omitted'.

 -2 Transfer characters up to the DIMensioned size of the string variable. Convert new-lines to
\215\ but do not terminate the transfer until end-of-file or filling the string.

Text files may also be accessed using MAT READ and MAT WRITE statements.

Saved BASIC Program Files
A SAVED BASIC program file contains p-code compiled BASIC programs stored by the SAVE or PSAVE commands.
Each program is stored with several flags indicating the type of program (IRIS or BITS), and encryption status. For
further information on application program protection and encryption, see the PSAVE command.

Newly created programs are of the type IRIS or BITS based upon the default BASICMODE environment variable or
command (NEW, NEWB, or NEWI) issued. This option controls statement syntax and run-time operation and cannot
be changed for the life of the program file.

A program file is converted to a Text File using the DUMP command.

When converting a Text File into a program file, verify that your default program mode (IRIS or BITS) is set via the
BASICMODE environment variable, the proper NEW command, or by issuing the proper GET command for BITS
mode.

Contiguous Data Files
Even though the Unix systems do not support Contiguous files in the traditional internal sense, compatibility is provided
for applications designed to use these files.

Contiguous files utilize a fixed-length record, specified during creation. Each record contains the identical number of
bytes. The total number of records to be within the file is stored within the file's header during creation.

The value of the PREALLOCATE environment variable is used during file creation and globally during execution of
programs performing Contiguous file access. Refer to this documentation in order to define the options properly for
your applications. PREALLOCATE provides features including pre-writing all records to null, limiting expansion, and
eliminating system file structure gaps in the file.

A Contiguous file will return as its number of records (CHF/CHN functions), the greater value of its current physical
size, or the size in records specified during creation.

 UniBasic Files 75

 UniBasic Reference Guide

Access to any record within the valid CHF/CHN range with either READ or WRITE statements is permitted. If the
record is beyond the current physical size, the file is extended unless this feature is restricted using PREALLOCATE.
To expand a Contiguous file, simply write to any record higher than the current size.

During expansion of the file, all intervening records are written (with zero bytes) from the current physical size up to
and including the new record. To prevent the writing of all intervening records, set PREALLOCATE accordingly.
This automatic filling in of records is to prevent Unix from reporting the file as sparse (gaps). Sparse files are usually
considered corrupted when the file system is checked, although they are perfectly valid.

Creating Contiguous Files

Contiguous files are created using the BUILD or CREATE statements. In addition, the FORMAT command may be
used from command mode to create the file. A Contiguous file may have any number of records with a maximum
record length of 65534 bytes (32767 words). Contiguous files may be built as Universal files if the PREALLOCATE
8192 (16384 for “huge”) flag is set or if the <U> or <H> attributes are specified.

Accessing Contiguous Files

Contiguous files are accessed by supplying the record and byte displacement. Access may cross a logical record
boundary. Care must be taken to ensure that your transfers are within the specified record or data in subsequent records
may be damaged.

When transferring data to a Contiguous file, the record, and byte displacement are used to specify the starting point for
the transfer. All items in the var list are transferred sequentially. The following table illustrates the optional use of the
supplied record.

 Record Action Performed

 omitted The record number used for the last access to this channel is incremented and used to select
the record if the program is an IRIS program. BITS programs resume transfer at the first byte
not transferred by a previous operation. This mode reads sequential records of a file.

 -1 The record number used for the last access to this channel is incremented and used to select
the record . This mode permits the selection of a new byte displacement within the in-
cremented record.

 -2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

Tree-Structured Data Files
Tree-structured files utilize a fixed-length record, specified during creation. Each record contains the identical number
of bytes. These type of files are preserved for compatibility with BITS applications. They provide a free-format record
in a dynamically expandable structure.

 UniBasic Files 76

 UniBasic Reference Guide

A Tree-structured file will return as its number of records (CHF/CHN functions), its current physical size in records.

Access to any record within the valid CHF/CHN range with either READ or WRITE statements is permitted. If the
record is beyond the current physical size, the file is extended.

During expansion of the file, all intervening records are written (with zero bytes) from the files current physical size up
to and including the record being accessed. This automatic filling in of records is to prevent Unix from reporting the file
as sparse (gaps). Sparse files are usually considered corrupted when the file system is checked, although they are per-
fectly valid.

Creating Tree-Structured Files

Tree-structured files are created using the CREATE statement. A Tree-structured file may have any number of records
with a maximum record length of 65534 bytes (32767 words).

Accessing Tree-Structured Files

Tree-Structured files are accessed by supplying the record and byte displacement. Access may cross a logical record
boundary. Care must be taken to ensure that your transfers are within the specified record or data in subsequent records
may be damaged.

When transferring data to a Tree-structured file, the record, and byte displacement are used to specify the starting point
for the transfer. All items in the var list are transferred. The following table illustrates the optional use of the supplied
record.

 Record Action Performed

 omitted The record number used for the last access to this channel is incremented and used to select
the record if the program is an IRIS program. BITS programs resume transfer at the first byte
not transferred by a previous operation. This mode reads sequential records of a file.

 -1 The record number used for the last access to this channel is incremented and used to select
the record . This mode permits the selection of a new byte displacement within the in-
cremented record.

 -2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

Formatted (Item) Data Files
Formatted ITEM files are sequential data files utilizing a fixed-length record and fixed record format. Each record is
pre-defined with respect to the data record definition. The format is initialized through creation and is maintained for
the duration of the file's existence. When initially created, only a single record (Record 0) is within the file.

The record length can be up to 65534 bytes in length. A null record is returned when access is made to a record below
the maximum record number, but not physically in the file.

 UniBasic Files 77

 UniBasic Reference Guide

The value of the PREALLOCATE environment variable is used during file creation and globally during execution of
programs performing Formatted Item file access. Refer to this documentation in order to define the options properly for
your applications.

A Formatted file will return as its number of records (CHF/CHN functions), the first record not contained within the
file. If your files grow dynamically using this function, no empty records exist in the file. If you READ a record
beyond the current number of records in the file, an error is generated (Illegal Record or End-of-file). When you
WRITE a record beyond the current number of records, the file is expanded automatically.

During expansion of the file, all intervening records are written (with zero bytes) from the file's current physical size up
to and including the record being accessed. To prevent the writing of all intervening records, set PREALLOCATE
accordingly. This automatic filling in of records is to prevent Unix from reporting the file as sparse (gaps). Sparse files
are usually considered corrupted when the file system is checked, although they are perfectly valid.

PREALLOCATE may be set to return a Record-Not-Written error if required by the application. When defined, each
read operation is checked for a null record. If the record contains all zero-bytes, the Record Not Written error is
returned. When not defined, null records are returned. This function slightly degrades read access to Formatted files.
Set this option only when your application expects the Record Not Written error in the middle of the file.

Creating Formatted ITEM Files

Formatted ITEM files are created using the BUILD or CREATE statements. In addition, the FORMAT command may
be used from command mode to create the file. A Formatted Item file may have any number of records with a maximum
record length of 65534 bytes (32767 words). Formatted ITEM files may be built as Universal files if the
PREALLOCATE 8192 (16384 for “huge”) flag is set or if the <U> or <H> attributes are specified.

To create a Formatted Item file within an application, write to record zero a list of variables to sequential item numbers.
The type and DIM of each variable is recorded in the format map. When a numeric variable is written, its precision is
also stored in the format map. When a string variable is written, its DIMensioned size is incremented and then rounded
up to an even number of bytes. If a MAT operation is performed, a Binary Item is created using the actual
DIMensioned size. Strings are rounded up (not incremented first), and numerics occupy the entire size of the specified
variable, array or matrix. The actual data within the variables is also written to the record after the item is defined in the
format map.

An error is generated if items are written in other than sequential item number order starting at 0, or when you exceed
128 items. Once an item is defined, its type, precision or length may not be changed.

Accessing Formatted ITEM Files

Formatted files are accessed by supplying the record and item number (byte displacement). Access cannot cross a
logical record boundary.

When transferring data to a Formatted Item file, the record and item number are used to specify the starting point for the
transfer. All items in the var list are transferred, and each must match the pre-defined record layout in the format map.

If an Item is defined as string, only a str.var may be transferred. If the Item is numeric, a conversion is performed when
the variable precision does not match the item's definition. Data is converted to the precision of the destination; var
when reading, item when writing. An error occurs if the destination precision is too small to hold the numeric value.

 UniBasic Files 78

 UniBasic Reference Guide

Binary items are accessible using MAT statements. You can, however transfer any str.var, num.var, mat.var or
array.var into a binary field. No conversion is performed. Care must be exercised to ensure that numeric data is
transferred into variables of the same precision used when written or the resulting data will be indistinguishable to the
application..

The following table illustrates the optional use of the supplied record.

 Record Action Performed

 omitted The record number used for the last access to this channel is incremented and used to select
the record. This mode reads sequential records of a file.

 -1 Performs identically to 'omitted' except that it serves as a place holder so that a byte
displacement may be specified.

 -2 The record is reset to the same record number used during the last access to this channel.
This, in effect re-transfers the same record.

Indexed Data Files
An Indexed Data File is any Contiguous Data File which is defined to contain a companion ISAM Key file. Access to
data records is identical to a standard Contiguous Data File, except write operations may not cross a record boundary
unless enabled by PREALLOCATE. The companion ISAM (Indexed Sequential Access Method) file holds keys and
pointers to data within the Contiguous Data File. The use of an Indexed file allows an application to rapidly locate data
in a large database. Even when a file contains several hundred thousand data records, a specific record can be located
instantly.

The environment variable PREALLOCATE options affecting Contiguous Data Files also apply to Indexed Data Files.
In addition, four options are provided specifically controlling Indexed Files:

PREALLOCATE option 128 prevents dynamic expansion beyond the number of records specified at creation. This
limits the number of active records a user may insert using the SEARCH or INDEX statements. When enabled, a new
record is not allocated when the first available record is greater or equal to the number of records specified during
creation. To expand the file, WRITE to a higher limiting record number. The record number must be greater or equal
to the value returned by CHF or corruption of the delete list may occur! Note, this operation is prevented if
PREALLOCATE option 2 is enabled for this session.

PREALLOCATE option 256 forces a check prior to deleting a record using SEARCH or INDEX. If the record is
already deleted (not in use), an exception status is returned. This option is required to simulate BITS and Polyfiles bit-
map ability to delete records whether they are in use or not.

PREALLOCATE option 512 allows a WRITE to cross an ISAM record boundary. Normally, an error is generated
when a WRITE to an indexed file crosses a record boundary. Setting this option should only be done when the applica-
tion can be certain that all records to be written are already allocated, otherwise the file's deleted record list will be
corrupted.

PREALLOCATE option 4096 prohibits writing to a deleted record. An examination of a record's status (deleted or in-
use) is made prior to performing a WRITE. An error is generated if the record is already deleted, preserving a file's free
record chain.

 UniBasic Files 79

 UniBasic Reference Guide

Indexed files, consisting of optional data records and keys, are maintained by the application program. When new data
is to be added to the file, you request a new record. Automatically, the system expands the file if there are no unused
records. After writing your new data to the supplied record of the file, you insert a key, that is a unique piece of
information tagged to the new record. The key could be a customer name, number; any unique information about the
record. Later, you retrieve the record by simply asking for the record that contains the key.

Each file can have from 1 to 62 separate indices, and each index may have a different sized key (up to 122-bytes). This
allows multiple keys (e.g. name, account number, etc.) to access the same data. Each different index provides a different
way to locate a record.

Any given record may be located by its specific key. When the entire key is not available, a group of records matching a
partial key may be displayed for final selection under program control.

Data records may be read from the file sequentially (in key order), forward or backward for as many different indices as
are in the file. For example, a file keyed by customer name and number could produce a sorted (ascending or de-
scending) report by those fields without any resorting.

When information is no longer needed in a file, the keys are deleted, and the record is returned to the system for later
reuse before extending the file.

Indexed Files are not required to contain data records. A Contiguous Data File is always present with a single data
record, but may be unused. This allows indices to exist separately from the data referenced, or to build key-only files
into existing data bases.

Indexed files utilize the FairCom, release 4.3C c-tree™ file structure, widely accepted in the Unix community for its
reliability, industry standard approach, and extended features.

c-tree 4.3C provides for index node deallocation and b-tree compression when keys are deleted; but only in the single-
user or server environment. Using the full locking capabilities of Unix, compression is allowed in the multi-user
environment.

This is accomplished by granting a user who is deleting a key exclusive index access for the duration of the delete. This
is a requirement of the b-tree compression algorithm. Users performing searches and/or insertions can still access an
index concurrently.

This type of compression has the following benefits:

 • Unused space in an index is kept to a minimum. When an index block becomes empty, it is placed on
the delete list. It therefore be can be reused elsewhere in the index when required.

 • An index that has keys systematically added to the end and deleted from the beginning does not
require the file to grow continuously.

 • Since overall index size is reduced, overall access performance to the index is proportionally
increased, with very large indices benefiting the most.

The added locking permits implementation of the fast search-next and search-previous function in c-tree. Sequential
mode 3 or mode 6 searches through an index now do not require a complete b-tree search. The current key position is
always saved and the next key in sequence is returned, if possible. Concurrent changes to the index are detected, and a
full search is only performed if necessary.

Indexed Data Files are maintained within 2 separate Unix files. These are a standard Contiguous Data File utilizing a
lower-case name (as built), and the ISAM (key) portion in a companion file with the same name using upper-case

 UniBasic Files 80

 UniBasic Reference Guide

characters (i.e. payroll and PAYROLL). In the case of Universal Data files, the ISAM portion companion file has a .idx
extension (i.e. payroll and payroll.idx).

Indexed File Creation
Indexed files are created using the BUILD, CREATE, INDEX and SEARCH statements or using one of the supplied
utilities BUILDXF or MAKEIN. They are initially created with a single data record. The actual number of records
supplied to the statements or utilities is stored in the file header. Indexed files may be built as Universal files if the
PREALLOCATE 8192 (16384 for “huge”) flag is set or if the <U> or <H> attributes are specified.

Note: An ISAM file is made up of (2) separate files; the lower-case filename holds the data portion and an
uppercase filename is created to hold the ISAM portion. If the file is Universal, the ISAM portion will
have the data file name with a .idx extension rather than an uppercase filename. Filenames that do not
contain at least one letter cannot be used for ISAM data files.

During initial creation, you may specify the type of B-Tree balancing to apply to each index. Proper selection increases
performance and minimizes the disk space required to hold keys. The default is to assume random key insertions into
each index. This results in a well balanced tree-structure with nodes split when half full. If your insertions into a
specific directory are sequential (ascending or descending), you may change this parameter to suit your application. An
example of a sequential index is an order/invoice number file keyed by an increasing (decreasing) number or date. By
setting the proper parameter, as much as 25% performance and a 50% reduction in disk space may be realized; See
Summary of SEARCH/INDEX Modes.

When allocating new records, the system first checks for any deleted records that can be reused. If found, they are used
first. When no deleted records exist in the file, the file is expanded using the number of records specified by the
environment variable DXTDSIZ. This value is set to a default of one for the best overall performance. Setting this to a
higher value may increase performance of certain applications.

Similarly, when the ISAM portion of the file is full, it is expanded by the value specified in bytes of the environment
variable IXTDSIZ. This value must be a multiple of 512 or the file may grow erratically. The default value should
never have to be changed.

To maintain a dynamically expandable file structure, c-tree maintains a linked list of deleted records in the data portion
of the file. When records are returned to the system, c-tree checks that you have not returned the same record twice in a
row. It does not normally check to see if you have returned the record in a previous operation. It is therefore possible to
corrupt the Deleted Record Chain if you arbitrarily return records not actually allocated. To prevent this, you can set the
environment variable PREALLOCATE option 256 to force c-tree to check for a record already deleted.

Deleted records are flagged with a single-byte delete-character (ff hex, 3778). Next, a 4-byte pointer is written linking
deleted records together into a delete-list. The top of the delete-list is maintained in the header. It is possible to corrupt
this pointer system if you perform a WRITE # operation to a record following its release as a free record. Many
applications write their own delete-flag into unused records. If your applications require this capability, set the
environment variable ISAMOFFSET to a byte location other than zero (default) such that c-tree has 5 contiguous bytes
available for delete-list maintenance.

 UniBasic Files 81

 UniBasic Reference Guide

C-tree requires internal arrays of data to maintain fast key operations such as search next. For each Indexed file your
application opens, one array element is required for the data portion of the file, and one element for each Index in the
file. A typical application opening 10 files with an average of 3 indices requires (3 + 1) * 10 or 40 positions. If your
application errors trying to OPEN too many ISAM files, change the default value of the environment variable
ISAMFILES.

Indexed files dynamically expand to meet the requirements of your application. Over a period of time, continuous
expansion and contraction of data occurs in your files. For example, at month or year-end, applications typically delete
a large number of keys and records. The Unix system does not provide for a reduction in a file's size. The ubcompress
utility is provided to rebuild the ISAM portion of the file and release unneeded space back to the system. The data
portion is not compressed to insure that all records maintain their positions in the file. Additionally, since not all
applications have the keys within the data records, the process of sorting and rebuilding all indices to point to the
compressed file would be very time consuming.

Accessing an Indexed Data File

An Indexed File is accessed using the SEARCH # and/or INDEX# statements. The parameters are identical and select
operation mode, index to operate upon, and data values passed both ways.

SYNOPSIS

SEARCH #channel , mode , index ; key var, record var, status var
INDEX #channel ; mode , index, key var, record var, status var

channel is any num.expr which, after evaluation is truncated to an integer and used to specify an opened channel
currently linked to an Indexed Data file. A semi-colon may follow the channel or index.

mode is any num.expr which, after evaluation is truncated to an integer and used to specify a mode of operation for the
statement. The following pages provide a detailed list of mode operations.

index is any num.expr which, after evaluation is truncated to an integer and used to specify an Index or Directory (list
of keys) for the operation.

key.var is any DIMensioned str.var which must be DIMensioned large enough to hold the key being operated upon.
An error is generated on search type operations if a key from the file cannot fit into the supplied str.var.

record.var is any num.var and contains (or returns) a value for the statement mode.

status.var is any num.var used to return a status (exception) value to the program. Generally, a zero indicates a
successful operation; non-zero for an exception error. When issuing mode 1 functions, the status.var is set before the
statement to select the miscellaneous information to be returned.

Mode 0 - Index Definition

Generally, Indexed Files are created and structured using the MAKEIN or BUILDXF utility . SEARCH/INDEX mode
0 is used to create an Indexed File during program execution.

Each index in the file is defined using a mode 0 statement specifying the key length. Indices must be defined in
sequential order, beginning with 1, up to a maximum of 62. The index is selected with the index expression.

 UniBasic Files 82

 UniBasic Reference Guide

The record.var defines the key length (2-122 bytes) of the selected index. Key length is expressed in bytes for BITS
Applications and IRIS Polyfiles where a CALL $VOLLINK is issued, or in words (byte pairs) for standard IRIS
Indexed files.

status.var is set upon completion as follows:

 0 Operation successful.

 4 File is not a data file (type Data or Contiguous).

 6 Selected index number is out of sequence.

 8 File already indexed (May not be changed once defined).

 9 Illegal parameter specified. Key length can be 2-122 bytes.

 10 Too many indices specified. Maximum is 62.

To create an Indexed File with two indices of key lengths (bytes) of 6 and 24 requires two mode 0 statements. The first
to index 1 with record.var containing 6; the second to index 2 with record.var equal to 24.

As each index is defined, a mode 8 may be issued to the same index with record.var set to 0 for random insertions, 1 for
increasing keys, and 2 for decreasing keys. If this step is omitted, random insertions are performed.

The data portion of an Indexed File begins with data record zero. If the creation program is an IRIS program, or the
BUILDXF utility is used, the file begins with record one; that is no record zero is logically within the file. To force the
first data record to be other than zero, issue a mode 1, with record.var set to the desired first record number and
status.var set to 6. Setting a First Real Data Record other than zero does not occupy space within a file. The system
simply stores a starting record constant which is added or subtracted from all file operations. If the First Real Record is
set to 200, then logical record 200 equals physical record 0; 210 record 10, and so on. This feature is included for
compatibility when moving existing data files from a live IRIS system in order to keep the record numbers and key
pointers consistent.

Once all indices have been defined, the file structure must be locked. This is accomplished by issuing a mode 0
statement with index equal to 0 and record.var set to the desired number of data records. This number of records is
placed into the file header and used by CHF/CHN functions and to limit automatic expansion during record allocation;
see PREALLOCATE.

Once all indices are structured according to the information supplied, the file is available for key insertion, record
allocation and other operations.

No further mode 0 statements may ever be issued to this file without an exception status occurring.

Mode 1—Miscellaneous Index Information

SEARCH/INDEX mode 1 is used to access structure information about an open Indexed File. When the index
expression is non-zero, the key length of the selected index is returned in record.var. If the running program is an IRIS
program and the file was not structured as a polyfile using CALL $VOLLINK, the size is returned in words using the
formula INT (size in bytes/2). BITS indexed files, or those created by MAKEIN with an odd size key length, will
appear to IRIS programs as having 1 less byte.

Specify index zero and set status.var to select one of the functions listed below. The value (if any) yielded by the
function is returned in record.var.

 0 Return in record.var the First Real Data Record as defined during creation.

 UniBasic Files 83

 UniBasic Reference Guide

 1 Return in record.var the available record count. This is either the value of the environment variable
AVAILREC if defined, or computed by taking the current size of the file and subtracting the actual
number of active records.

 2 Allocate a new record in the file returning its value in record.var. Possible exception status:

 3 = No free records remaining. This condition is only returned when you have set the environment
variable PREALLOCATE option 128 restricting automatic expansion.

 3 De-allocate (return) a record to the file. Available record count is incremented, active records is
decremented. record.var supplies the record number to mark as ‘available’. Possible exception status:

 1 = Record number already de-allocated. If you attempt to return the same record twice in a row, this
condition is returned. To check the records status before returning it to the Delete List set the environ-
ment variable PREALLOCATE option to 256.

 4 Return in record.var the number of physical records within the file for IRIS applications only. Does
not include the addition of the First Real Data Record value. Error for BITS programs.

 5 Same as mode 4; for IRIS or BITS applications.

 6 Set the First Real Data Record to the value supplied in record.var. This function is used by the
Conversion Programs, and whenever having a record zero is undesirable. This option may only be set
prior to freezing the structure with mode 0.

 7 Return in the current (actual) number of records in use within the file in record.var. This number is
maintained as records are allocated and de-allocated (See 2 and 3 above).

Mode 2—Search for a Specific Key

SEARCH/INDEX mode 2 is used to search an index for an exact match to the supplied key.var. If found, record.var
receives the data record number associated with the key, and the status.var is set to zero. If no match is found,
record.var is unchanged and status.var is set to one.

A match is indicated when the supplied key.var is equal to an entry in the index up to the end of key, even if the entry in
the file is longer. When the entry is longer, its value is returned in key.var.

For example, a search for key ABC produces a match with the first entry whose first three characters are ABC. If the
first such entry is ABC Company East, then a match is indicated, key.var is set to contain ABC Company East,
record.var is set to the associated record number, and status.var is set to zero. A match is not produced if the entry in
the index is shorter than the key supplied. For example, the entry AB is not considered a match.

Note: The actual keys are case-sensitive. This means that "ABC" does not equal "abc."

 UniBasic Files 84

 UniBasic Reference Guide

Mode 3—Search for the Next Highest Key

SEARCH/INDEX mode 3 is used to access data records alphabetically, or to search forward from a selected point in the
index. The selected index is searched for the first entry logically greater than the supplied key.var. If found, record.var
receives the data record number associated with the key, and status.var is set to zero. When no more entries are found,
record.var is unchanged and the status.var is set to two (End of Index).

For example, a search with key ABC returns the first entry logically exceeding ABC, such as ABC Company East.
Subsequent mode 3 searches using the same key might yield entries such as ABC Company West, Dynamic Concepts,
and Dynamic Conversions.

To search an entire index, start by setting key.var to a null string, and perform mode 3 commands until status.var is set to
2.

Note that a mode 3 search yields the first entry greater than key; a mode 3 with the key ABC does not return ABC itself
if it exists. It is best to perform a mode 2 search first when you want to include the starting key in your search.

Mode 4—Insert a New Key into an Index

SEARCH/INDEX mode 4 insert new keys into an index. The selected index is first searched for an entry exactly
matching key.var. If found, record.var is set to the record number associated with the key and status.var is set to one.

If no match is found, and sufficient space exists within the selected index, key.var is inserted in the index using the
record number supplied in record.var as a pointer to the data record. Successful insertion is indicated by a zero in the
status.var . If no space exists within the selected index, the status.var is set to two (End of Index).

Mode 5—Delete an Existing Key from an Index

SEARCH/INDEX mode 5 deletes existing entries from an index. The selected index is searched for an entry exactly
matching key.var. If found, the key is removed from the index, record.var is set to the record number associated with
the key and the status.var is set to zero (successful deletion).

If the exact entry is not found, the record.var is unchanged and status.var is set to one.

Following successful deletion of a key, the record should be returned for re-use using mode 1 with status.var set to 3.

Mode 6—Search for a Previous Lower Key

SEARCH/INDEX mode 6 is used to access data records in descending order, or backward from a selected point in the
index. The selected index is searched for the first entry logically less than the supplied key.var. If found, record.var
receives the data record number associated with key, and status.var is set to zero. If not found, record.var is unchanged
and status.var is set to two (End of Index).

 UniBasic Files 85

 UniBasic Reference Guide

For example, a search with the key XYZ returns the first key found logically less than XYZ, such as Solution Systems.
Subsequent mode 6 searches using the same key might yield keys such as Solution Concepts, Resources International,
etc.

Note that a mode 6 search yields the first entry less than key.var, so a mode 6 executed with XYZ will not yield the XYZ
itself if it exists. It is best to perform a mode 2 search first when it is desirable to include the starting key in your search.

To search an entire index, start by setting key to "\377\", and perform mode 6 commands until 2 is returned in status.var.

Mode 7—Reorganize Index

SEARCH/INDEX mode 7 provides for compatibility with older IRIS applications performing an index reorganization.
This mode is a non-operation and always returns a status.var of zero indicating success and allowing the older program
to run without error.

Mode 8—Specify B-Tree Insertion Algorithm

SEARCH/INDEX mode 8 retrieves or changes the B-Tree insertion algorithm for an index. If record.var is greater or
equal to zero, it's value is truncated to an integer and used to select the new insertion method for index. If successful, the
file's header is changed, and status.var is set to zero. If the record.var is outside the accepted range, status.var is set to
one, and no change is made.

If record.var is any negative value, the current insertion algorithm used for index is returned in record.var and status.var
is set to zero.

 Value Type of Insertion Algorithm Invoked

 0 Default. Selects random insertions and is used when keys in the index are inserted in any order.

 1 Selects increasing insertions and is used when each key inserted in the index is greater than the
previous insertion. Types of keys in this category include sequential order numbers or date keys.

 2 Selects decreasing insertions and is used when each key in the index is less than the previous insertion.

Changes are stored in the file's header and become effective immediately for the user storing the change. Other users
must first CLOSE and OPEN the file before the change takes effect.

The standard BUILDXF and MAKEIN utilities do not have options for setting the insertion algorithm.

By default, files are created for random insertions. Random insertions split B-Tree nodes when they are half full. This
provides a better balancing and room for future insertions.

When sequential keys are inserted (ascending or descending), the nodes should be split only when full. Extra space is
not required for later insertions between sequential key values.

The benefits of adding a mode 8 to your Application code include saving up to 50% on disk space; 25% increase in
performance on insertions, deletions and searches; and less need to run the ubcompress utility to release unused space
to the system.

 UniBasic Files 86

 UniBasic Reference Guide

Indexed File Errors & Recovery

If you accidentally delete the ISAM portion of an Indexed file, you can rebuild the file by the following steps.

 1. Create a new Indexed file with a different name using the same parameters for number of Indices and
Key Lengths.

 2. Write a small program to rebuild and insert the keys into the new temporary file. Only insert keys and
records, do not copy the existing data.

 3. Use the Unix mv command to move the new temporary files ISAM portion as the old files ISAM file,
i.e.: mv TEMPFILE MYFILE or mv tempfile.idx myfile.idx. This command must be performed at
the shell. Do not use any utilities designed to operate on both portions of ISAM files, such as COPY
supplied with UniBasic.

If an error is encountered during ISAM file access, an exception (V2=5) status or BITS error #110 (Index file structure
error or svar dim < Key Length) may be printed. First, check to see if your string DIM is at least the size of the Key. If
so, Print the value of ERR(8) and check the following table for additional information. This table includes all of the
c-tree error codes. When using standard Indexed files, only a few of these errors are possible.

 Code Explanation of c-tree Status

 0 Successful Operation, No error.

 10 Initialization parameters require too much memory.

 11 Illegal Initialization parameters: Either ISAMBUFS < 3, ISAMSECT <1 or ISAMFILES < 1.

 12 Could not OPEN the file. The Index portion is missing, protected or locked by another process.

 13 Cannot determine the file type - Corrupted file or Reversed Keys.

 14 File appears corrupted and should be checked.

 15 Data file has been compacted (CTCMPC), but not cleared through CTRBLD. Rebuild data file (but do
not force rebuild).

 16 Not enough space to create file or invalid ISAM filename. ISAM filenames must have at least one
letter in the filename.

 17 Could not create data file. Either no space exists or filename is an improper name.

 18 Tried to create existing index portion filename.

 19 Tried to create existing data portion filename.

 20 Key length too large for node size. There must be room for at least 3 key values per node. The node
size is given by ISAMSECT *128. Default ISAMSECT is 4 resulting in 512-byte nodes.

 21 Cannot create data file with record length smaller than 6 bytes.

 22 File number out of range; Increase ISAMFILES environment variable.

 UniBasic Files 87

 UniBasic Reference Guide

 23 Illegal Index Number specified.

 24 Could not close file.

 26 File number is not in use.

 28 Trying to insert a key with a file byte pointer of zero.

 29 High level c-tree function called with zero file byte pointer.

 30 Selected file byte pointer is beyond the logical length of the file. If the pointer is correct, it is possible
that the ISAM header is damaged.

 31 Next Record in delete chain does not have 1st byte set to ff (hex). Data File header may be corrupt, or
free records were overwritten by the application.

 32 Attempt to delete the same record twice in a row. The record being deleted is already the top record
on the delete stack. Attempting to return records onto the delete stack more than once may corrupt the
file unless the PREALLOCATE option is set to 256.

 33 File byte pointer is zero using high level c-tree function.

 34 Could not find correct predecessor node. Indicates that an index insertion was interrupted before
completion. Rebuild index using ubcompress utility.

 35 Cannot seek in the file - possibly out of disk space.

 36 Cannot read in the file - possible cause: corrupted record position in file.

 37 Cannot write to file - possibly out of disk space.

 39 Record or node pointers have exceeded 2^32.

 40 ISAMSECT environment variable was larger when this index was created. Buffers are too small for
nodes.

 41 Could not unlock data record.

 42 Could not obtain a data record lock. Probably the Unix number of locks is too small for the system.
Re-configure system.

 43 Current configuration parameters inconsistent with the parameters at time of creation. File created
under a different Byte swap (Reverse), or file came from an incompatible machine.

 Code Explanation of c-tree Status

 45 Key length too large.

 46 File number is already in use.

 48 A function has been called for the wrong type of file, e.g.. a variable length record function used for a
fixed length file.

 49 Could not write file directory updates to disk during file extension.

 50 Could not lock index file node. Probably the Unix number of locks is too small for the system. Re-
configure the system.

 UniBasic Files 88

 UniBasic Reference Guide

 51 Could not unlock an index file node.

 52 Variable length and/or floating point keys disabled in CTOPTN.H.

 108 Key number is out of range for the file.

 113 Internal Lock Table overflow.

 114 First byte of fixed-length data record found by ISAM routine equals delete flag. Attempt to write to a
non-allocated record. This exception only occurs when operating with PREALLOCATE = 4096.

 124 Number of indices in index file does not match information stored in the UniBasic data file header.
Either the UniBasic header or the ISAM file is damaged.

Accessing non-UniBasic Files and Devices
Any Unix file may be opened for read/write access by a program. Access is limited by the permissions granted to the
user by the creator of the file. If the file is other than a Text File, certain programming precautions must be taken.

If the file is a character devicename, data may be read or written from/to the device usually a character at a time. If the
file is a block device, data must be read or written from/to the device a block at a time. A typical character device is a
terminal port such as /dev/tty01; a block device might be a magnetic tape drive such as /dev/rct0.

If the file contains other than ASCII data, process the file as binary using MAT READ, MAT WRITE, RDREL or
WRREL statements. Use the CONV statement to view or alter data within a binary file.

IRIS BCD Data and Key Files
IRIS BCD Data files are standard Contiguous, Formatted or Indexed files whose records conform to IRIS data types.
String fields contain IRIS 8-bit strings, and numeric fields are in IRIS BCD precision.

IRIS BCD Key Files are Indexed Data Files whose keys conform to IRIS 8-bit form. Toggling is performed in and out
of each index to guarantee the proper insertion order when binary keys are used.

A file is an IRIS BCD data file if the attribute <Q> has been set. Access to IRIS BCD files adds a small amount of
overhead (4%) during access of string fields.

A file is an IRIS BCD Key file if the attribute <K> has been set.

Creating IRIS BCD Data Files

IRIS BCD files are created using BUILD or CREATE statements. The Supplemental Protection Attributes <Q> and
<K> force the new data file to be maintained using IRIS BCD records and/or IRIS 8-bit keys respectively.

Setting the environment variable PREALLOCATE option 32 forces all newly created data files to contain IRIS BCD
data records or keys.

 UniBasic Files 89

 UniBasic Reference Guide

The IRIS Conversion Utilities automatically create IRIS BCD Data files for all converted Contiguous, Formatted,
Indexed or Polyfiles where a record definition is not given. IRIS style keys may also be preserved during the con-
version.

During conversion, PREALLOCATE options must be cleared. Perform the conversion and then set the options as
desired.

The following conditions might be reasons to force the creation of new files in IRIS BCD data record or key format:

 1. Conversion of an existing end-user's system when the application is totally unknown. Set both <K>
and <Q> conditions globally in PREALLOCATE after converting all files. Assume all files contain
Binary Keys. You may omit binary key conversion and setting <K> if you are sure binary keys are
not used.

 2. The application makes use of MAT READ / MAT WRITE statements to expand files or copy records
to history files without regard to the record format. This condition is not supported between mixed
Base 10000 and IRIS BCD files. Required toggling and/or conversion is performed one-sided resulting
in corrupted data in the destination file. These types of operations are permitted only when both files
are of the same class (BCD/ Base 10000). Set global <Q> BCD Data using PREALLOCATE options
if some of the files have the <Q> attribute following an IRIS Conversion.

 3. The application moves data between num.vars and str.vars using a specially designed CALL. Again,
this condition is not supported between mixed Base 10000 and IRIS BCD files. Required toggling
and/or conversion is performed one-sided resulting in corrupted data in the destination file. Set global
<Q> BCD Data using PREALLOCATE option if some of the files are <Q> following an IRIS
Conversion. In rare cases, Dynamic Concepts may recommend the use of the environment variable
BCDVARS if the special CALL does not support mixed file operations.

Accessing IRIS BCD Data Files

Accessing IRIS BCD Data files is identical to normal Contiguous, Formatted, or Indexed file access. Most applications
require no modifications to run with a mixture of IRIS BCD and normal data files.

To preserve the record integrity of both standard and IRIS BCD data files, incoming data (read operation) is converted
(if necessary) to match the variable format used by the program. Outgoing data (write operation) is converted (if
necessary) to the format of the destination file.

For str.vars, incoming data is bit-8 toggled from an IRIS BCD file. Outgoing data is again toggled if written to the same
or another IRIS BCD file. Transfer to a normal Base 10000 file does not require toggling. String access to/from IRIS
BCD files add about 3% overhead to the transfer.

For num.vars, array.vars and mat.vars, incoming data is placed directly into the variable, and its internal type is changed
to the corresponding BCD precision. For example, a variable dimensioned to 4% may internally switch back and forth
between precision %4 and %10; See also Numeric Variable Precision. No overhead is required for these operations.

If you transfer a single element of an array.var or mat.var, that element is converted instead of converting the entire
array.var or mat.var. This operation is negligible, consisting of a load and store of the variable from one data type to
another.

 UniBasic Files 90

 UniBasic Reference Guide

Outgoing num.vars, array.vars and mat.vars are converted to the format of the file; that is, Base 10000 or IRIS BCD.
Conversion is only performed when a variable's current precision does not match the type of file. This conversion is
negligible, simply changing the storage format and not the size occupied by the data.

Each Base 10000 precision has a corresponding BCD precision occupying the same size. Base 10000 does provide
additional digits of significance and extra digits may be lost converting from Base 10000 to IRIS BCD. Typical IRIS
programs are not affected since they are designed for this lower number of significant digits.

If the environment variable BCDVARS is set, all num.vars, array.vars, and mat.vars are allocated and stored internally
using BCD precisions (%7-%10). In this mode, conversions are eliminated when all files are IRIS BCD format.

When a file contains IRIS style 8-bit keys as indicated by the Supplemental Attribute <K>, keys are inserted and
maintained in the indices in 8-bit form. Toggling is performed to and from the index and is negligible. This condition is
required when an application utilizes binary keys and the internal toggling corrupts your programmed insertion order.

An example is when keys contain data both below and above \200\. For example the IRIS Key: \177\\200\\201\ is
stored in UniBasic as the string \377\\300\\001\ which alters its order when a sequential search of an index is performed.

See also: PREALLOCATE option 64, Creating IRIS BCD Data Files

Universal Data Files
Universal Data files are IRIS BCD style Contiguous, Formatted or Indexed files which are platform independent. The
files are accessible across all Unix platforms. In addition, they are usable on a Windows system with version 3.0 and
higher of dL4 for Windows. Packed data should be avoided for maximum platform independence.

Text files are essentially platform independent, except Unix uses a 'LF' and Windows/DOS uses a 'CRLF' as the line
terminator.

A file is a Universal data file if the attribute <U> has been set. The size of a Universal data file is limited to 231 bytes or
by the size of the file system. On most operating systems, a Universal file can be created as a “huge” file if the attribute
<H> is set. The size of a “huge” file is limited only by the available space on the file system.

It is not necessary to run ubrebuild as Universal data files do not use deleted record lists. The ISAMOFFSET
environment variable is ignored and the user may write data at any location in the record. The ISAMSECT
environment variable should be set to a value of 8 or less (8 is recommended).

Creating Universal Data Files

Universal data files are created using BUILD or CREATE statements. The Supplemental Protection Attribute <U>
forces the data file to be maintained using Universal records and/or Universal keys.

Universal Indexed Data Files have their keys stored in a companion Index file that has the data file name with a .idx
extension, as opposed to the traditional method of using the uppercase of the filename.

Setting the environment variable PREALLOCATE option 8192 forces creation of a Universal data file. Setting
PREALLOCATE option 16384 forces creation of Huge Universal data files.

 UniBasic Files 91

 UniBasic Reference Guide

Accessing Universal Data Files

Accessing Universal Data files is identical to normal non-Universal Contiguous, Formatted, or Indexed file access.
Applications can run with a mixture of both Universal and non-Universal data files.

The ubcompress utility may be used to reduce the size of the index portion of a Universal Indexed file.

Special UniBasic Files
Special files are maintained and referenced during a UniBasic session. These files are:

 errmessage Error Messages; BASIC Error descriptions.
 sys/term.xxxx Terminal Input/Output CRT Translation.

Error Message File: errmessage

All BASIC and system error messages are stored in the system Text File errmessage. This file must be in the directory
search path specified by the Environment Variable LUST and is a simple Text File with the format:

 n:i:Text String for Message

The n indicates the default error number as defined in Appendix C of this guide. The optional i field specifies the IRIS
error number to be returned by SPC(8) whenever the error is indicated. A default table of IRIS error numbers may be
found in Appendix C.

Error codes above 256 correspond to internal Unix errors returned to BASIC. When a system error has no equivalent, a
negative error number is returned for SPC(8) and ERR(0). The negative number corresponds to the actual Unix system
error. For further information on Unix errors, refer to errno values in your Unix system documentation.

 UniBasic Files 92

 UniBasic Reference Guide

$TERM Files: term.xxxx

Each terminal under UniBasic is assigned a Terminal Type as defined by the environment variable TERM.

When UniBasic is launched, or following the execution of the ! command, a term file is opened and read into memory to
affect input and output translation for the terminal. The term file is located within the LUST using the filename
term.$TERM, where $TERM is the value of the environment variable TERM. For example, if the value of $TERM is
tvi925, the file term.tvi925 is located.

An error is generated at startup, or following the ! command if the term file cannot be opened. No output translations
are performed and standard input translation characters are not defined.

See also: Terminal Translation File $TERM Files, Input/Output

 Device Input and Output 93

 UniBasic Reference Guide

Device Input and Output

Port Numbering
The Unix system does not provide Ports or Port Numbering in the traditional sense. Each process may or may not have
a tty character device opened for input and output. When signing onto the system, your process has a system tty channel
opened which is connected to your terminal.

A port number is a unique value from 1 to 1023 assigned to your terminal when launching a UniBasic session. The port
number is required for communication between applications and users by the SIGNAL, SEND and RECV statements.

Upon initial entry, a message queue is created, a port number is established. When the session terminates, the message
queue is deleted and the associated port number becomes available again. A port number is established by the
successful completion of one of the following steps:

 1. If the Environment Variable PORT is defined, its value selects the port number for this session. If
another UniBasic process is already established as the same port number, your session terminates with
an error message.

 2. If the Environment Variable PORTS is defined, the list is searched for the system tty name and, if
found establishes the port number for this session. The system tty name assigned to your terminal is
available using the Unix command: who am i.

 3. The system tty name is interpreted searching for trailing digits to use as an identifying port number.
For example, tty23 selects port number 23. Many systems use system tty naming conventions such as
tty1a, tty1b, etc. These usually require definition of the environment variable PORTS to ensure
consistent selection of a port number.

If a port number cannot be established using one of the above steps, the message queues are scanned backwards from
the value of the Environment Variable MAXPORT (default 999) for the first unused port number.

An error is generated, and the session is terminated if you attempt to utilize a port number already signed on and in use.

You may initiate multiple UniBasic sessions, with different port numbers, from the same terminal..

Suppose you have an application error and wish to launch another session without going to another terminal. While in
BASIC program mode, issue the command:

 !PORT=nnn ; UniBasic

where: 'nnn' is an unused port number.

To cancel secondary session(s), issue a BYE command.

 Device Input and Output 94

 UniBasic Reference Guide

Phantom Ports
A phantom port is any UniBasic session which is not connected to a character tty. That is no tty is opened for the
process. All input for the session must be transmitted from another port number, and output must be re-directed to a file
or device or it is discarded.

Communication to a phantom port is restricted to the statements SEND, RECV, PORT, CALL $TRXCO, CALL 98,
and SIGNAL. An application may control any active UniBasic process whether or not it has an opened system tty
device.

A phantom port is initialized using either CALL $TRXCO or the PORT statement. A port number is supplied for
these operations. The active message queues are interrogated to determine whether an active process is already assigned
to that port number. If so, an error status is returned to the parent and no process is launched. If the port number is not
in use, a phantom port initialization proceeds.

Commands may be transmitted to a phantom port or an interactive port number which has an active message queue
entry. When transmitted to an interactive port number, commands become input to the interactive process. Data is
echoed on the terminal as if it were entered on the keyboard.

If the port number does not have an active message queue, a copy of your process is forked (duplicated). The new child
process immediately severs its connection to you as the parent. It assumes your environment and default working
directory, but closes the system tty channels re-directing all input and output to the /dev/null file. A new message queue
is created for the specified port number which now becomes a phantom port . It is available to all other users for
communication and transmission of commands.

Note: Commands may only be transmitted to a port number which is actively running a UniBasic process
and has an assigned Message Queue.

Simply defining /dev/tty23 to be port number 23 does not provide for communication until port number 23 actually
launches a UniBasic process. To send commands to an interactive port, first login to Unix and launch a UniBasic
process.

When connecting modems or other non-keyboard devices that you wish to control using CALL $TRXCO or PORT
statements, configure your Unix system to automatically launch a UniBasic process on a known port number for
communication. You might also communicate with a modem or other device by directly opening the device, and using
standard READ and WRITE statements.

See also: Launching UniBasic Ports at Startup.

Accessing Drivers ($LPT) and Pipes
A pipe may be opened for input to or output from a BASIC program. An output pipe is the mechanism whereby another
Unix process is started and your output to a channel pipes the data as standard input to the new process. An input pipe
is the mechanism whereby another Unix process is started and its output becomes your input on the opened channel.

 Device Input and Output 95

 UniBasic Reference Guide

To open a pipe, the filename must be the name of an executable Unix program or shell script, that is, the permissions of
the file must include 'x'. To open an input pipe, the filename is preceded by two dollar-signs ($$name); an output pipe is
preceded by a single dollar sign ($name).

Unlike IRIS or BITS, the $ character is not part of the filename. It is a flag indicating the desire to access another
process using a pipe. The filename does not select a data file, but instead selects the name of a Unix executable
command or shell script. If you must specify a full Unix pathname, the $ or $$ must be the first character in the
filename string, such as $/bin/ls. When opening pipes to processes found within your defined directory search list, as
defined by the Environment Variable LUST, the $ or $$ may be the first character of the string, or the first character of
the filename, such as $23/lpt or 23/$lpt. In general you may establish a pipe to any command accepted by the shell, such
as ls, cat, or lpt.

Printer driver scripts ($LPT) are examples of output pipes. Your application opens $LPT. The LUST is searched for
the filename "lpt". If the file is executable, it is started as a process and a pipe is established on the specified channel.
As you PRINT to the channel, "lpt" receives the data and processes the output. It may re-direct the output to a physical
device, or through the spooler. When you CLOSE the channel, "lpt" receives an end-of-file and terminates.

An example of an input pipe might be to read a list of all filenames stored in a directory. By opening the file "$$/bin/ls
{pathname}", you read the output of the Unix ls command as if it were a Text File. A null string (IRIS) or end-of-file
error (BITS) is generated when the pipe is empty.

If a filename specified with a $ or $$ is not within the paths specified by LUST, the entire pathname must be specified
to OPEN.

When creating your own C or shell scripts to be used as pipes, always make a backup copy, ensure that the file is
executable and does not have write permission enabled. This prevents accidental overwriting if the $ is omitted.

Note: The $ and $$ are only flags used during OPEN. You may still OPEN any Unix file, according to the
rules of Text File access, regardless of executable attributes.

When processing from/to a pipe, many systems buffer data in blocks of 4096 characters, or until the appropriate process
terminates. You cannot use pipes for simple communication between processes. To transmit data between application
programs, use the SIGNAL or SEND/RECV Statements.

When an OPEN is requested using the $ prefix, the following operations are performed by UniBasic:

 1. The file is checked for execute permission, and that the file is not a directory. If these conditions are
met, a pipe operation is attempted. If not, the file is opened as a standard Text File and those rules ap-
ply.

 2. The file is opened and the first 5-characters are read from the file.

 3. A check is made for a string with the first 5-characters as '#lock'. Other characters on the line are
ignored. Any preceding spaces, tabs or blank lines cause a failure of the test.

 If '#lock' is seen, the system checks the /tmp directory for a filename in the form /tmp/lk.inode, where
'inode' is the Unix i-node number of the executable script being opened.

 Device Input and Output 96

 UniBasic Reference Guide

If the file is not found, it is created to prevent other users from opening the same printer script. This
file contains the process ID (PID) and UniBasic port number of the process requesting the lock. Its
permissions are set to allow reading and writing by all levels, but it should neither be written to by a
user nor its permissions changed. This file may be read by a user to determine what process or port
has the printer locked.

If the file exists, the system reads the port number and verifies that the port is an active port.
If the port is active, the error 'Device is in use and Locked' is generated to the BASIC program, and the
operation fails.

If the port is not active, as in the case of a lock file not being removed because of a previous system
failure, the system overwrites the existing lock file with the current requesting process.

If the '#lock' string is not seen, a lock file is not created. The script itself must guarantee against multi-
user access, and most likely will rely on the Unix Spooling System.

Note: The Unix Spooling System is the preferred way to use a printer.

 4. The file is now launched as a process, and a pipe is opened on the users channel to it.

Printer Drivers
A printer driver is nothing more than an executable Unix shell script opened from your application as a pipe. Whenever
an opened filename begins with a $, and is executable, a pipe is established and the selected filename (without the $) is
started as a process reading as its input the data you PRINT to the pipe.

The supplied lpt.iris and lpt.bits are sample printer shell scripts for IRIS and BITS applications respectively. The main
difference is that the IRIS driver utilizes locking (only a single user may access the device until closed), whereas the
BITS driver passes its data to the Unix spooling system.

The sample lpt.iris driver may be modified using the Unix editor. It is designed to operate using the bourne shell. Once
complete, it is copied and given different names such as LPT, LPT1, etc. as required by your applications. For
information on the supplied printer scripts and configuring serial ports for printers, see also Configuring Printer Drivers
and Configuring Serial Printers.

 Device Input and Output 97

 UniBasic Reference Guide

Mail Drivers
A mail driver is nothing more than an executable Unix shell script opened from your application as a pipe. Whenever an
opened filename begins with a $, and is executable, a pipe is established and the selected filename (without the $) is
started as a process reading as its input the data you PRINT to the pipe.

The supplied email.mail and email.sendmail are sample shell scripts that allow UniBasic applications to send email.
The main difference is that the email.mail driver utilizes the Unix mail command, whereas the email.sendmail driver
passes its data to the Unix sendmail facility.

The sample mail drivers are designed to operate using the bourne shell. To use these drivers, their path must be in the
LUST environment variable and have read and execute permissions. Read and execute permissions must be set prior to
use.

The driver scripts may be renamed and/or modified for your application using any Unix editor.

The following is an example of using the email.mail script in a UniBasic application:

10 OPEN #1,"$email.mail -s test -t recipient"
20 PRINT #1, "Test Message"
30 CLOSE #1

The UniBasic OPEN statement opens the email.mail pipe driver script with arguments to specify the subject and
recipient of the email. The -s option is followed by the subject and the -t option is followed by the recipient list. All data
PRINTed to the channel will be sent to the email pipe until the channel is CLOSEd, which closes the pipe and sends the
mail.

The mail program on some Unix systems may not require and/or accept the -s option. Consult your system
documentation and the man pages for your particular requirements. The driver script may be modified as necessary to
work with the mail program. For example, mail will not accept the -s option with a subject on the command line, while
mailx requires the -s option and a subject on the command line or it will interactively request a subject. UnixWare has
both mail and mailx programs, whereas SCO only has the mailx program; the mail command is a link to mailx.

The email.mail driver script may be tested outside the UniBasic environment by issuing the following command,
modified as necessary, at the Unix prompt:
$ echo body of mail |email.mail -s test -t your_userID

Verify that the mail is recieved.

The email.sendmail pipe driver script was written to interface with the sendmail program. If used, the user must
identify the location of sendmail on the system and modify the assignment to variable 'EMAILPATH' in the
email.sendmail script. The command line arguments to email.sendmail must include a -f option with the sender
specified. For example, the UniBasic OPEN statement above becomes:
10 OPEN #1,"$email.sendmail -s test -f sender -t recipient"

A -r option to specify a 'Reply-to:' field in the arguments is optional.

The email.sendmail driver script may be tested outside the UniBasic environment by issuing the following command at
the Unix prompt:
$ echo text | email.sendmail -s test -f your_userID -t your_userID

Verify that the mail is received.

 Device Input and Output 98

 UniBasic Reference Guide

Terminal Translation File $TERM Files
Each terminal under Unix is assigned a Terminal Type as defined by the environment variable TERM.

When UniBasic is launched, or following the execution of the ! command, a term file is opened and read into memory to
affect input and output translation for the terminal. The term file is located within the LUST using the filename
term.$TERM, where $TERM is the value of the environment variable TERM. For example, if the value of $TERM is
tvi925, the file term.tvi925 is located.

An error is generated at startup, or following the ! command if the term file cannot be opened. No output translations
are performed, and standard input translation characters are defined.

Terminals operate in two distinct modes: Normal and Window Tracking. Normal mode allows the terminal to control
the operations based upon sequences and data transmitted. The effect of wrap-around from line to line, scrolling, be-
havior of protected regions is terminal dependent. Applications transmitting mnemonics (such as CS to clear screen)
retrieve a replacement string unique to the terminal for the mnemonic function selected from the term file.

Window Tracking is a feature whereby software maintains a tracking map of all characters and attributes on the screen.
Little or no overhead is caused by the maintenance of this map. Its purpose is to simulate features not supported by most
terminals, such as multi-screen windows. In addition, Window Tracking is effective for PC Monitors and other dumb
terminals lacking features such as Protected Fields. For a complete discussion of Window Tracking, see Using Dynamic
Windows.

The term file is a standard Unix Text file. The file contains four types of information:

 $TERM Flags and Switches
 Mnemonics Translated for Output
 $TERM Extended Graphic Mnemonics
 $TERM Input Character Processing

$TERM Flags and Switches

Flags and switches control the formatting of cursor addressing strings sent to the terminal. When a cursor address is
specified @x,y;, the system first outputs the mnemonic PC as the lead-in. This mnemonic is defined to be the codes
required by a terminal to expect a cursor addressing sequence. The following steps are then performed on the supplied
cursor address:

 1. The coordinates are converted to integer and checked against the limits as specified by the max_x and
max_y definitions.

 2. If the xy-direc flag is zero, then the integer X and Y values are added to the base_x and base_y
parameters. A non-zero value in xy_direc causes a subtraction of the base_x and base_y parameters.

 3. The X and Y values are then readied for transmission to the screen. If xy_ascii is zero, no further
processing is performed. The single characters X and Y are ready for output. If, however, xy_ascii is
non-zero, the X and Y values are converted to ASCII digits for output. For example if X is 23, the
resulting outputs are the digits '2' and '3'. This feature is required on most ANSI terminals and PC
monitors.

 4. If xy_order is non-zero, the Y value is output first, otherwise X is assumed to be first.

 Device Input and Output 99

 UniBasic Reference Guide

 5. If pc_leadin is non-zero, then the mnemonic PC1 is sent following the transmission of the first
coordinate (X or Y from step 4).

 6. The second coordinate is transmitted.

 7. If the mnemonic PC2 is defined as other than null, it is output to terminate a cursor addressing
sequence.

Flag name Description / Effect on operation

xy_order:n Selects the order that the coordinates are sent to the terminal. A zero specifies XY order
(column/row as in the BASIC application), and non-zero selects YX (row/column) order.

xy_direc:n A zero (default) selects that the coordinates are to be added to the base_x or base_y character
specifications. A non-zero flag causes the coordinates to be subtracted from the base_x and
base_y ASCII characters.

xy_ascii:n A zero specifies that the coordinates sent to the terminal are the result of simply
adding/subtracting the coordinate from the base_x or base_y specification. A non-zero flag
causes the coordinates to be output as ASCII digits (i.e. ANSI terminals).

base_x:n The base ASCII character in decimal to be added to (or subtracted from) a cursor positioning
operation to a column (x coordinate). This value represents X coordinate zero.

base_y:n The base ASCII character in decimal to be added to (or subtracted from) a cursor positioning
operation to a row (y coordinate). This value represents Y coordinate zero.

max_x:n The maximum number of columns on the terminal in all modes.

max_y:n The maximum number of lines on the terminal in all modes.

pc_leadin:n A non-zero flag specifies that a special lead-in is required between the two coordinates. If
this flag is set, then the mnemonic PC1 is transmitted after the first coordinate.

crt_type:n Define the terminal type to be returned to the BASIC program by the MSC(32) and SPC(13)
functions. Set the type to 23 for ANSI monitors and other ANSI terminals to force them to
behave more like conventional terminals with respect to protected fields. When set, Window
Tracking is always enabled.

crt_flags:n. Flags controlling character transmission and interpretation of mnemonics for Dynamic
Windows. Multiple options are set by adding the values together.

 Mode Description

 1 Convert \200\ characters to \0\ on output. Required on older NCR Tower systems, and other
conditions where you always want \200\ nulls transmitted as true zero bytes before transmission to a
serial port.

 2 Interpretation of Format Mode using Dynamic Windows. Set for BITS programs and applications
relying on only BP/EP to set both format and write-protected. In this mode, BP is defined to perform
both FX and BP functions, and EP performs both EP and FM functions. Clear for IRIS programs and
applications using BP/EP to write protect and FM/FX to control Format Mode separately.

 Device Input and Output 100

 UniBasic Reference Guide

 4 Interpretation of Dimmed Mode using Dynamic Windows. Set for BITS programs and applications
relying on dimmed characters to be normally unprotected. Clear for IRIS programs and applications
using BD/ED as replacements for BP/EP. In this mode, the BD/ED mnemonics cannot be defined
with a size greater than zero; See Defining TERM Mnemonics.

 8 Controls the function of the CL and CE mnemonics. Set to clear up to the End Of Line or until the
first protected character. Normally, CL and CE clear unconditionally to the end of the line or screen,
skipping over protected fields.

 48 When set, MD does not cause the terminal to scroll on the last line. When clear, MD causes the
terminal to scroll on the last line.

 192 When set, MR does nothing at the last position of the screen. When clear, MR moves the cursor
forward either to the first position of the new last line after scrolling the screen or, if the terminal is in
Format Mode (see FM/FX), home without scrolling.

 768 When set, the terminal does not reposition the cursor after it receives an IL or DL. When clear, the
terminal positions the cursor to the beginning of the current line after it receives an IL or DL.

The default value for crt_flags is 0. Values of crt_flags in the term file can be expressed in decimal, octal, or
hexadecimal form. For example, to represent the decimal value 16, simply enter 16. To represent an octal value,
proceed the value with a zero, i.e. 020. To represent a hexadecimal value, proceed the value with a zero+x, i.e. 0x10.

Note: Because screen behavior differs from terminal to terminal, it is not recommended that you rely on any
specific behavior when developing applications. This can lead to incompatible and/or non-portable
software in the future.

The behavior of the mnemonics mentioned above is undefined within UniBasic at this time, however future versions
may clarify their operation. Proposed future changes more clearly define the interface between software and the
terminal screen or window. As a result, do not rely on crt.flag settings when developing applications. Rather, they are
included to provide varying degrees of compatibility for older applications running within in Window Tracking mode.

Note: Because Window Tracking mode is a simulation and many applications are coded to a specific
behavior, not all applications will behave identically in Normal mode and Window Tracking mode.

All printable characters are maintained with their attributes for Protect, Reverse, Underline, Blink, Graphics and
Dimmed. Printable characters overflow the right edge of a window and wrap automatically to the first column of the
window on the next line.

The following examples illustrate use of crt_flags with Wyse 50 terminals:

Programs using BD and ED to protect characters and FM to turn on format mode (IRIS style):

 1020 PRINT 'BD' "This is protected!"'EDFM'

 Device Input and Output 101

 UniBasic Reference Guide

term.wyse50 file settings:

 crt_flags:0
 BP:\33\)
 EP:\33\(
 BD:\33\)
 ED:\33\(
 FM:\33\&
 FX:\33\'

Programs using BP and EP to protect characters and turn on format mode (BITS style):

 1020 PRINT 'BP'"This is protected!"'EP'

term.wyse50 file settings:

 crt_flags:2
 BP:\33\'\33\)
 EP:\33\(\33\&
 BD:\33\)
 ED:\33\(
 FM:
 FX:

Programs using BP and EP to protect characters and FM and FX to turn on and off format mode, retaining dimmed
characters (BD/ED) as unprotected:

 1020 PRINT 'FXBP'"Protected,"'EPFMBD'"Dim!"'ED'

term.wyse50 file settings:

 crt_flags:4
 BP:\33\)
 EP:\33\(
 BD,1:\33\GP
 ED,1:\33\G0
 FM:\33\&
 FX:\33\'

Note: Because a Wyse 50 terminal treats dimmed mnemonics as embedded, the BD and ED must be defined
with a size of 1. See Defining $TERM Mnemonics.

Unfortunately, not all terminals are created equal. For example, the Wyse 60 uses a bit map to store every possible
attribute combination for each character. When a Begin Underline is sent, it places the cursor into Underline mode and
sets an underline bit for each successive character until Underline is turned off.

In contrast, the Wyse 50 terminal uses a physical screen position to store the actual attribute. When a Begin Underline is
sent, it is stored at the position of the cursor and the cursor is advanced one position. From that position to the end of the
screen is immediately underlined. When Underline is turned off, underlining is cleared from that position to the end of
the screen.

 Device Input and Output 102

 UniBasic Reference Guide

Defining $TERM Mnemonics
The standard format within a term file for defining a mnemonic replacement string is:

 MNEMONIC {,size} :replacement string
 CS:\33*
 BPW:\33\Gw
 G1:[
 BU,1:\33\g

The MNEMONIC is any 2-character supported mnemonic (in either upper or lower case) used by an application. In
addition, the three-letter mnemonics BPW EPW may be defined as special replacements for BP/EP used exclusively
during Window Tracking operations.

Extended Graphics characters are defined using the form: Gn where n selects one of 28 (G1-G28) special graphics
sequences.

IOxx mnemonics control internal system flags and are not defined as output replacement strings.

The optional size specifies the number of screen positions required to hold the mnemonic. The default is zero positions
for all attributes other than BH, BV, PI and Extended Graphics Characters which assume one position. Include a size
definition for specific mnemonics when:

 1. Applications assume, or the terminal itself outputs a space as part of the mnemonic - i.e. certain Wyse
50 mnemonics.

 2. You modify attributes, adding a space to compensate for assumptions made with older terminals.

 3. You are using user-defined mnemonics SA, etc., or color mnemonics for graphics or other functions
that physically require one or more spaces on the screen for display.

 4. Your replacement string contains one or more printable characters.

The colon and text define the replacement string generated when the data is transmitted to a terminal. The text may be
made up of printable characters or octal characters in the form \xxx\.

Sequences are transmitted directly to the system without toggling. Printable characters should be less than \200\. Only
use codes greater than \200\ when a local printer or screen calls for a special graphics function and the terminal / printer
manual specifies use of an 8-bit code.

Mnemonics Translated for Output

As discussed in the beginning of this section, printable characters are stored and operated internally using 7-bit ASCII
codes. For programming ease, and compatible program source, octal values used within str.lits are toggled internally
such that \215\ is toggled to the printable \015\, and \015\ is toggled to be \215\; same as the mnemonic CR. In the same
way, entry of \301\ toggles to \101\ producing the ASCII character 'A'. Mnemonics are converted to an 8-bit character
such that CS has the same representation as an IRIS \020\ str.lit after toggling.

In simpler terms, str.lits and mnemonics are toggled internally from their IRIS/BITS form to match the industry-standard
without re-programming.

 Device Input and Output 103

 UniBasic Reference Guide

Mnemonics use the same coding sequence as IRIS, allowing octal code representations of crt functions.

When data is processed for output, a stream of characters is produced containing codes less than \200\ for printable
characters, and greater than \200\ for crt mnemonics, functions or special printer/device control. To transmit codes
above \200\, program str.lits using codes less than \200\ and vice-versa.

The IOBO mnemonic and SYSTEM 16 statements enable Binary Output Mode and prevent toggling with the ASC,
CHR and CALL $STRING functions.

All mnemonics required by an application must be defined within the term file. Use of an undefined mnemonic results
in the transmission of the internal code used to represent the mnemonic. These codes are in the range \200\ to \377\.
Some terminals may interpret these codes leading to undesirable results on the screen.

When outputting through a channel, the internal code is passed through. This facilitates device independence and the
ability to write text containing mnemonics to a file. Later retrieval and transmission to a terminal substitutes the
replacement strings required. When mnemonics are sent to through a pipe to a device, the supplied lptfilter utility may
be included within the pipe to substitute replacement strings for a device.

See also: Configuring Printer Drivers, lptfilter Utility

CRT Mnemonics

CRT mnemonics are used in conjunction with a CRT term file to provide control of video terminal functions such as
clear-screen, reverse-video, etc. CRT mnemonics appear in one of two forms:

 • A set of one or more 2-character codes enclosed in single quotation marks ('). Each code can be
preceded by an optional count value.

 • A cursor address in the form: @num.expr, num.expr;. Addresses are given in the form column, row
from origin 0,0 home (upper-left of screen).

For example:
 'CS' Clear screen
 'CS10ML' Clear and move left 10 positions.
 @5,5;’CL' Position to column 5, row 5 and clear line
 @10,L; Position cursor to column 10, row L.

See also: Using Dynamic Windows, Terminal Translation

Appendix B shows these mnemonics and their octal replacement value when used within str.lits, and their internal
representation in files or when sent to a device or pipe.

 Device Input and Output 104

 UniBasic Reference Guide

This section lists the output mnemonics within their general functional area. The functional areas are:

 • Keyboard and aux port

 • Clear & reset the terminal

 • Cursor position

 • Control attributes

 • Control color

 • Transmit data

 • Miscellaneous functions

 • I/O control

 • I/O mnemonics not supported

Mnemonics for Keyboard and Auxport;

Mnemonic Description

 AE Enable the Auxiliary port on the terminal. This mnemonic enables the Auxiliary Printer port until the
AD mnemonic is sent.

 AD Disable the Auxiliary port on the back of the terminal.

 BA Begin Transparent output to Auxiliary printer port. Enabling Transparent output causes all output
characters (and input echoing) to be directed to the Auxiliary Port of the terminal until the mnemonic
EA is sent.

 BO Begin non-Transparent output to Auxiliary printer port. This mnemonic operates similar to the 'BA'
mnemonic except that data is transmitted to both the Auxiliary port and the screen until an EO
mnemonic is sent.

 EA End Transparent output to Auxiliary port.

 EO End non-Transparent output to Auxiliary port.

 EF End Function Key Definition. This code terminates all characters being sent to down-load function
keys using the mnemonics P1 through P8.

 LK Lock Keyboard. The keyboard is locked and no further characters are accepted from the terminal. All
keys are locked out until the UK mnemonic is sent or until the terminal is reset.

 P1 Begin Programming down-loadable function key 1. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 P2 Begin Programming down-loadable function key 2. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 P3 Begin Programming down-loadable function key 3. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 P4 Begin Programming down-loadable function key 4. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 Device Input and Output 105

 UniBasic Reference Guide

 P5 Begin Programming down-loadable function key 5. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 P6 Begin Programming down-loadable function key 6. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 P7 Begin Programming down-loadable function key 7. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 P8 Begin Programming down-loadable function key 8. All further characters are sent to the terminal's
function key until the mnemonic EF is sent.

 RF Reset Function keys to their default values.

 UK UnLock Keyboard. Characters and functions may now be entered from the keyboard.

Mnemonics to Clear & Reset the Terminal

Mnemonic Description

 CE Clear from cursor to end of screen. All unprotected characters from the current cursor position up to
the end of the screen are cleared.

 CL Clear from cursor to end of line. All unprotected characters from the current cursor up to the end of
the line are cleared.

 CS Clear the entire screen. All characters both protected and unprotected are cleared.

 CT Clear all TAB Stops set by the ST mnemonic.

 CU Clear all unprotected characters on the screen. This mnemonic is used to clear data from the screen
while leaving any protected mask intact. Also, performs a Move Home (MH), if window tracking is
on. The cursor is moved to position 0,0 of the current window.

 ES End Write Status Line. Characters output and echoed are no longer displayed in the status line of the
terminal (See also: WS).

 K0 CURSOR Set no cursor to be displayed on the terminal.

 K1 CURSOR Set Blinking Block.

 K2 CURSOR Set Steady Block.

 K3 CURSOR Set Blinking Underline.

 K4 CURSOR Set Steady Underline

 NR Narrow Display. Set 132 column mode and display further output and echoed characters in narrow
format.

 NV Normal video. Display reverse video as dark on lighted background.

 RS Reset Terminal. Send the commands to reset the terminal to its power-up parameters. This normally
resets baud, protocols, translations, function keys and clears the screen.

 RV Reverse video. Display reverse video as lighted characters on dark background.

 SF Status Line OFF. Turn off the optional status line at the bottom (or top) of the screen.

 SO Status Line ON. Turn on the optional status line at the bottom (or top) of the screen.

 Device Input and Output 106

 UniBasic Reference Guide

 WD Wide Display. Set the terminal into 80 column mode and display further output and echoed characters
in normal format.

 WS Write Status Line. All further characters echoed or output are displayed in the terminals status line
until the ES mnemonic is sent.

 XX Initialize Terminal. This mnemonic can define a series of functions such as Clear screen, Clear
Memory, Clear Status Line, etc. required to reset the terminal; See also: RS.

Mnemonics Applied to the Cursor Position

Mnemonic Description

 BK Cursor Back. A carriage return without line-feed is sent to the screen moving the cursor to the
beginning of the current line. Since Unix output post processing normally converts a \215\ into
\215\\212\, it may not be possible to send only a return.

 CR Perform a new-line operation. A carriage return and a line-feed are sent to the terminal. If the cursor
is at the bottom of the window, the screen will scroll up one line. Some terminals will not scroll if the
screen window contains protected fields.

 DC Delete Character. The character at the cursor is deleted and all remaining characters on the line are
shifted left.

 DL Delete Line. The line containing the current cursor is deleted from the window and all remaining lines
are moved up.

 FF Form Feed. Scroll to the next page. This mnemonic is used primarily for printers using the supplied
lptfilter(u), when directing data through the Auxiliary printer port.

 IC Insert Character. A space is added at the current cursor position by shifting the character under the
cursor (and all remaining characters on the line) right one position.

 IL Insert Line. A new line is added by shifting the line containing the cursor (and all following lines)
down one line. Lines may disappear off the end of a window.

 LF Perform a Line-Feed. This, in effect, is identical to a MD mnemonic. The cursor is moved down to
the next line while staying at the same column.

 MD Move Down. The cursor is moved down to the next line while staying at the same column. Some
terminals will scroll if you are already on the last line of the screen.

 MH Move Home. The cursor is moved to position 0,0 of the current window.

 ML Move Left. The cursor is moved Left one character.

 MP Use Memory Pointer instead of cursor for next positioning command.

 MR Move Right. The cursor is moved Right one character.

 MU Move Up. The cursor is moved up to the previous line while staying at the same column.

 PC Position CURSOR; Lead-in sequence. This mnemonic is not used directly. PC as well as PC1/PC2
are shown here for documentation purposes only. These mnemonics are output when a cursor address
@x,y; is specified. The sequence sent is: PC lead-in, coordinate 1, PC1 separator, coordinate 2, PC2
trailer.

 PC1 Position Cursor separator. Defined when a sequence is required between the X and Y coordinates in
cursor addressing. Not normally output directly by the application program.

 Device Input and Output 107

 UniBasic Reference Guide

 PC2 Position Cursor trailer. Defined when a sequence is required after sending the second coordinate
position. Not normally output directly by the application program.

 TB Tab Backward. The cursor is moved to the start of the previous TAB Stop as defined with the ST
mnemonic.

 TF Tab Forward. The cursor is moved to the start of the next TAB Stop as defined with the ST
mnemonic.

 VT Vertical Tab. Move the cursor Down in the window to the next preset Vertical Tab Stop. This
mnemonic is normally used for printers using the supplied lptfilter(u), or when you direct data
through the Auxiliary printer port.

Mnemonics to Control Attributes

Mnemonic Description

 BB Begin Blink Mode. All further output and echoed characters will blink until the EB mnemonic is sent.

 BD Begin Dimmed Intensity Mode. All further output and echoed characters will be displayed in Dimmed
(half) intensity until the ED mnemonic is sent. Some terminals will treat dimmed intensity data as
protectable and use of the FM mnemonic will cause dimmed fields to become protected.

 BG Begin Graphics Mode. All further output characters are translated upon the special Graphics Control
Sequences defined the default term. file. Each of the 256 ASCII characters conform to the special
graphics characters GRnnn. Normal character and CRT translation is disabled.

 BP Begin Protectable Field. Further characters echoed or sent to the terminal are flagged as protectable
and are usually displayed in half-intensity. Similarly, half-intensity data printed using the BD'
mnemonic may also be protectable, depending upon your terminal. After you have painted your
protectable fields on the terminal, you must issue the FM mnemonic to format and write-protect your
protected field.

 BPW Display format for Beginning a Protected field when using dynamic windows. To simulate protected
fields, normally, BD and ED mnemonics are used. This definition in the term file provides an
alternate sequence, such as; reverse video, underlined or color, to denote protection. This mnemonic is
not used within the program, rather it is output in place of BP when Window Tracking is enabled.

 BR Begin Reversed Video . All further output and echoed characters will be displayed in reverse video
format. On most terminals, the background will become lit and the characters are shown as black.
Color monitors and other terminals may permit control of the display.

 BU Begin Underline Mode. All further output and echoed characters will be underlined until the EU
mnemonic is sent.

 BX Begin Expanded Print. All further output and echoed characters will be displayed in your pre-defined
choice of double-high, double-wide or both.

 EB End Blink Mode. Characters output and echoed will no longer blink.

 ED End Dimmed Mode. Characters output and echoed will no longer be in half-intensity.

 EG End Graphics Mode. Normal terminal translation is restored. Printable characters represent
themselves and CRT codes are processed normally.

 EP End Protectable Field. All further characters transmitted are not to be considered part of a protected
field.

 Device Input and Output 108

 UniBasic Reference Guide

 EPW End Protected special display for Window Tracking. Used in conjunction with BPW replacing BP/EP
simulated use of BD/ED mnemonics.

 ER End Reversed Video. Characters output and echoed will no longer be in reverse video format.

 EU End Underline Mode. Characters output and echoed will no longer be underlined.

 EX End Expanded Print. Characters output or echoed will no longer be in expanded format.

 FM Enter Format Mode. Write protect is set on all characters previously sent using the BP mnemonic.
The protectable fields are now protected preventing any overwriting of protected data. On some
terminals, dimmed characters (BD) may also become protected.

 FX Exit Format Mode. All previously write-protected characters are now returned to their protectable
state. Fields can be overwritten or changed until another FM is issued. Some terminals cannot over-
write protected characters once formatted by the FM mnemonic. A clear-screen (CS) is required to
reset these fields.

 ST Set a TAB Stop at the cursor. To be used with the TF and TB mnemonics for presetting TAB stops on
the screen.

Mnemonics to Control Color

Mnemonic Description

 RE Color RED. All further output and echoed characters are displayed in Red.

 GR Color GREEN. All further output and echoed characters are displayed in Green.

 YE Color YELLOW. All further output and echoed characters are displayed in Yellow.

 BL Color BLUE. All further output and echoed characters are displayed in Blue.

 BK Color BLACK. All further output and echoed characters are displayed in Black.

 MA Color MAGENTA. All further output and echoed characters are displayed in Magenta.

 CY Color CYAN. All further output and echoed characters are displayed in Cyan.

 WH Color WHITE. All further output and echoed characters are displayed in White.

Mnemonics to Transmit Data;

Mnemonic Description

 BT Begin Transmission. Begin transmitting all characters from the terminals memory. This function is
highly terminal dependent.

 ET End Transmission. Disable transmission of characters from the terminal's memory.

 LU Send Line Unprotected. All non-protected characters from the current cursor through the end of the
line are transmitted from the terminal.

 PS Print Screen. Send the contents of the current screen through the terminal's Auxiliary/Printer port.

 Device Input and Output 109

 UniBasic Reference Guide

 PU Send Page Unprotected. All unprotected characters on the screen are transmitted from the screen to
the system.

 SL Send Line All. All characters (including protected fields) on the line containing the cursor are
transmitted from the screen to the system.

 SP Send Page All. All characters (including protected fields) on the screen are transmitted to the system.

 TL Transmit Line unprotected. All non-protected characters from the current cursor through the end of
the line are transmitted from the terminal.

 TP Transmit Line protected. All characters (including protected fields) on the screen from the current
cursor to the end of the screen are transmitted to the system. NOTE: TP may also be used by BITS
Applications to Toggle Pages of screen memory.

 TR Transmit Screen unprotected. All non-protected characters from the current cursor through the end of
the screen are transmitted from the terminal.

 TS Transmit Screen protected. All characters from the current cursor through the end of the screen are
transmitted from the terminal.

Miscellaneous Mnemonics

Mnemonic Description

 AS Print String in ASCII. This mnemonic is not defined in the normal term. file. Instead it sets a flag for
PRINT. The next PRINT of a string variable will be in ASCII output format. The entire
DIMensioned size of the string is sent, including nulls. The internal (non-toggled) information is
displayed representing the actual data that would be sent. All codes greater than \200\ are displayed as
\xxx\ octal. Printable characters represent themselves, and control characters (001-031) display in ^x
format.

 BH Box Horizontal character. This mnemonic is used to draw horizontal box characters using
WINDOW. If undefined, the '_' character is printed.

 BV Box Vertical character. This mnemonic is used to draw vertical box characters using WINDOW. If
undefined, the '|' character is printed.

 HX Print String in Hex. This mnemonic is not defined in the normal term. file. Instead it sets a flag for
PRINT. The next PRINT of a string variable will be in Hex output format. The entire DIMensioned
size of the string is sent, including nulls. The internal (non-toggled) information is displayed
representing the actual data that would be sent. All codes are represented as hex digits 00 to ff.

 OC Print String in Octal. This mnemonic is not defined in the normal term. file. Instead it sets a flag for
PRINT. The next PRINT of a string variable will be in Octal output format. The entire DIMensioned
size of the string is sent, including nulls. The internal (non-toggled) information is displayed
representing the actual data that would be sent. All characters are displayed in \octal\.

 RB Ring BELL. Sends the sequence causing the terminal to beep.

 TP Toggle Page. Switches the display to another page of memory in the terminal.

 RD Read Cursor. The terminal will transmit its current coordinate position to the program. This function
is highly dependent upon the terminal.

 Device Input and Output 110

 UniBasic Reference Guide

 PI Position Indicator. This mnemonic is used by supplied utilities to display the requested number of
input characters in a field. The form used by the program is usually 'nPInML' where n is the number
of characters in the field. The default character for this mnemonic is _.

 SA User Defined mnemonic to contain any non-supported terminal function.

 SB User Defined mnemonic to contain any non-supported terminal function.

 SC User Defined mnemonic to contain any non-supported terminal function.

 SD User Defined mnemonic to contain any non-supported terminal function.

 S1 User Defined mnemonic to contain any non-supported terminal function.

 S2 User Defined mnemonic to contain any non-supported terminal function.

 S3 User Defined mnemonic to contain any non-supported terminal function.

 S4 User Defined mnemonic to contain any non-supported terminal function.

Special Mnemonics for I/O Control

Mnemonic Description

 IO Special lead-in for an IO Control mnemonic. IO is followed by a 2 or 4-character IO mnemonic.

 IOBC Begin activate-on-control-character. The IOBC mnemonic enables XON/XOFF and
CTRL+Q/CTRL+S are ignored. The terminating control character is placed into the last position of
the INPUT string variable. INPUT continues to terminate on receipt of a control character until the
mnemonic 'IOEC' is sent.

 IOBD Begin Destructive Backspace. When destructive backspace is enabled (default), pressing a
BACKSPACE or CONTROL-H results in the sequence backspace, space, backspace being transmitted
to the screen. Destructive backspace continues until the 'IOED' mnemonic is sent.

 IOBE Begin Input Echo. As characters are entered on the screen, they are displayed (normal default). Input
echo continues until the IOEE mnemonic is sent. CALL $ECHO and the SYSTEM Statement pro-
vide additional ways to enable/disable echo. Any of the 3 methods can be used together or separately.
A CALL $ECHO can enable echo disabled by IOEE, etc.

 IOBF Mnemonic accepted, but does not perform a function.

 IOBI Begin input transparency. The IOBI mnemonic enables Binary Input mode resulting in no input
translation of characters received until the IOEI is sent. Nulls, [ESC]s, and control characters are
placed into the string exactly as received with and without the high-order bit set. When Binary Input
is enabled, your INPUT statements must specify a time limit or character count or input continues
indefinitely. See also HALT Command to unlock a port, and SYSTEM Statement Binary Input
Mode.

 IOBO Begin output transparency. The IOBO mnemonic enables Binary Output Mode resulting in no output
translation of characters. All 256 ASCII characters are sent to the terminal directly. No graphics or
CRT functions are performed. The format of this mnemonic is IOBO;"nnnnn\377\". 'nnnnn' is a one
to five digit number in the range 1 to 65535 representing the number of characters to output in Binary
Output Mode. This field may contain leading spaces or a zero byte. No trailing spaces are allowed.
The digit field must terminate with "\377\". If the format is incorrect, Binary Output will not be
enabled and the request is ignored. For example, to send the sequence ESCAPE=**, output:
"4\377\\233\=**". After the specified number of characters are transmitted, Binary Output Mode is

 Device Input and Output 111

 UniBasic Reference Guide

disabled automatically. The PRINT statement terminates strings on zero bytes. To output true
zero/null bytes, you may use the CHR() function in BITS programming mode. Zero bytes cannot be
sent in IRIS mode. See also SYSTEM Statement Binary Output mode.

 IOBX Begin XON/XOFF protocol. The IOBX mnemonic enables Unix sending XON/XOFF protocol when
communicating with a Host computer until the IOEX mnemonic is sent. The system will prevent
overflow of the type-ahead buffer by sending an XOFF to a host when the buffer is full. This function
is usually used when you activate a program on a port that is wired directly to another system. Normal
keyboard XON/XOFF protocol is always enables.

 IOB\ Begin sending the \ character to the screen whenever [ESC] is pressed. The default operation is to
always send the \ character for IRIS programs, and only for BITS applications without [ESC]
branching in effect. The \ will be sent until the IOE\ mnemonic is sent.

 IOCI Clear the contents of the terminal's type-ahead buffer. Any input entered but not processed as INPUT
is discarded.

 IOEC Disable activate-on-control-character. Normal INPUT (default) is restored, and XON/XOFF flow
control are terminated. CTRL+Q and CTRL+S are recognized. Input is terminated by [EOL] (usually
RETURN), length or time.

 IOED End Destructive Backspace. Stop sending backspace, space, backspace. Send only a single backspace
and erase the input character from the input buffer.

 IOEE End Input Echo. Disable echo of input characters on the terminal. Identical to using CALL $ECHO
or SYSTEM Statement. Input characters are not displayed on the screen until echo is enabled by
CALL $ECHO, SYSTEM or an IOBE mnemonic is sent.

 IOEF Mnemonic accepted, but does not perform a function.

 IOEI End Input Transparency. Normal Input Mode is activated, and Binary Input is disabled. Special
characters are processed and [EOL] (usually RETURN) terminates INPUT.

 IOEX End XON/XOFF Protocol. Normal overflow of the type-ahead buffer is allowed. This is the default
condition whereby type-ahead buffer overflow outputs a bell to the terminal, and input is discarded.

 IOE\ End sending the \ character to the screen whenever [ESC] is pressed. This function disables the IOB\
mnemonic and system default. The \ character is never sent to the terminal when [ESC]is pressed.

 IOIH Setup for special Input Handling. This mnemonic is followed by a byte defining the type of Input
processing to be performed. In a future release, custom tables may be defined within the default term.
file.

 IORS Reset the I/O parameters for this terminal. Echo is enabled as is the output of "\" on [ESC]. All other
IO modes are turned off.

IRIS Mnemonics Not Supported

Mnemonic Description

 IOIHIR Set the input handler type to standard processing as defined in your default term. file.

 IOIHSM Set the input handler type to SM BASIC standard.

 IOIHSR Set input handler to SM BASIC Read Record format.

 IOIHSI Set input handler to simple format. All characters are input except CONTROL S and
CONTROL Q.

 Device Input and Output 112

 UniBasic Reference Guide

$TERM Extended Graphic Mnemonics

To define graphics sequences, you may define the mnemonics BG EG to send starting and ending graphics sequences
required for the terminal. You then define unused mnemonics, such as the Special Mnemonics (SA, SB, SC, SD), color
mnemonics, etc. as your own defined graphics sequences. For example, SA may be used to draw a left pointing T.

The second (recommended) method involves the definition of special mnemonics for Extended Graphics Characters, or
EGC . These are a set of 28 octal characters that, when printed in between BG and EG mnemonics display graphics
characters on the terminal. To enable EGC, define replacement strings for the mnemonics BG and EG only if your
terminal requires a special sequence to switch between normal and graphics modes. It is not necessary to define BG or
EG to use the EGC mnemonics.

Next, define up to 28 different graphics sequences listed below. The format in the term file for defining an EGC is Gn:
replacement where 'n' is the graphics sequence (1-28), and 'replacement' is the string necessary to create the desired
character. The first 11 have pre-defined meanings and should be defined accordingly. They are used for Windows
when replacement strings for the first six sequences and BG EG are defined in the term file.

By defining any Gn mnemonics in the term. file, you enable EGC and change the method whereby graphic sequences
are sent to a screen. No longer are BG EG treated as a simple mnemonics. Transmission of the BG mnemonic switches
translation to the EGC table providing the 28 possible sequences listed0 in the following table. The EG mnemonic
resets translation to the standard mnemonic table.

When EGC is enabled, the following \octal\ and mnemonics output graphics sequences. When disabled, the \octal\ or
either mnemonic outputs the replacement string defined for the first mnemonic below. For example: AE, G3 or \110\
normally enable the auxiliary port. When EGC is defined, these codes output a Lower Left Corner of a box when sent
between BG and EG mnemonics.

Table of Extended Graphics Octal Codes

 term Octal Mnemonics Description

 G1 \106\ 'CT' G1 Upper left corner
 G2 \107\ 'ST' G2 Upper right corner
 G3 \110\ 'AE' G3 Lower left corner
 G4 \111\ 'AD' G4 Lower right corner
 G5 \112\ 'SL' GH Horizontal bar
 G6 \113\ 'LU' GV Vertical bar
 G7 \114\ 'SP' GL Left pointing T
 G8 \115\ 'GR' GR Right pointing T
 G9 \116\ 'TB' GU Upward pointing T
 G10 \117\ 'PI' GD Downward pointing T
 G11 \120\ 'RE' GC Cross (+)
 G12 \121\ 'PU' none User defined
 G13 \122\ 'YE' User defined
 G14 \123\ 'BL' User defined
 G15 \124\ 'MA' User defined
 G16 \125\ 'CY' User defined
 G17 \126\ 'WH' User defined
 G18 \127\ 'XX' User defined
 G19 \130\ 'SA' User defined
 G20 \131\ 'SB' User defined
 G21 \132\ 'SC' User defined

 Device Input and Output 113

 UniBasic Reference Guide

 G22 \133\ 'SD' User defined
 G23 \134\ 'BV' User defined
 G24 \135\ 'BH' User defined
 G25 \136\ User defined
 G26 \137\ User defined
 G27 \140\ User defined
 G28 \141\ User defined

Programs display graphic characters by printing the octal value associated with them. The following example displays a
3 by 3 box:

 10 PRINT 'BG'"\106\\112\\107\"
 20 PRINT "\113\\40\\113\"
 30 PRINT "\110\\112\\111\"'EG'

Dynamic Windows use EGC to draw boxes using graphics mode. If the first six EGC are not defined, BV (if defined)
or '|' becomes the vertical character, BH (if defined) or '- ' becomes the horizontal character, and '+' becomes the corner
character as defaults. To use EGC with Dynamic Windows, the first six EGC (G1 through G6) must be defined in the
term file.

BG and EG need not be defined to display EGC unless the terminal requires initialization sequences for graphics. If the
terminal is an ANSI monitor or one that displays graphic characters without an initialization sequence, BG EG need not
be defined.

Note: The first eleven EGC (G1 through G11) are reserved and should be used for the features described
above. Failure to do so will render Dynamic Windows automatic box drawing useless. Any EGC re-
served in the future will start at G12. When defining your own characters, start from the end of the list
(G28) moving backwards.

$TERM Input Character Processing

Characters are processed in the form received from the Unix system. To avoid application problems, normal printable
characters should be received in 7-bit form. To verify that your terminal is configured for 7-bit characters, issue the
Unix command: stty -a. The option istrip should be displayed. If the option is displayed as -istrip, then the 8th bit is
not being stripped prior to passing the data into the application. Refer to the Unix Terminal Information for additional
information.

Input Character Definitions are included within the term file to define special functions for your applications. These
characters are not passed as input unless Binary Input Mode is enabled using IOBI or SYSTEM 14. Some of these
characters will be passed as input if Activate-On-Control-Character mode is enabled by using IOBC. Any given
function may have one or more characters invoke its operation, however a single character may not perform two
different functions. The format of this information in the term file is:

 c:action (printable character c)
 ^c:action (control character c)

 Device Input and Output 114

 UniBasic Reference Guide

 \ooo\:action (octal value of character c)

In the following table, action is a number from 0 to 24 representing a function to be performed upon entry of a character
tagged to the action. The CODE represents the name of the function invoked. Throughout this guide, the [CODE]
format is used to specify an Input Character Function.

Action Code Function

 0 Normal data, echo character and process as normal input characters.

 1 Convert to space. These characters are to be converted to spaces whenever they are used.

 2 Ignore this character completely. Used to disable special keys not supported by an
application.

 3 Ignore this character and echo a BELL whenever the character is entered by the user.

 4 [DBS] ^H: Destructive backspace. Erase one character from the input buffer and echo backspace,
space, backspace to erase the character from the screen. If no characters are in the buffer, the
terminal bell is sounded.

 5 [BS] DEL: Echoed backspace. Erase one character from the input buffer and echo the erased
character.

 6 [ESC] ESC: ESCape. Send the application an ESCAPE. The application can elect to abort, ignore
or process the [ESC] itself using IF ERR, ESCSET, ESCDIS or ESCSTM. A \ is sent to the
terminal for BITS applications only if [ESC] branching is disabled. For IRIS applications,
the \ is always sent unless the mnemonic IOE\ is enabled.

 7 [EOBC] ^D: [ESC] override. Abort any running command or program. This character bypasses any
program [ESC] handling. A \ is always sent to the terminal.

 8 [CANCEL] ^X: Cancel input buffer. Erase all characters currently typed as input characters.

 9 ^O: Cancel output. Not implemented.

 10 ^S: Pause output. Temporarily suspend output. This character is set by Unix and cannot be
changed.

 11 ^Q: Resume output. Any output stopped by ^S is resumed. This character is set by Unix and
cannot be changed.

 12 [ECHO] ^E: Toggle echo. If echo is enabled, disable further echoing until another ^E is entered.

 13 [SIGNAL] ^B: Generate signal to your program. This character sends a SIGNAL with two (-1) values.

 14 [INTR] ^C: BASIC program interrupt. Used for applications to have a second method of
interruption. Requires the use of INTSET statement.

 15 [EOL] RETURN: Terminate input. Transmit any input to the program or system as a completed
line.

 Device Input and Output 115

 UniBasic Reference Guide

 16 Normal data but no echo. This allows the input of certain characters with an echo inhibit.
Some characters may, for example, perform an unwanted screen function when entered.

 17 Normal data but echo space. This allows the input of certain characters that may affect a
terminal to be echoed as space. The cursor will then move reflecting the input of a character.

 18 Convert to carriage return. Each input of this character is replaced by a [EOL] (Usually
RETURN) in the buffer, however, this character does not terminate input. The default
character ^Z performs this operation.

 19 [HOT-KEY] Perform a SWAP to the Executive Program chosen by CALL $SWAPF. When this character
is entered at any INPUT statement, the current program is suspended, the Executive is loaded
and run until it terminates. See WINDOW and Using Dynamic Windows.

 20 [UP] Cursor Tracking up character. Whenever this character is entered during Cursor Tracking
Mode, the character \053\ is returned in the string variable.

 21 [DOWN] Cursor Tracking down character. Whenever this character is entered during Cursor Tracking
Mode, the character \052\ is returned in the string variable. This character, if defined, also
performs an [EOL] when Cursor Tracking mode is disabled.

 22 [LEFT] Cursor Tracking left character. Whenever this character is entered during Cursor Tracking
Mode, the character \010\ is returned in the string variable. This character, if defined, also
performs a non-destructive backspace [NDBS] when Cursor Tracking mode is disabled.

 23 [RIGHT] Cursor Tracking right character. Whenever this character is entered during Cursor Tracking
Mode, the character \040\ is returned in the string variable.

 24 [NDBS] Non-destructive backspace. Erase one character from the input buffer and echo a backspace.
If no input characters are in the buffer, the terminal bell is sounded.

For example, "^A:4" defines the CTRL+A key to perform a destructive backspace. This does not disable the CTRL+H
key which is pre-defined to perform the same function. To change one of the default characters, first redefine the
existing character, then set the new character for the function. For example: ^H:0 to set CTRL+H as normal data, ^A:4
to set CTRL+A for destructive backspace.

Note: Only one key each may be selected to perform functions 6 and 7. Functions 9, 10 and 11 may not be
changed on Unix systems.

Cursor Tracking Mode
Cursor Tracking is an INPUT mode available to BASIC programs to monitor the motion of the cursor on the screen.
When activated, the arrow keys on the terminal are intercepted and returned as CRT control characters to the BASIC
program. The program then tracks the cursor by knowing its position and counting the number of up, down, left and
right arrows entered.

 Device Input and Output 116

 UniBasic Reference Guide

To activate Cursor Tracking, output the character \001\ as the last character prior to INPUT. Any other character
disables Cursor Tracking. Cursor Tracking continues during input until the [EOL] character is entered.

The characters sent by the actual arrow keys must be defined in the term file equated to input translation functions
20,21,22 and 23 All terminals behave differently when using the arrow keys past the end of a line or screen. Make sure
your application handles the keys the same as the terminal would operate in local mode.

 10 INPUT {@x,y; and mnemonics} "\001\" str.var
 20 PRINT ... ;"\001\";
 30 INPUT "" str.var

Statement 10 enables Cursor Tracking for the INPUT of A$. Statement 20 enables Cursor Tracking (note the
terminating ; preventing transmission of a [EOL] usually RETURN). Statement 30 then receives INPUT in Cursor
Tracking Mode.

The actual INPUT received will be standard ASCII characters. The arrow keys are returned as octal values:

 OCTAL Key Pressed
 \010\ Left Arrow
 \040\ Right Arrow
 \052\ Down Arrow
 \053\ Up Arrow

Cursor Tracking operates on all data processed following the output of "\001\". Data typed ahead (but not yet received
from Unix) will process correctly.

Using Dynamic Windows
A window is simply another page of information on the screen. It may be the entire screen, or a smaller region placed
anywhere on the current screen. When a window is created, the underlying information is saved and then cleared. An
optional box with heading may be created to highlight a window. When a window is deleted, it is cleared restoring any
previous underlying data. See also WINDOW.

Each window behaves as a full screen of the dimensions specified. Data automatically wraps within the boundaries of
the window and many of the mnemonics are supported. Cursor positioning is relative, such that position 0,0 is the first
character of the window. Scrolling within a window is allowed.

The number of windows that may be opened concurrently is limited by the environment variable WINDOWS which
must be explicitly assigned a value greater than zero (its default) to enable Dynamic Windows.

Window Zero is the full screen before any windows are open.

Window Tracking Map is the screen map maintained for the actual screen display present. As windows are created, the
underlying information is copied into allocated memory and saved until the window is deleted. The Window Tracking
Map holds characters and attribute information for each position on the screen. The map is also used to simulate
protected data on ANSI monitors.

Window Tracking is the process whereby each character and its attributes is maintained in a display map. Each
character along with attributes for Protect, Reverse, Underline, Dim, Blink and Graphics are maintained. Mnemonics,

 Device Input and Output 117

 UniBasic Reference Guide

keyboard echo and cursor addressing are intercepted to prevent access outside the current window. When enabled, a
Map is automatically created for Window Zero; the first full-screen window.

If the environment variable WINDOWS is not defined or set to zero, a Window Tracking Map is not created and all
characters and mnemonics pass directly to the screen. Similarly, if the crt.type in the term.file is not defined or zero,
Window Tracking will be disabled.

By default, when using an ANSI style monitor with crt_type in the term file set to 23, the environment variable
WINDOWS defaults to one if undefined or zero. A Clear Screen automatically enables Window Tracking during RUN
mode. This allows the monitor to simulate Protected Fields, a normally unsupported feature on most PC monitors.

Using Protected Characters & PC Monitors

Protected characters and fields are simulated whenever Window Tracking is enabled. This is done for the following rea-
sons:

 1. Protected fields are not supported on ANSI PC Monitors.

 2. Creating a new window on top of already protected characters.

 3. Repainting protected characters when restoring underlying data.

 4. Limit Clear Unprotect CU from clearing characters outside the current window.

On most terminals, protected characters are not truly protected until format mode FM is enabled. To accommodate a
wide range of terminals, protection is available using {BP EP}, {BP FM EP} or {BD ED FM}. See also $TERM Flags
and Switches; crt_flags.

To overlay protected fields with a new window, the terminal is never placed into format mode. On most terminals,
Format Mode prohibits placing characters over a protected area unless the entire screen is cleared. Window Tracking
intercepts FM, FX, BP and EP mnemonics to maintain the Window Tracking Map. BD and ED (or BPW and EPW if
defined) are sent to the screen instead of BP EP and FM FX are never transmitted. BPW and EPW mnemonic
definitions are provided as an alternative to BD and ED when using either embedded dimmed mnemonics or alternative
attributes.

Because terminals behave differently, and applications have control defining mnemonic replacement strings, the
following problems may occur:

 1. The cursor is moved using a non-supported window mnemonic, or Unix command, corrupting the
Window Tracking Map.

 2. When closing a window, attributes are enabled and disabled as needed to repaint the screen. If the
edge of a window overlaps an underlined word, the underline code is sent in the middle of the word in
a futile attempt to restore the screen.

 3. When a window is created on top of or between beginning and ending codes, the underline runs
through the window, up to end of the screen, or disappears altogether.

 4. When underlined text wraps from the right edge of a window to the left, underline does not obey a
windows borders.

 Device Input and Output 118

 UniBasic Reference Guide

By default, all mnemonics are assumed to occupy zero character positions on the screen with the exception of BH, BV,
PI, and Extended Graphics Characters which default to a single position.
For problems 1 and 2 above, modify the term file for the specific mnemonics inserting the number of characters required
on the screen. For example if BU (Begin Underline) requires a screen position, modify the entry to read:

 BU,1:\33\G8

For problems 3 and 4 above, there is no simple solution. This occurs on terminals requiring a screen position to flag
start and end of an attribute. When opening a window thereby clearing the end-attribute, the terminal automatically
extends the attribute to the end of line or screen. If the terminal uses an identical sequence to end all special attributes,
try lining the left and right sides with these ending mnemonics and modify the window to occupy one less character on
each side using WINDOW MODIFY.

Mnemonics Simulated During Window Tracking

When a window is opened and Window Tracking is enabled, characters and mnemonic codes are intercepted and forced
within the boundaries of the window. If the cursor is moved into a protected region, the cursor is automatically
advanced to the first non-protected position. Scrolling is permitted in full screen mode and within a window.

The behavior of Windows varies, depending on the state of the Format Mode ('FM') and the crt.flags field in the term
file. Format Mode controls whether or not protected characters can be overwritten or cleared. When Format Mode is
enabled, characters with the protect attribute ('BP') are immune to being cleared by 'CU', 'CE', or 'CL' mnemonics.
When Format Mode is disabled ('FX'), protected characters are vulnerable. Format Mode can be changed either
explicitly with 'FM/'FX', or implicitly with 'BP'/'EP' by setting crt_flags:2.

There are three additional flags used to describe the behavior of Windows with regards to the 'MD','MR', and 'IL'/'DL'
mnemonics on a particular terminal when windows is enabled. They can be modified in the crt_flags field of the term
file. Window Tracking needs this information in order to accurately represent the screen. These flags do not control
how the mnemonics function, and are only meaningful when Window Tracking is in use. See also: crt_flags.

The following pages list the mnemonics supported during Window Tracking. Exercise caution using mnemonics not
listed. Verify that the number of screen positions required is defined in the term file.

Mnemonic Function Performed

 \215\ Carriage Return. BITS mode sends the cursor to the first column of the window on the current line,
whereas IRIS mode also performs an automatic Line-feed (See \212\ New-Line).

 \212\ New Line. The cursor is moved to the first column of the open window on the next line.

 \210\ Backspace. Backspacing is forced to stay within the boundaries of any open window. Backspacing
off the left of the window places the cursor in the last window column of the previous line.

 @x,y; Cursor Addressing operates normally, but is restricted to the boundaries of any open window. If the x
or y coordinate is out of range, it is reduced to within range. Cursor positions are origin (0,0) as the
first position of the window.

 \001\ Cursor Tracking is supported within the boundaries of any open window.

 'CR' Carriage Return. The actual characters defined by the mnemonic are sent and the screen is adjusted to
be within the boundaries of the current window. If the mnemonic contains only \15\, then the cursor is

 Device Input and Output 119

 UniBasic Reference Guide

moved to the beginning of the current line. If the mnemonic contains \15\\12\ or \15\ in IRIS mode,
the carriage is advanced to the first column of the window on the next line.

 'LF' Line Feed. During Window Tracking, the LF mnemonic does not get interpreted from the UniBasic
term file and always outputs a line feed.

 'MH' Move Home. The cursor is placed into the first unprotected character position of the window.

 'MU' Move Up. The cursor is moved to the line above in the window unless the cursor is already on the
first line of the window , then it scrolls to the next line up.

 'MD' Move Down. The cursor is moved down to the next line in the window unless the cursor is already on
the last line of the window, where the action is determined by the configuration, and the crt_flags.

 'ML' Move Left. The cursor is moved one position to the left. If the cursor underflows the first column of
the window , the cursor is placed on the last character position of the previous line in the window , if
any.

 'MR' Move Right. The cursor is moved one position to the right, If the cursor overflows the last column of
the window, the action is determined by the configuration, and the crt_flags.

 'BP' Begin Protect. The Protect attribute is turned on and all further characters will be tracked with the
Protect attribute. If you wish BP to turn off format mode, see crt_flags ($TERM Flags and Switches).
The CRT code BD (Begin Dim) is output to place the screen into half-intensity mode. The alternate
sequence BPW may be defined to display protected data in other than dimmed intensity.

 'EP' End Protect. The Protect attribute is turned off. If you wish EP to turn on format mode, see crt_flags
($TERM Flags and Switches). The CRT code ED (End Dim) is output to restore normal intensity.
The alternate sequence EPW may be defined to display protected data in other than dimmed intensity.

 'FM' Turns on format mode. Formats characters transmitted as protected or dimmed to become protected.
Can be used with crt_flags:2 set. See also crt_flags ($TERM Flags and Switches).

 'FX' Turns off format mode. Can be used with crt_flags:2 set. See also crt_flags ($TERM Flags and
Switches).

 'BU' Begin Underline.

 'EU' End Underline.

 'BD' Begin Dimmed intensity. By default, dimmed characters are protectable. See also crt_flags ($TERM
Flags and Switches).

 'ED' End Dimmed Intensity. See also crt_flags ($TERM Flags and Switches).

 'BR' Begin Reverse Video.

 'ER' End Reverse Video.

 'BB' Begin Blink.

 'EB' End Blink.

 Device Input and Output 120

 UniBasic Reference Guide

 'BG' Begin Graphics (see $TERM Extended Graphics Characters).

 'EG' End Graphics (see $TERM Extended Graphics Characters).

 'CU' Clear Unprotected data. All data in the window that is not protected is cleared. The attributes
currently enabled are not disturbed by this mnemonic.

 'CS' Clear Screen. The entire window is cleared and all attributes are turned off. Note that Clear Screen
does not delete the window, rather it performs a Clear Screen within the boundaries of the window.

 'XX' Initialize terminal. Same as Clear Screen.

 'IC' Insert Character. This action is simulated when the window border does not extend to the right edge
of the screen, or a protected character is to the right of the character. The action is dependent on the
setting of the crt_flags.

 'DC' Delete Character. This action is simulated when the window border does not extend to the right edge
of the screen, or a protected character is to the right of the character. The action is dependent on the
setting of the crt_flags.

 'IL' Insert Line. An open line is inserted at the current position. This action is simulated when in a
window. The action is dependent on the setting of the crt_flags.

 'DL' Delete Line. Deletes the current line. This action is simulated when in a window. The action is
dependent on the setting of the crt_flags.

 'CL' Clear Line. All unprotected characters from the current cursor position through the last character of
the window line are cleared to space. See also crt_flags ($TERM Flags and Switches) to control the
operation of CL with protected data.

 'CE' Clear End of Screen. All unprotected characters from the current cursor position through the last line
of the window are cleared to space.

 'BV' Box Vertical. Character used for vertical line around a window. Defaults to '|' if undefined. Unused if
Extended Graphics are defined. See also $TERM Extended Graphics Characters.

 'BH' Box Horizontal. Default character used for horizontal line around a window. Defaults to '-' if
undefined. Unused if Extended Graphics are defined. See also $TERM Extended Graphics
Characters.

 'PI' Position Indicator. Used to display a field width for a user INPUT prompt. Normally, PI is '_'
(underline), and is used in the form: '20PI' to display for the user a 20-character input field. The cursor
is not repositioned to the start of the field.

Note: No other mnemonics are supported during Window Tracking. Others are sent directly to the terminal.
If a mnemonic moves the cursor or transmits data, the Windows Tracking Map may be compromised!
Define other mnemonic's number of screen positions.

 UniBasic Commands 121

 UniBasic Reference Guide

UniBasic Commands
Commands include those functions built within the UniBasic process. Certain other familiar commands (such as LIBR
or DIR) are external system programs and are documented as Utilities.

Commands are issued in either program mode or at command mode. Commands restricted to command mode are
signified by the SCOPEPROMPT '#'. BASIC program mode commands are shown without a prompt. When setting the
environment variable BASICMODE=BITS, both modes are combined into a single prompt, BITSPROMPT, where
both types of commands may be issued.

For example:

 #SAVE {<attributes>} filename {!}

SAVE must be issued from command mode.

 LIST {parameters}

LIST must be issued from BASIC program mode.

Some commands are restricted to a single BASICMODE. For example, BITS uses the DELETE command to delete
files from command mode, while IRIS uses the DELETE command to remove statements.

Note: At the top of each page in this section, if a command is restricted to one mode or the other, it is so
indicated. In addition, if a command is restricted to BITS, the command format is preceded by the
prompt '*'.

For example:

 *DELETE filename

Starting & Ending Statement Numbers
Statement Numbers (or labels), are referenced as stn, starting stn, or ending stn. Commands which allow both a starting
stn and ending stn behave differently when selecting BASICMODE=IRIS or BASICMODE=BITS:

When operating under the environment selected by BASICMODE=IRIS, the following rules apply:

 1. Supplying a starting stn without an ending stn selects those statements greater or equal to starting stn
through the end of the program: 10 LIST

 2. Supplying an ending stn without a starting stn selects those statements from the beginning of the
program up to and including any statement equal to the supplied ending stn: LIST 1000

 UniBasic Commands 122

 UniBasic Reference Guide

 3. Supplying both a starting stn and ending stn selects all statements greater or equal to starting stn, and
less than or equal to ending stn:

 1000 LIST 2000

 4. Supplying an identical starting stn and ending stn selects only that single statement, or the first stn
greater: 100 LIST 100

When operating under the environment selected by BASICMODE=BITS, the following rules apply:

 1. Supplying a starting stn followed by a comma and no ending stn selects those statements greater than
or equal to starting stn through the end of the program: LIST 1000,

 2. Supplying a comma followed by an ending stn selects those statements from the beginning of the
program up to and including any statement equal to the supplied ending stn: LIST ,1000

 3. Supplying both a starting stn and ending stn selects all statements greater than or equal to starting stn,
and less than or equal to ending stn:

 LIST 1000,2000

 4. Supplying a single starting stn without a preceding or trailing comma selects only that single
statement, or the first stn greater: LIST 1000

labels may be specified wherever a stn is required. Some commands, such as RENUMBER or ENTER, rely on integer
statement numbers for their operation. If a label is supplied, its current statement number is substituted.

Processing in Command Mode
When in command mode, the following steps are performed for each input line:

 1. If the command is internal to UniBasic, it is executed immediately. This includes commands such as
BYE, BASIC, etc., otherwise -

 2. A search is made through the directories defined in the environment variable LUST for a BASIC pro-
gram or utility (such as LIBR, QUERY). If found, the program is started, otherwise -

 3. A sub-shell process is started and the command is fed to the shell for execution by Unix. Following
execution of the command, command mode is resumed.

If an existing internal command (1), or BASIC program (2) conflicts with the name of a Unix command, begin the
command line with ! to force Unix execution (3). In addition, the ! command reloads the term file and may be used
within BASIC program mode without sacrificing open files normally closed for IRIS users when command mode is en-
tered.

Since commands are performed in a sub-shell child process, changes to environment variables or current working
directory are only effective while in the sub-shell. When it terminates, the parent (UniBasic) resumes unaware of the
child's activities.

 UniBasic Commands 123

 UniBasic Reference Guide

The Unix command sh can be issued to enter the shell for a series of operations. The shell remains active until CTRL+D
(EOF) or an exit command is issued. At that time, command mode is reentered.

Because Unix is a multi-processing system, it is possible to have many processes running concurrently on a port. The
Unix command ps may be used to display all active processes. If this command is executed from command mode, you
may see a number of shells:

#ps
 PID TTY TIME COMMAND
 10308 00 0:01 sh
 10334 00 0:02 UniBasic
 10336 00 0:00 sh
 10337 00 0:00 ps

The first sh is the active shell launched at login. This process will not be displayed if the .profile contains exec
UniBasic since exec replaces the current sh with the UniBasic process. Next, the UniBasic process is running which
launched a sub-shell in command mode to execute the ps command.

When making changes to your current term file using a Unix editor (such as vi), execute a ! command from either
command mode or BASIC program mode to force a reloading of the term file with your changes.

 UniBasic Commands 124

 UniBasic Reference Guide

! Command
SYNOPSIS: Execute External Unix Command

#! command
! command

DESCRIPTI0N
command is any Unix (or null) command to be executed by a sub-shell.

Upon completion of the command, the default term file is reloaded, and any opened Windows are cleared.

All system commands are executed by a separate shell child process - effectively putting UniBasic to sleep until the
command terminates. Changes to environment variables, tty settings and current working directory within a child
process are effective only during that process. Upon termination of the command, the parent (UniBasic) resumes
execution unaware of the child's activities.

You may use the ! command to launch another copy of UniBasic (for debug purposes) should you wish to leave the
current process intact, i.e. files open, variables undisturbed, etc. Issue the command:

 !PORT=xx UniBasic

Where 'xx' is an unused UniBasic port number. You then are controlling 2 different port numbers as if you went to
another terminal When a BYE command or SYSTEM 0 is executed from the second, the first resumes as if the
command was never issued. Care must be exercised with respect to locked records or files, since the second process
obeys locks placed on files by the first.

EXAMPLES
!ls -l
!vi /usr/ub/sys/term.tvi925

ERRORS
As reported by Unix for specific command

See also: CD Command, Unix Documentation

 UniBasic Commands 125

 UniBasic Reference Guide

/ Command BITS only
SYNOPSIS: Load and RUN a SAVED BASIC program.

*/ { filename }

DESCRIPTI0N
filename is any optional filename or full pathname to a BASIC program to which you have read-permission. If
omitted, the current program (if any) is executed.

The / command is only available when operating within the BASICMODE=BITS environment.

If filename exists as a BASIC saved or system program file, any current program is erased. filename is loaded, and
execution begins immediately at the lowest stn within the program.

This command is identical to a RUN filename command, available in either IRIS or BITS mode.

EXAMPLES
*/
*/payroll
*//usr/ub/programs/pay200
*/sys1:program

ERRORS
Filename does not exist
Read Protected File
Not a loadable program file

See also: RUN Command, LUST Environment Variable

 UniBasic Commands 126

 UniBasic Reference Guide

AUTO
SYNOPSIS: Automatic entry of program statement numbers.

{starting stn} AUTO {increment} IRIS
AUTO {starting stn} {,increment} BITS

DESCRIPTI0N
starting stn is an optional first statement number in the current program to begin entering new statements. If omitted,
10 is the default. If an existing statement label is supplied, entry begins at that statement number.

increment is the optional statement number increment for automatic entry. If omitted, 10 is the default. If a label is
supplied, its statement number is used as the increment. It is suggested that only a number be supplied as the
increment.

AUTO displays the stn allowing entry of the new statement. If the stn already exists, it is replaced by the new entry
if the statement is accepted without error.

If an error is detected in the statement entered, a message is displayed and the same stn is requested.

AUTO is terminated by pressing ESC.

EXAMPLES
AUTO 1
AUTO 100,1

ERRORS
Various syntax and encoding ERRORS

See also: Program Statements

 UniBasic Commands 127

 UniBasic Reference Guide

BASIC IRIS only
SYNOPSIS: Load a new BASIC program.

#BASIC filename

DESCRIPTI0N
filename is any filename or pathname to a BASIC program or saved System BASIC program to which you have read-
permission.

If filename is a saved BASIC program file or System BASIC program file, any current program is cleared and the
partition is loaded with the new program. If the partition contains a needed program, it should first be saved or
dumped.

The error 'Not a Loadable Program File' may occur if the program has been encrypted using the PSAVE command.
These programs are not accessible unless your system has an authorized OSN (OEM Selection Number) installed by
the owner.

If the new program was saved with variables (VSAVE or CHAIN "SAVE ...", the message 'with variables' is
displayed.

The Supplemental Protection Attribute F flags an IRIS program file. If the program was saved with the attribute E
(Execute only), the program is automatically erased from memory after loading.

BASIC is only available when operating in the environment BASICMODE=IRIS. Use the GET command when
BASICMODE=BITS.

EXAMPLES
#BASIC 23/FILENAME
#BASIC /usr/ub/sys/libr

ERRORS
Filename does not exist
Not a loadable program file - wrong revision, protected or corrupted
Read Protected File

See also: GET, MERGE, LOAD, Filenames and Pathnames, OEM Command, Supplemental Protection
Attributes, RSAVE, PSAVE, VSAVE, CHAIN "SAVE ...", LUST

 UniBasic Commands 128

 UniBasic Reference Guide

BAUD
SYNOPSIS: Change terminal's IO parameters.

#BAUD rate

DESCRIPTI0N
Baud is the rate of transmission, in bits-per-second on a serial line. Most I/O controllers use the RS-232 serial
standard to interface with terminal devices. In this case, rate generally equals the number of bits per second. Since a
frame of data is usually 10 bits (start bit, 8 data bits, stop bit), the actual transmission speed in characters per second is
calculated by dividing the rate by 10.

To change your port’s baud rate, the following conditions should be observed:

 1. Your terminal device must be speed-selectable.

 2. Your terminal must be connected to a software speed-selectable controller board. Some boards are
speed-selectable via switches on the board itself, older boards may not be selectable at all.

 3. The baud rate selected must be legal both for your terminal and the port controller board. Most
programmable controllers allow the rates: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200 and
38400.

If your terminal's rate cannot be changed, an error message is returned, and the command is ignored.

BAUD uses the Unix stty command to change the rate.

EXAMPLES
#BAUD 2400
*BAUD 19200

ERRORS
Illegal speed

See also: Unix stty command

 UniBasic Commands 129

 UniBasic Reference Guide

BYE
SYNOPSIS: Terminate UniBasic session.

#BYE

DESCRIPTI0N
The BYE command clears any program from the user’s partition, closes all channels, deletes any remaining signals,
removes the message queue associated with the port and terminates the current session.

The current day and time, Unix [group-user] and current port number are displayed:

 09 JUL 1986 13:10:47 [7-4] Port=15
CPU=10, Connect=15, Disk=13234

The second line contains cpu and connect time usage for the session just ended, followed by the number of available
disk blocks on the file system.

The parent process resumes when UniBasic terminates. If UniBasic was launched from the shell (or .profile) using
the command exec UniBasic, the terminal is signed off, and the login prompt is displayed. Otherwise, the shell or
calling process is resumed.

If you are in debug mode following a non-trapped error, [ESC], or [EOBC] in a child UniBasic process launched
using the [Hot-Key] or SWAP statement, the parent UniBasic is resumed.

EXAMPLES
#BYE
*BYE

ERRORS
None

See also: SYSTEM 0

 UniBasic Commands 130

 UniBasic Reference Guide

CD
SYNOPSIS: Change current working Directory.

#CD { pathname }

DESCRIPTI0N
pathname is any logical unit, pack name, directory name or full Unix pathname.

If no pathname is specified, the current default working pathname is displayed.

If a logical unit, packname or directory name is specified, the Logical Unit Search Table LUST is searched for the
first full pathname where the directory is below. The current working directory is changed to the new pathname.

This command is not totally compatible to the Unix cd command. The Unix environment variable CDPATH is not
searched. The command is provided for convenience since direct execution of the Unix cd command is performed in
a sub-shell, and changes do not affect the current process.

EXAMPLES
#CD 23
#CD /usr/ub/text
#CD data:

ERRORS
System Error - No such file or directory

See also: PACK, Filenames and Pathnames, UNIT, LUST, CLU

 UniBasic Commands 131

 UniBasic Reference Guide

CHAIN "SAVE. . ." IRIS only
SYNOPSIS: Save the current program with variables.

CHAIN "SAVE filename{!}"

DESCRIPTI0N

The CHAIN statement is executed in immediate mode as a long chain to the SAVE command providing for the
saving of variables and program state for later debugging.

The optional ! provides for replacement of an existing filename.

filename is any legal filename or pathname to contain the saved version of the current program.

All variables, GOSUB stack, FOR/NEXT stack, User Defined Function stack are saved. A prompt 'with variables' is
displayed during the SAVE as well as during later loading of the program using BASIC or GET.

CHAIN "SAVE ..." is used to save a copy of a program for later debugging. Any open file information is not saved.
Applications may use a combination of error-branching (ERRSET, ERRSTM, or IF ERR) and CHAIN "SAVE ..."
to facilitate later debugging of an application failure.

EXAMPLES
CHAIN "SAVE ERRORS/"+MSF(4)
CHAIN "SAVE PROGRAMERROR!"

ERRORS
Filename already exists; use "!" to replace
No program in partition

See also: VSAVE, CHAIN, LUST

 UniBasic Commands 132

 UniBasic Reference Guide

CHANGE BITS only
SYNOPSIS: Change filename or attributes.

*CHANGE filename (newfilename{!} | <new attributes>)

DESCRIPTI0N
filename is any filename or pathname to a file with write permission. The optional ! provides for the replacement of
an existing filename.

newfilename is any new filename or pathname if a name change is desired.

new attributes is any IRIS, BITS, Unix or Supplemental Attributes if the file permissions are to be changed.

The CHANGE command is only available when operating in the environment BASICMODE=BITS. To change
filenames or attributes in an IRIS environment, see the CHANGE utility, or MODIFY statement.

CHANGE uses the Unix mv command to rename a file, and the chmod command to change attributes. Supplemental
Attributes are stored in files unique to UniBasic within each file's header.

If the file is an Indexed Data File, both the data and ISAM portion are changed.

CHANGE may also be used to move a file from one directory to another. If a Logical Unit, Packname, or pathname
is specified for filename, you must include the same for the newfilename or the file is moved to your current working
directory.

EXAMPLES
*CHANGE PACK:FILENAME PACK:NEWFILENAME
*CHANGE PACK:FILENAME <EO666>

ERRORS
Filename does not exist

See also: CHANGE Utility, MODIFY Statement, Filenames and Pathnames, File Attributes, Protection and

Permissions, LUST

 UniBasic Commands 133

 UniBasic Reference Guide

CHECK IRIS only
SYNOPSIS: Scan program for proper blocked-IF's.

CHECK

DESCRIPTI0N
The current program is checked for proper Blocked-IF structure. If any ERRORS are detected, an error is printed.

Blocked IF statements are also checked whenever a program is SAVEd.

CHECK is only available when operating in the environment BASICMODE = IRIS. For BITS environments, use
the VERIFY command.

If no ERRORS are detected, the message 'No errors detected' is displayed.

EXAMPLES
CHECK

ERRORS
IF without ENDIF
ENDIF without IF
ELSE without ENDIF

See also: VERIFY, SAVE, IF

 UniBasic Commands 134

 UniBasic Reference Guide

CLU IRIS only
SYNOPSIS: Change current working Directory.

#CLU { pathname }

DESCRIPTI0N
pathname is any logical unit, packname, directory name or full Unix pathname. If no pathname is specified, the
current default working pathname is displayed.

If a logical unit, or packname or directory name is specified, the Logical Unit Search Table LUST is searched for the
first full pathname where the directory is below. The current working directory is changed to the new pathname.

This command is not totally compatible to the Unix cd command. The Unix environment variable CDPATH is not
searched. The command is provided for convenience since direct execution of the Unix cd command is performed in
a sub-shell, and changes do not affect the current process.

EXAMPLES
#CLU 23
#CLU /usr/ub/text

ERRORS
System Error - No such file or directory

See also: PACK, Filenames and Pathnames, UNIT, LUST, CD Command

 UniBasic Commands 135

 UniBasic Reference Guide

CONTINUE
SYNOPSIS: Resume execution of stopped program.

CONTIN{UE}

DESCRIPTI0N
CONTINUE resumes execution of a program stopped by Breakpoint, STOP, non-trapped error, or [EOBC] (usually
CTRL+D).

If debugging options such as Breakpoint or Single Step is used, execution resumes at the first instruction in sequence
not yet executed. Entry into debug mode using STOP, Breakpoint, non-trapped error or [EOBC] leaves all channels
open.

When operating in the environment BASICMODE=IRIS, command mode automatically closes all open channels. To
perform shell or other system commands, use the ! command to invoke a shell or another copy of UniBasic.

EXAMPLES
CONTINUE
CONTIN

ERRORS
none

See also: STOP, END, BASICMODE, Program Breakpoints, Single Step Execution, TRACE, SYSTEM

20/21/22/23

 UniBasic Commands 136

 UniBasic Reference Guide

DEL BITS only
SYNOPSIS: Delete a file.

*DEL filename ...

DESCRIPTI0N
filename is any legal filename or pathname to a file to which you have write permission.

The DELete command may be used to delete one or more files from disk.
Multiple filenames separated by spaces may be included on the command line up to the length of the input buffer.

If, for any reason, a file cannot be deleted, a message to this effect is output and deletion of files stops immediately.
DEL does NOT indicate which file caused the error. It is best to delete multiple files only when you are sure all can
be deleted, or use the KILL utility.

DEL is only available when operating in the environment BASICMODE=BITS. For IRIS environments, use the
KILL utility.

EXAMPLES
*DEL PACK:FILENAME
*DEL /usr/ub/sys/term.old

ERRORS
File does not exist
File is read-protected

See also: KILL, MFDEL, KILL, LUST

 UniBasic Commands 137

 UniBasic Reference Guide

DELETE IRIS only
SYNOPSIS: Delete program statements.

{starting stn} DELETE {ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to delete. If omitted, the first stn is selected. If the starting
stn does not exist, the first existing higher stn is used.

ending stn is an optional last stn in the current program to delete. If omitted, the highest statement number is selected.
If the ending stn does not exist, the first existing lower stn is used.

DELETE without a starting stn or ending stn removes all statements in the current program. It is not the same as a
NEW command which also clears variable names and values.

When operating in the environment BASICMODE=BITS, use the ERASE command to remove statements.

EXAMPLES
INPUT: DELETE END_INPUT:
9900 DELETE
100 DELETE 200

ERRORS
none

See also: ERASE, Program Statements, Starting & Ending Statement Numbers

 UniBasic Commands 138

 UniBasic Reference Guide

DUMP
SYNOPSIS: Decode a program to a file, device or pipe.

{starting stn } DUMP {opt} {<attr>} filename{!} {/text/} {ending stn} IRIS
DUMP {opt} {{<attr>} filename{!}} {/text/}{starting stn}{,ending stn} BITS

DESCRIPTI0N
starting stn is an optional first stn in the current program to decode. If omitted, the first stn is selected. If the starting
stn does not exist, the first existing higher stn is used.

opt are optional parameters to control the display. Each parameter is a single letter preceded by / or - :

 Tn Set the tab stop to column 'n'. Statements are tabbed to column 'n' for easier readability. This option is
most useful when statement labels are used instead of standard statement numbers.

 L Substitute labels for statement numbers in GOTO, etc. wherever possible.

 N Do not list statement numbers.

<attr> are any optional valid file attributes, protections, or permissions to apply to the file on creation. Since the file
is created as a standard Unix Text file, Supplemental Protection Attributes are not permitted. Standard IRIS, BITS, or
Unix permissions may be supplied. If omitted, file creation is defaulted to permissions 0666 (Read/Write by all users)
subject to any umask in effect.

filename is any filename or pathname to a directory to which you have write permission. If the filename already
exists, it must be terminated by an exclamation point (!) to replace its contents. The file is built as a standard Unix
Text File compatible with standard editors such as vi. filename may also be a pipe by beginning the filename with a $.

/text/ is any optional string to search each statement for. If omitted, all statements of a program are decoded. To
decode only statements containing a specific string, enclose the search text within / /. For each statement containing
text, that statement is decoded, otherwise it is omitted. Note that all text is case dependent. Statements, variables, etc.
must be searched for using uppercase as shown during program listings.

ending stn is an optional last stn in the current program to decode. If omitted, the highest statement number is
selected. If the ending stn does not exist, the first existing lower stn is used.

When using BASICMODE=IRIS, the first format is used. BITS requires entry using the second form.

EXAMPLES
*DUMP -T5 FILENAME /WRITE #/ 100,200
100 DUMP -L FILENAME! 200
INPUT: DUMP -T5 FILENAME! /INPUT/ END_INPUT:

ERRORS
Write Protected File
Illegal Filename
Filename already exists; use ! to replace

See also: LIST, FIND, Pipes, Filenames and Pathnames, Starting & Ending Statement Numbers

 UniBasic Commands 139

 UniBasic Reference Guide

EDIT
SYNOPSIS: Edit and change an existing statement.

EDIT stn
EDIT .

DESCRIPTI0N
stn is the statement number of an existing statement within the program to edit.

EDIT . displays the last command or line entered for editing. This is helpful when an error is made during program or
command entry.

After an EDIT command is issued, the statement is displayed and the cursor is placed in the first position. Typing H
displays a help screen.

 EDIT commands: (n = optional repetition count, default = 1)
 D Displays the current line and repositions to the beginning.
 nSpace Moves n positions to the right, echoing characters.
 nBackspace Moves n positions to the left, echoing characters.
 I<text> Inserts <text> at the current position until ESCape is pressed.
 A<text> Appends <text> to the end of the line until ESCape is pressed.
 nX Deletes n characters to the right of the cursor.
 nS<text> Substitutes n chars to the right with <text> until ESCape is
 pressed.
 R<char> Replaces the current character with <char>.
 n/<text> Searches forward for the nth occurrence of <text>.
 n?<text> Searches backward for the nth occurrence of <text>.
 N Search Next. Repeats last / or ? command.
 U Undo all editing and reload edit buffer with original contents.
 Q Exit the edit mode, ignoring any changes.
<Return> Exit edit mode and encode the resultant line.

While in an insert type command (I, A), data is not re-displayed until ESC is pressed. During delete, the screen is
updated as each character is deleted.

EXAMPLES
EDIT 10

ERRORS
No such statement number

 UniBasic Commands 140

 UniBasic Reference Guide

ERASE BITS only
SYNOPSIS: Delete program statements in BITS mode.

*ERASE {starting stn} {,ending stn}

DESCRIPTI0N
starting stn is an optional first stn in the current program to erase. If omitted, the first stn is selected. If the starting
stn does not exist, the first existing higher stn is used.

ending stn is an optional last stn in the current program to erase. If omitted, the highest statement number is selected.
If the ending stn does not exist, the first existing lower stn is used.

ERASE with a single stn will delete only that statement.

ERASE without a starting stn or ending stn deletes all statements in the current program loaded in memory. It is not
the same as a NEW command which also clears variable names and values.

When operating in the environment BASICMODE=IRIS, use the DELETE command to remove statements.

EXAMPLES
*ERASE 10
*ERASE ,100 !From beginning to 100 inclusive
*ERASE 1000, !From 1000 to end of program
*ERASE INPUT:, END_INPUT:

ERRORS
none

See also: DELETE, Program Statements, Starting & Ending Statement Numbers

 UniBasic Commands 141

 UniBasic Reference Guide

EXEC IRIS only
SYNOPSIS: Execute contents of a text file.

#EXEC filename

DESCRIPTI0N
filename is any legal filename or pathname to a Text File to which you have read permission.

Standard Input is switched to the text file performing all commands within the file until EOF.

EXEC is an internal command. To perform a Unix exec command, the !exec form must be used.

EXEC may be used to automatically load and dump BASIC programs, or perform any series of commands as if they
were entered at the keyboard.

The DIR and MAKECMND utilities may be used to construct a series of commands on all (or selective) files in a
directory.

When operating in the environment BASICMODE=BITS, use the GET command to execute a text file.

EXAMPLES
#EXEC filename

ERRORS
File does not exist
Read Protected file

See also: DIR, GET, MAKECMND, Filenames and Pathnames, LUST, LOAD

 UniBasic Commands 142

 UniBasic Reference Guide

EXIT IRIS only
SYNOPSIS: Exit program mode to command mode.

EXIT

DESCRIPTI0N
EXIT is used to terminate BASIC program mode and enter into command mode. EXIT is identical to pressing
CTRL+C. However, it may be included in a text file executed using the EXEC command.

EXAMPLES
EXIT

ERRORS
none

See also: [INTR], CTRL+C

 UniBasic Commands 143

 UniBasic Reference Guide

FILE
SYNOPSIS: Display current program and all open files.

FILE

DESCRIPTI0N
FILE displays the name of the current BASIC program loaded into the partition. If the program was entered via a
[HOT-Key] or SWAP statement, the calling program and stn are also displayed:

 Program: ar.custmaint
 SWAP at statement: 110;1 in: op.openorder1
 SWAP at statement: 20;1 in: sp.selector

For all data files opened, the channel number and full pathname are displayed:

 CHANNEL# FILENAME OPENED
 0 /usr/ub/sys/lpt
 1 /usr/ub/3/ar.customers
 2 /u/5/orderheader

Note: When operating in the environment BASICMODE=IRIS, all channels are closed whenever END,
CHAIN "", or command mode # is entered.

EXAMPLES
FILE

ERRORS
none

See also: Filenames and Pathnames, CHF, CHN

 UniBasic Commands 144

 UniBasic Reference Guide

(Filename)
SYNOPSIS: Load and RUN a SAVED BASIC program.

#filename

DESCRIPTI0N
filename is any filename or full pathname to a BASIC program to which you have read-permission.

If filename exists as a BASIC saved or system program file, any current program is erased. filename is loaded, and
execution begins immediately at the lowest stn within the program.

This command is identical to a RUN filename command.

EXAMPLES
#payroll
#/usr/ub/23/payroll

ERRORS
Filename does not exist
Read Protected File
Not a loadable program file

See also: / Command, RUN Command, LUST

 UniBasic Commands 145

 UniBasic Reference Guide

FIND
SYNOPSIS: Search & list statements.

{starting stn} FIND {opt} /text/ {ending stn} IRIS
FIND {opt} /text/ {starting stn} {, ending stn} BITS

DESCRIPTI0N
starting stn is an optional first stn in the current program to search and decode. If omitted, the first stn is selected. If
the starting stn does not exist, the first existing higher stn is used.

opt are optional parameters to control the display. Each parameter is a single letter preceded by / or - :

 V Visual mode. The first screen full of lines are displayed. If additional lines are included, the user is
prompted at the bottom of the screen with [MORE]. Pressing [RETURN] displays additional
program lines one at a time. Pressing [SPACE] displays the next screen full of lines starting with the
last line of the previous screen. This process is repeated until no more lines are found, or [ESC] or
[EOBC] (usually CTRL+D) is pressed.

 Tn Set the tab stop to column 'n'. Statements are tabbed to column 'n' for easier readability. This option is
most useful when statement labels are used instead of standard statement numbers.

 L Substitute labels for statement numbers in GOTO, etc. wherever possible.

 N Do not list statement numbers.

/text/ is any optional string to search each statement for. If omitted, all statements of a program are decoded. To
decode only statements containing a specific string, enclose the search text within / /. For each statement containing
text, that statement is decoded, otherwise it is omitted. Note that all text is case dependent. Statements, variables, etc
must be searched for using uppercase as shown during program listings.

ending stn is an optional last stn in the current program to search and decode. If omitted, the highest statement
number is selected. If the ending stn does not exist, the first existing lower stn is used.

To perform a FIND and re-direct output to a file, device, or pipe, use the DUMP command.

When using BASICMODE=IRIS, the first format is used. BITS requires entry using the second form.

EXAMPLES
*FIND -V /OPEN #/
100 FIND -V /V$=/ 500
100 FIND -V /CHAIN WRITE/ INPUT:

ERRORS
none

See also: LIST, DUMP, Starting & Ending Statement Numbers

 UniBasic Commands 146

 UniBasic Reference Guide

GET BITS only
SYNOPSIS: Load a text or saved BASIC program.

*GET filename
*GETI filename
*GETB filename

DESCRIPTI0N
filename is any filename or pathname to a text file, BASIC program or saved System BASIC program.

If the supplied filename exists as a saved BASIC program file, System BASIC program file or Text File, any current
program is cleared and the partition is loaded with the new program. If the partition contains a needed program, it
should be saved or dumped (using the SAVE or DUMP commands) first.

All saved BASIC programs retain a current checksum of the entire program file. The error 'Not a Loadable Program
File' may occur if the program has been encrypted by the owner using the PSAVE command. These programs are not
accessible unless your system has an authorized OSN (OEM Selection Number) installed by the owner.

If a saved program is loaded successfully, it’s checksum and compatibility are output in the form:

 *GET ABC Check = AF23 *** BITS PROGRAM ***
 *GET ABC1 Check = D680 *** IRIS PROGRAM ***

If the new program was saved with variables (using VSAVE or a long CHAIN to SAVE, the message 'with
variables' is printed.

The Supplemental Protection Attribute F is used to indicate an IRIS program file. If the program was saved with the
attribute E (Execute only), the program is automatically erased from memory after loading.

The GET command is only available when using BASICMODE=BITS. To load a BASIC program with
BASICMODE=IRIS, use the BASIC, or LOAD command.

If filename is a Text File, it is loaded using the rules invoked by the GET command chosen:

GETI is used to force the loading of a text file using the encoding rules of IRIS.

GETB is used to force the loading of a text file using the encoding rules of BITS.

EXAMPLES
*GET 23/filename

ERRORS
Filename does not exist
Not a loadable program file - wrong revision, protected or corrupted

See also: BASIC, MERGE, LOAD, Filenames and Pathnames, OEM, Supplemental Protection Attributes,
RSAVE, PSAVE, VSAVE, LUST

 UniBasic Commands 147

 UniBasic Reference Guide

GO IRIS only
SYNOPSIS: Resume execution of stopped program.

GO

DESCRIPTI0N
GO resumes execution of a program stopped by Breakpoint, STOP, non-trapped error, or [EOBC] (usually
CTRL+D).

If debugging options such as Breakpoint or Single Step are used, execution resumes at the first instruction in sequence
not yet executed. Entry into debug mode using STOP, Breakpoint, non-trapped error or [EOBC] leaves all channels
open.

Note: When operating in the environment BASICMODE=IRIS, entry into command mode automatically
closes all open channels. To perform shell or other system commands, use the ! command to invoke a
shell or another copy of UniBasic.

EXAMPLES
GO

ERRORS
none

See also: CONTINUE, STOP, END, BASICMODE, Program Breakpoints, Single Step Execution, TRACE,
SYSTEM 20/21/22/23

 UniBasic Commands 148

 UniBasic Reference Guide

HALT
SYNOPSIS: Terminate BASIC program on another port.

#HALT port number

DESCRIPTI0N
port number is any integer in the range 1 to the upper limit defined by the environment variable MAXPORT.

The message queues are searched for the process running as the selected port number. If found, the program running
on that port number is terminated unconditionally into BASIC program mode with channels left open.

If no program is running, the HALT command is ignored.

HALT may be used when an application has disabled [ESC] using IF ERR, ESCSET, ESCSTM or ESCDIS, and
no input translation character is defined for [EOBC] (usually CTRL+D). It is also useful to terminate a running
program started by SPAWN, PORT or C $TRXCO(D) on a phantom port.

EXAMPLES
#HALT 25
*HALT 25

ERRORS
none

See also: Port Numbering and Phantom Ports

 UniBasic Commands 149

 UniBasic Reference Guide

HELP
SYNOPSIS: Print text DESCRIPTI0N of an error.

HELP {error number}

DESCRIPTI0N
error number is any optional positive integer representing a BASIC error number, or negative integer representing a
Unix system error as returned by the ERR(0) or SPC(8) functions.

If no error number is specified, the text DESCRIPTION of the last error is displayed. If no error exists, the string No
such error is displayed.

When running an IRIS program, error number is assumed to be an IRIS error number as returned by SPC(8).

When running a BITS program, error number is assumed to be a UniBasic or BITS error number.

The environment variable BASICMODE does not determine the interpretation of error number. Instead, the current
program type, BITS or IRIS, determines the error text returned. Negative (system) ERRORS are identical for either
type of program.

If you are unsure as to the type of program loaded in the partition, you may issue a VERIFY command.

EXAMPLES
HELP
HELP 23
*HELP 9

ERRORS
No such error number

See also: ERR, SPC, VERIFY, Appendix C, Error Message file /usr/ub/errmessage

 UniBasic Commands 150

 UniBasic Reference Guide

LEVEL
SYNOPSIS: Print UniBasic revision data.

#LEVEL

DESCRIPTI0N

The LEVEL command prints the current UniBasic revision number, PASSPORT revision level, and the UniBasic
license number.

EXAMPLES
#LEVEL: UniBasic 8.1, PASSPORT daemon 4.1
 Your license# is 9C4D3168

ERRORS

See also: UniBasic Security

 UniBasic Commands 151

 UniBasic Reference Guide

LIST
SYNOPSIS: Decode BASIC statements.

{starting stn} LIST {switches} {/text/} {ending stn} IRIS
LIST {switches} /text/ {starting stn} {, ending stn} BITS

DESCRIPTI0N
starting stn is an optional first stn in the current program to decode. If omitted, the first stn is selected. If the starting
stn does not exist, the first existing higher stn is assumed.

switches are optional parameters to control the display. Each parameter is a single letter preceded by a / or - :

 V Visual mode. The first screen full of lines are displayed. If additional lines are included, the user is
prompted at the bottom of the screen with [MORE]. Pressing [RETURN] displays additional
program lines one at a time. Pressing [SPACE] displays the next screen full of lines starting with the
last line of the previous screen. This process is repeated until no more lines are found, or [ESC] or
[EOBC] (usually CTRL+D) is pressed.

 Tn Set the tab stop to column 'n'. Statements are tabbed to column 'n' for easier readability. This option is
most useful when statement labels are used instead of standard statement numbers.

 L Substitute labels for statement numbers in GOTO, etc. wherever possible.

 N Do not list statement numbers.

/text/ is any optional string to search each statement for. If omitted, all statements of a program are decoded. To
decode only statements containing a specific string, enclose the search text within / /. For each statement containing
text, that statement is decoded, otherwise it is omitted. Note that all text is case dependent. Statements, variables, etc
must be searched for using uppercase as shown during program listings.

ending stn is an optional last stn in the current program to decode. If omitted, the highest statement number is
selected. If the ending stn does not exist, the first existing lower stn is assumed.

To decode statements to a file, device or pipe, use the DUMP command.

EXAMPLES
LIST -V
*LIST -V /WRITE #0/ START:, INPUT:
100 LIST -V 500
INPUT: LIST END_INPUT:

ERRORS
none

See also: FIND, DUMP, Starting & Ending Statement Numbers

 UniBasic Commands 152

 UniBasic Reference Guide

LOAD IRIS only
SYNOPSIS: Load BASIC statements from a text file.

LOAD {filename} {-filename}

DESCRIPTI0N
filename is any Text File to which you have read-permission. The file must contain BASIC program statements
generated from a DUMP command or editing program.

-filename strips comments from the text of a BASIC program.

As each line of text is loaded, it is added to the current program in your partition. The statements in the text file need
not be in any particular order. If any statement already exists, it is replaced. For example, assume the following
program is currently in your partition:

 10 LET A=A+1
 20 LET B=SQR(A)

and a LOAD is performed from a text file containing:

 26 IF A=30 THEN END
 30 GOTO 100

The resultant program would be:

 10 LET A=A+1
 20 LET B=SQR(A)
 26 IF A=30 THEN END
 30 GOTO 100

EXAMPLES
LOAD sys/program

ERRORS
Filename does not exist
Read Protected File

See also: GET, BASIC, MERGE, Filenames and Pathnames, LUST

 UniBasic Commands 153

 UniBasic Reference Guide

MERGE BITS only
SYNOPSIS: Merge statements from a text file.

*MERGE filename

DESCRIPTI0N
filename is any Text File to which you have read-permission. The file must contain BASIC program statements
generated from a DUMP command or editing program.

MERGE is similar to GET except that the user’s partition is not cleared first. When operating in IRIS mode, the
LOAD command is used to merge statements.

As each line of program text is merged, it is added to the current program in your partition. The statements in the text
file need not be in any particular order. If any statement already exists, it is replaced. For example, assume the
following program is currently in your partition:

 10 LET A=A+1
 20 LET B=SQR(A)

and a MERGE is performed from a text file containing:

 26 IF A=30 THEN END
 30 GOTO 100

The resultant program would be:

 10 LET A=A+1
 20 LET B=SQR(A)
 26 IF A=30 THEN END
 30 GOTO 100

EXAMPLES
*MERGE 23/FILENAME

ERRORS
Filename does not exist

See also: GET, LOAD, Filenames and Pathnames, LUST

 UniBasic Commands 154

 UniBasic Reference Guide

MSG
SYNOPSIS: Transmit a message to another port.

#MSG (port number | @) ; text

DESCRIPTI0N
port number is any integer from zero to the value defined by the environment variable MAXPORT (usually 999). An
@ may be used by the root account to transmit a message to all active UniBasic processes.

text defines the string of characters to transmit to the specified port number or @ all ports.

If a selected port number is running a UniBasic process, the text is transmitted immediately, regardless of the
receiving port’s status. The output is duplicated on the sender’s own port. Messages may not be transmitted to
processes other than UniBasic. It is preceded by an identification of the sender in the form:

 [g-u] Port=p/message

where [g-u] is the group and user and ‘p’ is the port number of the sender

CTRL+Z characters may be embedded within the message string and will be transmitted as a carriage return and line
feed.

To transmit a message to any Unix user, issue one of the following Unix commands:

 mail name message [return] [CTRL+D]
 write name message [return] [CTRL+D]

EXAMPLES
#MSG @; System is going down in 10 minutes
#MSG 0; Please mount Tape #12/23/88
*MSG 7; Please call me for lunch at 12:30

ERRORS
Port 'n' is not logged on

See also: Unix mail command, Unix write command

 UniBasic Commands 155

 UniBasic Reference Guide

NEW
SYNOPSIS: Clear partition for a new program.

NEW
NEWI
NEWB

DESCRIPTI0N
The NEW command clears your partition of any current program. By default, the operational mode selected by the
environment variable BASICMODE specifies the type of program to be created.

NEW clears the partition and closes any open channels.

All memory allocated is released, and reallocated.

NEWI selects IRIS program syntax for the creation of a new program.

NEWB selects BITS program syntax for the creation of a new program.

In any case, the programming mode is output, e.g.:

 NEW *** IRIS PROGRAM ***
 NEWB *** BITS PROGRAM ***
 NEWI *** IRIS PROGRAM ***

EXAMPLES
NEW
NEWI
NEWB

ERRORS
none

See also: BASICMODE

 UniBasic Commands 156

 UniBasic Reference Guide

OEM
SYNOPSIS: Display list of authorized dealer software.

#OEM

DESCRIPTI0N
The OEM command is issued at command mode. A list of all active OEM protections enabled is printed. "M" is
printed to indicate the presence of a Master OSN. The list is numbered when more than one OEM package is
installed. This number corresponds to the PSAVE command.

Authorized software:

 DESCRIPTION
 1 M Customized Accounting Package

This display indicates that an OSN (OEM Security Number) is installed allowing the operation of the Customized
Accounting Package. In addition, the Master OSN is installed allowing access to program source.

EXAMPLES
#OEM

ERRORS
none

See also: PSAVE

 UniBasic Commands 157

 UniBasic Reference Guide

PACK BITS only
SYNOPSIS: Change current working Directory.

*PACK { pathname }

DESCRIPTI0N
pathname is any logical unit, packname,. directory name or full Unix pathname. If no pathname is specified, the
current default working pathname is displayed.

If a full pathname is specified, the current default working directory is changed to that pathname.

If a logical unit, or packname or directory name is specified, the Logical Unit Search Table LUST is searched for the
first full pathname where the directory is below. The current working directory is changed to the new pathname.

This command is not totally compatible to the Unix cd command. The Unix environment variable CDPATH is not
searched. The command is provided for convenience since direct execution of the Unix cd command is performed in
a sub-shell, and changes do not affect the current process.

PACK is only available when operating in the environment BASICMODE=BITS. For IRIS environments, use the
CD or CLU commands.

EXAMPLES
*PACK 23
*PACK /usr/ub/text

ERRORS
System Error - No such file or directory

See also: CD, CLU, Filenames and Pathnames, UNIT, LUST

 UniBasic Commands 158

 UniBasic Reference Guide

PROTECT
SYNOPSIS: Protect individual BASIC statements.

{starting stn} PROTECT {ending stn} IRIS
PROTECT {starting stn} {, ending stn} BITS

DESCRIPTI0N
starting stn is an optional first statement number in the current program to protect. If omitted, the first statement
number is selected. If the starting stn does not exist, the first existing higher stn is assumed.

ending stn is an optional last statement number in the current program to protect. If omitted, the highest statement
number in the program is selected. If the ending stn does not exist, the first existing lower stn is assumed.

All program statement numbers inclusive are protected from being decoded. This applies to the commands: FIND,
LIST and DUMP.

Protected program lines are output as a stn only by the LIST and DUMP commands. This is done as a reminder that
the lines exist, but are protected.

Once protected, there is no unprotect ability; the lines must be re-entered. It is recommended that an original source
copy of a program be kept somewhere for later reference, if necessary.

Any attempt to load an ASCII program with protected lines will produce an error. One must use the original copy
without the protected lines in order to DUMP and GET or LOAD a program.

EXAMPLES
100 PROTECT 999
*PROTECT 1000,1100
READ_FILE: PROTECT END_READ_FILE:

ERRORS
none

See also: PSAVE, Starting & Ending Statement Numbers

 UniBasic Commands 159

 UniBasic Reference Guide

PSAVE
SYNOPSIS: Protect & SAVE the current program.

#PSAVE {OSN#}, {{<attributes>} {filename{!}}}

DESCRIPTI0N
OSN# is the number displayed by the OEM command. It selects the application group and encryption algorithm to
employ. If omitted, the first group is selected. The OSN# may be omitted if only one encryption algorithm is
installed on the system.

<attributes> are the desired protection, permission or attributes to apply to the newly created filename. If <attributes>
are supplied, a filename must also be specified.

filename is any optional filename or full pathname to a directory to which you have write-permission. If omitted, the
original filename for the program in memory is used. An error is generated if the current program was not previously
saved using PSAVE, SAVE, VSAVE, or CHAIN SAVE.

PSAVE is only available at command mode and is used to initially encrypt BASIC programs. The OEM command
prints the current list of OSN numbers installed on your system. You can only PSAVE an application with an OSN
that is a Master OSN.

Once a program is encrypted using PSAVE, normal SAVE or RSAVE commands preserve the encryption status.
Protection on a system is driven by three distinct security numbers:

 SSN System Security Number
 OSN OEM Security Number
 PDN Product DESCRIPTION Number

Only the SSN is necessary to run UniBasic; the OSN and PDN are optional numbers used in the program protection
scheme. The PDN is of interest only to the dealer.

PSAVE simultaneously encrypts and saves the current program using a key derived from the dealers own company
name and/or DESCRIPTION of his product. A protected program may be copied to a user's system, but is prevented
from execution until the system is authorized by the dealer. Should someone attempt to RUN, CHAIN to, or
otherwise load an unauthorized program, the following error is generated:

 Not a loadable program file; wrong Revision, protected or corrupted
If the application is authorized, the program becomes executable by RUN, CHAIN, etc. but may not be decoded using
FIND, DUMP, or LIST. Program changes may be entered, checksums taken, and the program re-saved, and the
PSAVE encryption status is always maintained. It is impossible to remove this encryption without first decoding the
program to text, and reloading. Decoding operations are prohibited unless a Master OSN is installed by the owner of
the application.

The OSN is the number used to authorize a user's system. Each OSN entered on a system is displayed each time
UniBasic is started, e.g.:

 Authorized software:

 DESCRIPTION
 1M ABC Software Inc.

 UniBasic Commands 160

 UniBasic Reference Guide

1 indicates that this is the first package authorized on this system. As implied, there may be many different packages
authorized to run on a single machine. The M indicates that a Master OSN is installed, and protected programs may
be decoded. If an M is not displayed at startup, or by the OEM command, then a User OSN is installed allowing
execution and changes only, without decoding.

To perform in-house development using PSAVE, the machine should be authorized with a Master OSN's. The
Master has the same properties as the User with the exception that decoding of protected programs is allowed.

The concept of a Master OSN has an interesting application in field debugging. Such a number makes it possible for
the dealer to enter it at a user site and temporarily be granted decoding capabilities for his programs. To accomplish
this, sign on to the system, and issue the command:

 UniBasic -t

You will be asked to enter a temporary OSN. The Master OSN is entered and becomes effective only for that port
and only for that session. All other users on the system remain unaware that the Master OSN was entered. This is
particularly effective for cases like modem debugging.

If no OSN's are entered on a system, PSAVE is ignored and performs a normal SAVE command.

EXAMPLES
#PSAVE 3, <22> filename!
#PSAVE

ERRORS
No program in partition
Write Protected File
Program Channel not OPEN; cannot RSAVE until SAVE/PSAVE issued
File already exists; use '!' to replace
Illegal Filename
IF without ENDIF

See also: Filenames and Pathnames, File Attributes, Protections and Permissions, OEM command, SAVE,
RSAVE, VSAVE, LUST

 UniBasic Commands 161

 UniBasic Reference Guide

RENUMB
SYNOPSIS: Renumber statements in a program.

{begin stn} RENUMB {step} IRIS
RENUMB {begin stn} {, step } BITS

DESCRIPTI0N
begin stn is the optional first statement number to use for the renumbered program. If omitted, 10 is assumed. If
begin stn is a label, its current stn is used as the first statement number.

step is the optional increment to use between the renumbered lines. If omitted, 10 is assumed. If step is a label, its
current statement number is used as the step.

RENUMB is used to make room for new statements when all statement numbers have been used.

When statements such as ON, GOTO, GOSUB, THEN or ELSE point to non-existent statement numbers, an error is
generated and you are asked whether to proceed, and all references to non-existent lines are cleared. If the non-
existent statement numbers are outside the range of the old or new numbering, they are cleared. If an overlap occurs,
the non-existent statement numbers are changed to : (null label). For example:

 1 GOSUB 1000 ! 1000 non-existent & out of range
 2 STOP
 3 END

 RENUMB
 Non-existent lines referenced.

 Continue with renumber? (Y-N/N) y
 Line Referenced by
 1000 10

 LIST
 10 GOSUB 1000
 20 STOP
 30 END

 The default parameters 10,10 are used during renumbering starting at statement 10 and progressing in steps of 10. In
the example above, line 1000 does not exist, and is outside the range of the program before and after renumbering if
the default is used. The reference to statement 1000 remains unchanged allowing later entry of that statement.

In the following example, the first line references statement number 30, which is non-existent. The default
renumbering parameters of 10,10 result in the creation of a statement 30. Assuming that it is not the intention of the
program to resolve the reference to the newly created statement number 30, all references to statement 30 are replaced
to reference: (a null label).

 NEW *** IRIS program ***
 1 GOSUB 30 ! 30 non-existent within range
 2 STOP
 1000 END

 RENUMB
 Non-existent lines referenced.

 UniBasic Commands 162

 UniBasic Reference Guide

 Continue with renumber? (Y-N/N) y
 Line Referenced by
 30 10

 LIST
 10 GOSUB :
 20 STOP
 30 END

EXAMPLES
1000 RENUMB 10
*RENUMB 1000,10

ERRORS
Non-existent lines referenced

See also: Statement Numbers, Starting & Ending Statement Numbers

 UniBasic Commands 163

 UniBasic Reference Guide

RSAVE BITS only
SYNOPSIS: Re-SAVE the current program.

*RSAVE

DESCRIPTI0N
RSAVE is only available at command mode and is used to re-save a program using the same filename.

If the program was previously encrypted using PSAVE, the encryption status is preserved.

A CHECK command is performed prior to re-saving the program to verify the logic of Blocked-IF statements. If any
discrepancies exist, an error is printed.

A checksum is maintained for each saved BASIC program file. When RSAVE is performed, the filename, checksum
and type of BASIC program is displayed:

#RSAVE /u/2/file Check=AF3E ***IRIS Program***

RSAVE is only available when operating in the environment BASICMODE = BITS. When operating in an IRIS
environment, the SAVE command performs a re-save whenever a filename is not specified.

EXAMPLES
*RSAVE

ERRORS
No program in partition
Write Protected File
Program Channel not OPEN; cannot RSAVE until SAVE/PSAVE issued
File already exists; use '!' to replace
IF without ENDIF
Illegal Filename

See also: Filenames and Pathnames, File Attributes, Protections and Permissions, OEM command, SAVE,
RSAVE, VSAVE, LUST

 UniBasic Commands 164

 UniBasic Reference Guide

RUN
SYNOPSIS: Execute a program in memory or on disk.

{stn} RUN
#RUN {filename}

DESCRIPTI0N
stn is any statement number contained within the current program. This form of the command is restricted to BASIC
program mode.

filename is any legal filename or pathname to a SAVED BASIC program file to which you have read-permission.
This form of the command is only available in command mode.

An initial RUN without a supplied stn unassigns all variables, closes all channels and begins execution at the lowest
numbered statement of the program.

stn RUN may be used in debug mode following a STOP, END, non-trapped error, [ESC], or [EOBC] (usually
CTRL+D) to resume execution of a program at a specific statement. It is not generally possible to perform a stn RUN
prior to a RUN since channels are not open and variables are un-initialized. When loading a BASIC program which
was saved with variables (CHAIN SAVE, or VSAVE, you may perform a stn RUN if you first manually open the
required files using immediate mode statement execution.

EXAMPLES
#RUN FILENAME
100 RUN
RUN

ERRORS
No such statement number

See also: Filenames and Pathnames, Program Debugging Aids, LUST

 UniBasic Commands 165

 UniBasic Reference Guide

SAVE
SYNOPSIS: SAVE the current program.

#SAVE {{<attributes>} {filename{!}}}
SAVE {{<attributes>} {filename{!}}}

DESCRIPTI0N
<attributes> are any optional valid file attributes, protections, or permissions to apply to the file on creation.
Standard IRIS, BITS, or Unix permissions may be supplied. If omitted, file creation is defaulted to permissions 0666,
subject to any umask in effect. If <attributes> are supplied, a filename must follow.

filename is any optional filename or full pathname to a directory to which you have write-permission. If omitted, the
original filename for the program in memory is used. An error is generated if the current program was not previously
saved using PSAVE, VSAVE, or CHAIN SAVE.

If the program was previously encrypted using PSAVE, the encryption status is preserved in the new filename.

A CHECK command is performed prior to saving the new filename to verify the logic of Blocked-IF statements. If
any discrepancies exist, an error is printed.

When a SAVE command is performed from program mode, active channels and variables are undisturbed.

A checksum is maintained for each saved program file. When any SAVE operation is performed, this checksum and
type of BASIC program is displayed.

EXAMPLES
#SAVE <22> prog! check=AF3E ***IRIS Program***
SAVE <PWD> dat! check=FFEB ***BITS Program***

ERRORS
No program in partition
IF without ENDIF

See also: Filenames and Pathnames, File Attributes, Protections and Permissions, OEM command, SAVE,
RSAVE, VSAVE, LUST

 UniBasic Commands 166

 UniBasic Reference Guide

SHOW
SYNOPSIS: Show all statements which contain a specific variable.

{starting stn} SHOW {opt} variable {ending stn} IRIS
SHOW {opt} variable {starting stn} {, ending stn} BITS

DESCRIPTI0N
starting stn is an optional first stn in the current program to search for variable. If omitted, the first stn is selected. If
the starting stn does not exist, the first existing higher stn is used.

opt are optional parameters to control the display. Each parameter is a single letter preceded by / or - :

 V Visual mode. The first screen full of lines are displayed. If additional lines are included, the user is
prompted at the bottom of the screen with [MORE]. Pressing [RETURN] displays additional
program lines one at a time. Pressing [SPACE] displays the next screen full of lines starting with the
last line of the previous screen. This process is repeated until no more lines are found, or [ESC] or
[EOBC] (usually CTRL+D) is pressed.

 Tn Set the tab stop to column 'n'. Statements are tabbed to column 'n' for easier readability. This option is
most useful when statement labels are used instead of standard statement numbers.

 L Substitute labels for statement numbers in GOTO, etc. wherever possible.

 N Do not list statement numbers.

variable is any mat.var, array.var, num.var or str.var to search the specified statements for. For each statement
containing usage of variable, that statement is decoded, otherwise it is omitted.

ending stn is an optional last stn in the current program to search. If omitted, the highest statement number is selected.
If the ending stn does not exist, the first existing lower stn is used.

EXAMPLES
SHOW -V A$ 1000,2200
100 SHOW -N -V data 2900
SHOW -V T$

ERRORS
No program in partition
Illegal statement number

See also: Filenames and Pathnames, File Attributes, Protections and Permissions, OEM command, SAVE,
RSAVE, VSAVE, LUST

 UniBasic Commands 167

 UniBasic Reference Guide

SIZE
SYNOPSIS: Display memory usage for current program/data.

SIZE

DESCRIPTI0N
The SIZE command displays the amount of memory allocated for the storage of a current program and variables.
Unused space is also displayed:

 SIZE: Unused=16370, (Prog)=14, (Vars)=0

Unused is the amount of available memory before a reallocation is necessary.

(Prog) is the number of bytes used to store the PCODE encoded program.

(Vars) is the number of bytes used to store data for variables.

The UNASSIGN command may be used to clear space occupied by (Vars). A NEW command results in the release
of all memory, and a reallocation based upon the default values. This reallocation does not occur during CHAIN.

EXAMPLES
SIZE

ERRORS
none

See also: UNASSIGN, NEW

 UniBasic Commands 168

 UniBasic Reference Guide

STATUS IRIS only
SYNOPSIS: Prints the name of current program file and execution status.

STATUS

DESCRIPTI0N
STATUS prints the current execution status and program filename. For example:

 Now at (line#) in (program name)

where:
 line# is the line number of the last statement executed.
 program name is the filename of the current program.

If the program is halted after the end of the program, line# is shown as 0. When the current program does not have a
filename, the status is printed as:

 STATUS at (line#)

When the current program is a subprogram, the status of the current program as well as the calling program(s) is
displayed.

When the current program is a child from a SWAP, the status of the current program as well as the parent program is
displayed.

 Now at statement: 2310;1 in: HELP.DISP
 CALL at statement: 1075;3 in HELP
 CALL at statement: 1230;1 in: EXEC
 SWAP at statement: 3290;1 in AR.MENU

This output is identical to that produced by the STOP and SUSPEND statements.

EXAMPLES
STATUS

ERRORS

none

See also: STOP, SWAP, END, CALL

 UniBasic Commands 169

 UniBasic Reference Guide

TIME
SYNOPSIS: Display current system time & usage.

#TIME

DESCRIPTI0N
The current system time is displayed in the form:

 DD Mon Year HH:MM:SS CPU=cpu used Connect= connect used

 DD is the current day of the month.

 Mon is a three-letter month name, such as JAN.

 Year is the current year such as 1993.

 HH is the current hours in 24-hour format.

 MM is the current minute of the hour.

 SS is the current second on the minute.

 CPU is the amount of seconds used by the computer for all of your commands and program execution.

 Connect is the number of minutes you have been signed on to the system.

EXAMPLES
#TIME

ERRORS
none

See also: CALL $TIME, MSF, MSF, TIM, SPC

 UniBasic Commands 170

 UniBasic Reference Guide

UNASSIGN
SYNOPSIS: Unassign all variables.

UNASSIGN

DESCRIPTI0N
All variables are unassigned, including common variables. Memory shown by the SIZE command for (Vars) is now
zero.

UNASSIGN is similar to loading a new program. All dimensioned space and values are cleared without clearing
program statements.

Whereas the NEW command clears both program and variables, UNASSIGN does not disturb any program
statements.

EXAMPLES
UNASSIGN

ERRORS
none

See also: NEW, SYSTEM 4, SYSTEM 5

 UniBasic Commands 171

 UniBasic Reference Guide

USERS
SYNOPSIS: Display current number of ports in use.

#USERS

DESCRIPTI0N
The Message Queues are searched for all in-use port numbers. The total number is then displayed on the terminal.

In-use port numbers include Unix multi-screens, phantom ports, terminals and jobs initiated by SPAWN.

EXAMPLES
#USERS

ERRORS
none

See also: Port Numbering and Phantom Ports, Message Queues

 UniBasic Commands 172

 UniBasic Reference Guide

VARIABLE
SYNOPSIS: Control and display variables.

VARIAB{LE} { (+ | -) }
VARIAB{LE} { = } {{<attributes>} filename{!}}
VARIAB{LE} old name = new name

DESCRIPTI0N
+ or - enables or disables the use of long variable names in BASIC program mode. This command overrides the
setting of the environment variable LONGVARS. The new setting remains until changed. The setting is not affected
by NEW, GET, BASIC, LOAD or other commands.

A program containing long variable names may be RUN in either mode. Program changes, loading of BASIC Text
Files, PRINT in immediate mode, etc. require long variables enabled if they are used within a program. Both long
and short variable names may be used when long variables are enabled.

Care should be exercised using long variable names. Spaces are required between keywords; spaces or parentheses
are required around functions. For example, LENA$ must be entered as LEN A$ or LEN(A$) to avoid the creation
of a str.var named LENA$.

The second general form, VARIABLE = is used to print the current variables used by a program. The = operator
forces the display of the variable and its value. Omission of the = produces a listing of variable names only.

<attributes> are any optional valid file attributes, protections, or permissions to apply to the file on creation. Since
the file is created as a standard Unix Text file, Supplemental Protection Attributes are not permitted. Standard IRIS,
BITS, or Unix permissions may be supplied. If omitted, file creation is defaulted to permissions 0666 (Read/Write by
all users) subject to any umask in effect.

filename is any filename or pathname to a directory to which you have write permission. If the filename already
exists, it must be terminated by a ! to replace its contents. The file is built as a standard Unix Text File compatible
with standard editors such as vi. filename may also be a pipe by beginning the filename with a $.

The filename may be the name of a device or pipe, otherwise a text file is created with the report.

In the third general form, VARIABLE old name = new name, old name is the name of an existing variable name used
within a program. new name is the new variable name to replace all occurrences of old name in the current program.

EXAMPLES
VARIABLE +
VARIABLE V=RECORD_VAR
VARIABLE = $LPT
*VARIAB +

ERRORS
none

See also: Variable Names, Filenames and Pathnames, Accessing Drivers ($LPT) and Pipes

 UniBasic Commands 173

 UniBasic Reference Guide

VERIFY
SYNOPSIS: Check program & display checksum & type.

#VERIFY

DESCRIPTI0N
The current program is checked for illegal Blocked-IF statements. If any are located, an error is printed. Otherwise,
the following is displayed:

 Check; File= 0, Current= 32E2 ***IRIS program ***

Check; File is the original checksum of the program when last loaded from disk. A zero is displayed if the program
has never been saved.

Current is the current checksum. It will be different from the File= checksum if any program changes have been
made.

The type of program *** IRIS Program *** or *** BITS Program *** is displayed.

EXAMPLES
#VERIFY

ERRORS
IF Without ENDIF
ELSE Without IF
ENDIF without IF

See also: CHECK, SAVE

 UniBasic Commands 174

 UniBasic Reference Guide

VSAVE BITS only
SYNOPSIS: Save the current program with variables.

*VSAVE {{<attributes>} {filename{!}}

DESCRIPTI0N
<attributes> are any optional valid file attributes, protections, or permissions to apply to the file on creation.
Standard IRIS, BITS, or Unix permissions may be supplied. If omitted, file creation is defaulted to permissions 0666
(Read/Write by all users) subject to any umask in effect. If <attributes> are supplied, a filename must follow.

filename is any optional filename or full pathname to which you have write-permission. If omitted, the original
filename for the program in memory is used. An error is generated if the current program was not previously saved
using PSAVE, SAVE, or CHAIN SAVE.

All variables, GOSUB stack, FOR/NEXT stack, User Defined Function stack are saved. A prompt 'with variables' is
displayed during the SAVE as well as during later loading of the program using BASIC or GET.

VSAVE is used to save a copy of a program for later debugging. Any open file information is not saved.
Applications may use a combination of error-branching (ERRSET, ERRSTM, or IF ERR) and CHAIN
"\377\VSAVE filename" to facilitate later debugging of an application failure.

EXAMPLES
*VSAVE <666> ERRORS23
*VSAVE PROGRAMERROR!

ERRORS
Filename already exists; use "!" to replace
No program in partition
Write Protected File
Illegal Filename
IF without ENDIF

See also: CHAIN "SAVE ...", CHAIN, SAVE, File Attributes, Protection and Permissions, Filenames and
Pathnames

 UniBasic Statements 175

 UniBasic Reference Guide

UniBasic Statements
This section describes the wide variety of statements that make up the numbered lines of a BASIC program. The
computer runs a program by executing the statements in logical order.

There are three modes of BASIC statement execution:

Programming Mode Numbered statements are entered while in BASIC program mode. A collection of statements
(program) is executed by a RUN(c) command.

Run Mode Execution of a program begins with a RUN command and continues until normal termination
(END or CHAIN ""), abnormal termination (STOP or Breakpoint), non-trapped Error, non-
trapped [ESC] or Escape Override Branch Character [EOBC] (CTRL+D).

Immediate Mode Each statement entered without a statement number, in program mode, is performed
immediately.

In this chapter, statements are listed alphabetically with the general forms given in terms of literal elements in bold type
or metalinguistic variables in Backus-Naur form in italic type. Bold type is used for all key words such as utilities,
statements, functions, and environment variables. Key words are all cross-referenced in the Index at the back of this
guide. Each statement begins on a separate page and conforms to the standard format.

Program Debugging Aids
Extensive program debugging aids are included. Any BASIC statement may be executed immediately by entering the
statement without a statement number using immediate mode.

Special program termination (STOP, Breakpoint), non-trapped Error or forced termination (ESCAPE or CTRL+D)
leaves all channels OPEN and available for immediate statement operations. To resume execution, simply type
CONTINUE.

Single-Step Program Execution

Single statement execution is performed by entering a period and pressing return. The current statement is executed and
the next statement to execute is displayed. Subsequent periods are used to step through the program. To force execution
at a specific statement, issue a GOTO stn and press [RETURN]. Single step or CONTINUE can then be performed
from that statement number. To resume normal execution of a program, issue the command CONTINUE.

For applications relying on CALLed subprograms, single statement execution can be performed for both stepping
through a subprogram by entering a period and pressing return; or bypassing the single step operation of a sub-program
by entering two periods and pressing return. Bypassing with two periods actually performs the subprogram, but does
not single step through it.

 UniBasic Statements 176

 UniBasic Reference Guide

Trace Mode

Trace mode is used when it is desirable to observe the statement number program flow without performing single steps.
SYSTEM 20, TRACE ON, or TRACE ON chn num enables tracing; SYSTEM 21, TRACE OFF, or CLOSE chn
num turns trace off. These statements may be used in immediate mode, or imbedded within specific code segments of a
program. For each statement executed, the statement number stn and sub-statement number sub-stn (statements on the
same BASIC line) is printed.

The following information is displayed on the terminal during trace mode:

 TR - statement number ; sub-statement number BITS
 [statement number] IRIS

In BITS mode, “TR -" indicates trace mode is enabled and the next stn and sub-stn to be executed are displayed. In IRIS
mode, a new-line is performed, and the stn only is displayed within []. The execution of the statement then proceeds.
Output from a PRINT is displayed following the trace information.

Program Breakpoints

Breakpoints are used to terminate normal execution when a specific stn is reached. The statement SYSTEM 22, stn sets
a breakpoint at statement stn. Typing stn RUN or CONTINUE resumes execution until the statement is reached.
SYSTEM 23 clears any active breakpoint. These statements can be within a program or executed in immediate mode.
By inserting breakpoint statements within a program, you can control when a breakpoint is set, for example:

 229 SYSTEM 22,6620 \ GOSUB 6600 \ SYSTEM 23
 Brk @ stn:stn

To resume execution at the breakpointed statement, issue a SYSTEM 23 to clear the breakpoint, followed by a
CONTINUE command.

A breakpoint will not occur if trace mode is enabled when the breakpointed statement is reached. When a breakpoint
occurs, any other SYSTEM or IOxx modes return to their default states.

 UniBasic Statements 177

 UniBasic Reference Guide

Statement Documentation Format
Each statement Statement Documentation Format occupies one page, documented in the form:

STATEMENT

SYNOPSIS: UniBasic statement to ...

STATEMENT {num.var,} str.var

DESCRIPTION
General description of what the statement does and how it uses arguments.

EXAMPLES

statement examples

ERRORS
Text description of errors likely to result from the improper use of the statement. For a complete list of all errors and
their descriptions, see Appendix C

See also: COM, ISAMFILES Other index keywords to refer to for additional information.

 UniBasic Statements 178

 UniBasic Reference Guide

BUILD #
SYNOPSIS: Build and open a new text or data file.

BUILD #channel,{+}filename.expr {,{#channel,}{+}filename.expr}

DESCRIPTION

The channel expression is evaluated, truncated to an integer and used to select the channel on which to open the file
once it has been created.

The optional + character specifies that the file is to be built as a standard text file without any special header
information.

Each filename.expr contains the file's attributes and filename to be created. Multiple strings may be specified to
create several files and they will be opened on successive channel numbers. Any new channel number (#channel) in
the filename list will cause assignment of channels to continue from that number.

The attributes are optional and may consist of several items, selecting the type, structure, and protection of the file. If
attributes are to be selected, they must be specified in the form <attributes> and precede the filename.

The filename is any legal filename, operating system full pathname beginning with /, or a blank quote (""). If the
filename is to replace an existing file on the system, the name must be terminated with an exclamation point (!). When
the "" is used, BUILD is used to check for "Channel already open" prior to building the file.

If the file is to be created as a Contiguous data file, the initial Record Count and Record Length must be specified in
the form “[count:length]". The Record Count is the initial number of records to be allocated to the file. Record length
is specified in words.

If no record count/length is specified, the file is created as a Formatted Item file. The Record Length and format is
defined by the program when Record 0 is written.

If the str.expr defining the filename is preceded by a + sign (note: the + character is not within the str.expr), the file is
created as a text file.

EXAMPLES
BUILD #0,"2/ABC" , + "/usr/ub/3/textfile!"
BUILD #C,"<644> [1000:256] PAYROLL/CFILE!"

ERRORS
Illegal parameter or syntax for command
File already exists; use “!" to replace
Illegal filename
Illegal channel number specified
Channel is already OPEN and in-use

See also: CREATE, File attributes and permissions, channel, filename, files, PREALLOCATE, IBITSFLAG

 UniBasic Statements 179

 UniBasic Reference Guide

CALL
SYNOPSIS: Call an external BASIC or C-Language subroutine.

CALL filename.expr | $string | num.expr , var.list

DESCRIPTION

CALL is used to invoke the execution of a BASIC subroutine, named C subroutine or numbered C subroutine. Any
given CALL statement may only invoke one of the three types.

To call a named BASIC subroutine, filename.expr is any str.expr which contains the name of BASIC sub-program to
be executed.

To call a named subroutine written in C, $string selects the named routine.

To call a numbered subroutine written in C, num.expr selects a numbered subroutine in the range 1 to 128.

Named and numbered C subroutines must be compiled and linked into your system by DCI or a qualified systems
programmer. BASIC subroutines may be created for use on any UniBasic installation by experienced BASIC
programmers. No special linking is required to create or utilize BASIC subroutines.

Either a comma or semicolon separates the CALL name/number and the var.list.

BASIC programs called as subroutines are referred to as subprograms. A subprogram accepts a list of argument
variables passed by the calling program by use of the ENTER statement. The number and type of arguments in the
CALL statement must match those in the ENTER statement of the called program, and only one ENTER statement is
allowed in the subprogram. The maximum number of arguments is limited only by the maximum statement length.

A subprogram accepts and returns values through the passed list of arguments which may be any combination of:
str.var, num.vars, array.vars, or mat.vars. num.vars must be DIMed in the calling program or an IRIS error 33 will
occur. Variables are passed by reference meaning that the actual names of the variables may differ from the calling
program to the subprogram. For example, if the calling program passes A$ and T, the subprogram may ENTER with
DATA$ and VALUE. The variable names specified by ENTER are mapped to reference the data space of the
variable names passed in the CALL. All other variables in a subprogram are considered local to the subprogram.

Expressions, including substrings, are passed to subprograms by value. If a subprogram updates or returns a value in
a referenced variable, that operation will be lost if the caller passed an expression.

Subprograms can be nested indefinitely, limited only by the maximum process size of Unix.

Standard named and numbered C subroutines are documented in the User Calls section of this guide. Certain systems
may include additional CALL statements. For a complete listing of CALL statements included with your system,
contact your distributor.

A maximum of 63 arguments may be passed to a CALL C subroutine.

The var.list may be defined as any combination of str.vars, num.vars, mat.vars, str.exprs, num.exprs, array.vars or
str.lit, depending on the requirements of the subroutine being called. A mat.var in CALL or ENTER is given a
num.var with empty subscripts; e.g. A3[]. The subroutine may use these items for input and output of data. A
variable (not an expression) must be specified in positions of the var.list which return information to the program.

 UniBasic Statements 180

 UniBasic Reference Guide

CALLS accessed by number can be re-mapped using the environment variable ALTCALL. For example, if your
application utilizes a CALL 60, which is provided as CALL 20, include in the .profile the command:
ALTCALL=20:60.

Table of CALL Names & Replacement Numeric CALL ID's

$NAME Replacement No. $NAME Replacement No
$ATOE 77 $RDFHD 97
$AVPORT -- $RENAME --
$CKSUM -- $STRING 82
$ECHO 78 $SWAPF --
$ETOA 76 $TIME 99
$FINDF 96 $TRXCO 98
$INPBUF -- $VOLLINK 91
$LOCK -- $WINDOW --
$LOGIC 88

EXAMPLES
CALL "pgm",A$,B[],C[2],INPUT$
CALL 98, P, A$, A, P1
CALL $STRING, A$

ERRORS

Parameter list overflow
Error detected in/by user CALL routine
Not enough parameters passed to user CALL
User CALL parameters out of order
Subprogram file not found

See also: User CALLS, ENTER, LIB

 UniBasic Statements 181

 UniBasic Reference Guide

CHAIN
SYNOPSIS: Transfer control to another program.

CHAIN filename.expr{,num.expr{,num.var}}

DESCRIPTION

The filename.expr is any str.expr containing the filename of a BASIC program (type B) to which you have access. If
the program is found and is not protected against you, CHAIN terminates execution of the current program and RUNs
the selected program. If the program is not accessible, an error is generated and the current program remains intact.

The optional num.expr selects a starting stn in the new program to begin execution. If not specified, execution begins
with the first stn.

The num.var, if included, is set to the stn following the CHAIN in the current program. The variable should be
common, and may be used to chain to a subroutine, passing the return stn in the variable. In this case, the second
program must contain the necessary COM or CHAIN READ statement.

CHAINing to a null string terminates the current program and returns the user to SCOPE command mode.

There are two types of CHAIN operations; short and long.

A short CHAIN transfers control from one BASIC program to another. All files remain open and common variables
are passed using COM or CHAIN READ / CHAIN WRITE. A short CHAIN is performed if the filename.expr is
the name of an existing BASIC program, or begins with the string 'RUN' or 'run'.

Only type B (SAVE) files may be short CHAINed to. If the selected file is not accessible or is not type B, a long
CHAIN is performed. Certain BASIC SAVE programs reclassified as SYST (System BASIC programs) are not
available in short CHAIN mode. These are supplied system commands, such as LIBR and are designed to be treated
as commands instead of programs.

A long CHAIN appends the supplied filename.var to the type-ahead buffer, exits the program to command mode, and
processes type-ahead as though the command was entered from the keyboard.

Several commands may be within a long CHAIN, and they are executed in sequence. A long CHAIN is performed
for IRIS programs whenever a short CHAIN fails.

Each command should be terminated with an [EOL] terminator, usually \215\ or CTRL+Z. The number of characters
that can be passed in this fashion is limited to the size of the user’s input buffer (value of INPUTSIZE environment
variable).

The existing contents of the type-ahead buffer may be cleared by specifying the character \230\, \231\, \210\ or \377\
as the first character of the supplied str.var. The IRIS \231\ mode providing for inserting data before the current
contents of the type-ahead buffer is not supported at this time.

Any long CHAIN which enters or passes input to command mode first closes all channels.

Any CHAIN terminates the current program.

 UniBasic Statements 182

 UniBasic Reference Guide

For BITS applications, all CHAIN operations are assumed to be short unless an ASCII 3778 is the first character of
the supplied str.var. An error is generated if the supplied program name is not found. Following the program name,
the inclusion of a \377\ code provides for appending data to the type-ahead buffer.

Note: If characters are passed through to the input buffer using long CHAIN, a terminating [RETURN] code
is appended to the string unless the \377\ character is explicitly used.

The \377\ character must be explicitly used in a BITS program to send a command through command mode. This
character may also be used in IRIS programs to force a long CHAIN. All data following the \377\ is appended to the
type-ahead buffer.

EXAMPLES
CHAIN "3/FILENAME"
CHAIN "LIBR [OUTPUT]\215\RUN PART2"
CHAIN Q$,4000,B
CHAIN "\377\DIR /L=$LPT\215\RUN MENU\215\"

ERRORS

No such line (stn) number
File does not exist
Not a loadable program file; Protected, wrong revision or corrupted

See also: COM, CHAIN READ, CHAIN WRITE, INPUTSIZE, BASICMODE

 UniBasic Statements 183

 UniBasic Reference Guide

CHAIN READ
SYNOPSIS: Read variables from a previous program.

CHAIN READ var.list
CHAIN READ =
CHAIN READ *

DESCRIPTION

CHAIN READ specifies common variables passed to this program via CHAIN WRITE statements in a preceding
program. Multiple CHAIN READ statements may be used, and they may be placed anywhere within a program.
Variables listed in a CHAIN READ may not be dimensioned by a DIM statement.

CHAIN READ = causes all variables passed as common to be read into the program. All such variables must appear
in the program at least once (even if not used).

CHAIN READ * functions like CHAIN READ = except that variables passed to, but not appearing in this program
are ignored.

The CHAIN READ statement is ignored if executed. When a program passes data to another using CHAIN
WRITE, the new program's CHAIN READ statements are executed during the CHAIN operation.

The actual CHAIN READ statements may be placed anywhere in a program, however the best method is to group
them together at the beginning of a program near your DIM statements.

CHAIN READ statements may not be used together with COM.

EXAMPLES
CHAIN READ A,B,C,X$
CHAIN READ *

ERRORS

Variable in CHAIN READ not passed by CHAIN WRITE
Variable from CHAIN WRITE not in this program
Variable in CHAIN READ already contains data

See also: CHAIN WRITE, COM

 UniBasic Statements 184

 UniBasic Reference Guide

CHAIN WRITE
SYNOPSIS: Write variables to the next program.

CHAIN WRITE var.list
CHAIN WRITE *

DESCRIPTION
CHAIN WRITE statements specify variables to be passed as common to the next program. All variables specified
must be dimensioned or otherwise have a value assigned to them in order to be passed. It is the responsibility of the
receiving program to contain the necessary CHAIN READ statements to accept the data.

All variables are passed complete to their dimensioned length, such that strings with embedded nulls are passed in
their entirety.

A CHAIN WRITE must not be directly executed. Multiple CHAIN WRITE statements may be used, and should
only be placed as a group after a CHAIN or SWAP statement (intervening REMs are allowed).

CHAIN WRITE * passes all variables in the program as common. It cannot be used with any other CHAIN WRITE
statements.

CHAIN WRITE statements may not be used together with COM.

EXAMPLES
CHAIN WRITE A,B,C,X$
CHAIN WRITE *

ERRORS

Illegal function usage
Variable in CHAIN WRITE contains no data

See also: CHAIN READ, COM

 UniBasic Statements 185

 UniBasic Reference Guide

CLEAR #
SYNOPSIS: Clear {all} open channel.

CLEAR {#channel {,#channel}}

DESCRIPTION
The channel expression is evaluated, truncated to an integer and used to select the channel number (0 to 99) to clear.
Multiple channels, separated by comma may be cleared. If no #channel is given, all opened files (Channels 0 to 99)
are cleared. Record locks on the file are removed, the file header may be updated and the system file descriptor is
released. A cleared channel is available for re-use for another file.

The current BASIC program is said to be open on channel -1; to clear the program channel, use CLEAR #(-1).

If an Indexed Data File is opened, both the data and companion index file are cleared.

Clearing an output pipe causes the reading processes to receive an EOF (end of file) at its next read operation. Printer
drivers and other scripts and pipes commonly open will terminate on the EOF.

If the file opened is a newly built Formatted Item file and at least one item has been written, the record format is
frozen and the header is updated with the current record length and item count. If no items have been written to a
newly built file, the file is unformatted and the next OPEN must define the record format.

IRIS programs generate an error when a specified #channel is not currently open.

EXAMPLES
CLEAR #5,#8,#X+2
CLEAR

ERRORS
Illegal channel number
Channel not open

See also: OPEN, Files, Channel, CLOSE

 UniBasic Statements 186

 UniBasic Reference Guide

CLOSE #
SYNOPSIS: Close {all} open channel.

CLOSE {#channel{,#channel }}

DESCRIPTION
The channel expression is evaluated, truncated to an integer and used to select the channel number (0 to 99) to close.
Multiple channels, separated by comma may be closed. If no #channel is given, all opened files (Channels 0 to 99)
are closed. Record locks on the file are removed, the file header may be updated and the system file descriptor is
released. A cleared channel is available for re-use for another file.

The current BASIC program is said to be open on channel -1; to close the program channel, use CLOSE #(-1).

If an Indexed Data File is opened, both the data and companion index file are closed.

Closing a pipe causes the reading processes to get an EOF (end of file) at its next read operation. Printer drivers and
other scripts and pipes commonly open will terminate on the EOF.

If the file opened is a newly built Formatted Item file and at least one item has been written, the record format is
frozen and the header is updated with the current record length and item count. If no items have been written to a
newly built file, the file is closed unformatted and the next OPEN must define the record format.

IRIS programs generate an error when a specified #channel is not currently open.

EXAMPLES
CLOSE #1
CLOSE #5,#8,#X+2
CLOSE

ERRORS
Illegal channel number
Channel not open

See also: OPEN, UniBasic Files, Channel, CLEAR

 UniBasic Statements 187

 UniBasic Reference Guide

COM
SYNOPSIS: Specify Common Variables.

COM {%p,}var.list { , {%p},var.list }

DESCRIPTION

The COM statement allocates space and defines precision for variables which can be passed between programs. The
form is identical to the DIM statement, except that all variables defined by COM are flagged as common and eligible
to be passed during CHAIN.

Precisions can be defined for the variables in the var.list by including the optional %p or p% precision. All further
variables in the var.list will be at the last specified precision. The default precision is 2% for IRIS, and %4 for BITS
applications. The last supplied precision in a COM or DIM statement is used as the default for all automatically
assigned variables.

All COM statements in a program must be executed before any statement which allocates or defines a new variable
(LET, DIM, IF, etc.). Statements such as REM, ESCSET, GOTO, etc. which use no variables may precede COM.
An error is generated if a COM statement is executed out of order.

Variables to be passed must be defined in a COM statement by each program that is to use them. Generally, two or
more programs using a set of common variables will contain identical COM statements in order to pass the entire set
between them. A program CHAIN may exclude certain variables in its common set, and these variables become
unassigned. Similarly, the program may add variables to the set, and they will be allocated and initialized as done by
a DIM. Numeric precision may not be changed between programs, but strings and arrays may be re-dimensioned to
smaller sizes using COM.

CHAIN READ and CHAIN WRITE statements may not be used together with COM.

EXAMPLES
COM A$[19],B$[1],T4$[132]
COM C$[1762]
COM A[5],T$[120],D[23,14],%3,X[17]
COM %1,A,B,%2,C,D,%3,E,F,%4

PROGRAM EXAMPLES

The following examples illustrate common variables being passed between two programs, A and B.

 Prog Statement Comment

 A 10 COM %1,A,B,%2,C,D All variables common.
 B 10 COM %1,A,B,%2,C,D

 A 10 COM Q,D[3,4],S$[10] Only S$ is common D and Q are lost during
 B 10 COM S$[10],T CHAIN. T is added to the common list.

 A 10 COM T,%3,U,V U is common, T and V are lost, Z is added.
 B 10 COM %3,U,Z

 UniBasic Statements 188

 UniBasic Reference Guide

ERRORS
COM statement out of order
Variable precision is not compatible
Variable precision cannot be changed
Array size exceeds initial DIMension
A string may not be re-DIMensioned

See also: CHAIN READ, CHAIN WRITE, DIM, PRECISION

 UniBasic Statements 189

 UniBasic Reference Guide

CONV
SYNOPSIS: Convert binary data to decimal.

CONV mode, str.var, num.var

DESCRIPTION
The mode is any num.expr which, after evaluation is truncated to an integer to select the operation to be performed.
Mode 0 converts the binary string to decimal, and mode 1 converts the decimal numeric value to a binary string.

The CONV statement extracts binary information from a str.var and returns the value in decimal into a num.var.
Additionally, numeric information in a num.var can be converted to binary and placed into a str.var.

The str.var specifies the binary string and must define a string of one to four bytes. The num.var is the decimal
numeric variable.

The valid numeric ranges, as well as the internal storage format, are determined by the length of the str.var given.
This variable would usually be subscripted to select the desired length, otherwise the dimensioned length of the string
would be assumed. The following table compares the string length with the range of values that can be stored.

 str.var Size Decimal

 B$[x,x] 1 byte 0 to 255
 B$[x,x+1] 2 bytes 0 to 65535
 B$[x,x+2] 3 bytes 0 to 16777215
 B$[x,x+3] 4 bytes -2,147,483,648 to 2,147,483,647

The conversion process allows positive integers only to be represented in 1, 2, or 3 byte lengths. A negative value
must be converted to a 4 byte length to retain its negative sign. Converting a negative value to a shorter length and
back would result in a truncated positive integer different from the original value.

The 4 byte length described here is identical to the internal format of a double-precision integer numeric variable
written to a file, and such a value could be read as a string and converted to numeric. The 2 byte length, however, is
NOT compatible with the %1 format because it is unsigned. Signed values could be converted using 1, 2, or 3 byte
lengths provided the program performs an adjustment for 16-bit two’s complement notation.

PROGRAM EXAMPLE
 100 REM Convert binary to decimal D
 110 CONV 0,A$[1,n],D
 120 IF D>R THEN LET D=D-A

 200 REM Convert decimal D to binary
 210 IF D<0 THEN LET D=D+A
 220 CONV 1,A$[1,n],D

 UniBasic Statements 190

 UniBasic Reference Guide

 Size (n) Range (R) Adjust by (A)

 1 byte -128 to 127 256 (28)
 2 bytes -32768 to 32767 65536 (216)
 3 byte -8388608 to 8388607 16777216 (224)

This method causes the upper bit of each string to be considered a sign bit, just as is done by CONV with the 4 byte
length. In the case of 2 bytes, for example, the values 0 thru 32767 represent themselves, while 65535 thru 32768
represent -1 thru -32768.

ERRORS
Illegal subscript specified
Subscript exceeds DIMension

See also: PRECISIONS, STRINGS

 UniBasic Statements 191

 UniBasic Reference Guide

CREATE #
SYNOPSIS: Create a new Data File.

CREATE #channel, filename.expr{,{#channel,}filename.expr. . .}

DESCRIPTION

The channel is any num.expr which, after evaluation, is truncated to an integer and used to select the channel on
which to open the file for read and write access once it has been created.

Each filename.expr may contain file attributes enclosed within < >, and the filename to be created. Multiple strings
specify creation of several files and they will be opened on successive channel numbers. Any new channel seen in the
list will cause assignment of channels to continue from that number.

The file attributes include the type, structure, and permissions of the file in the form <count:len type permissions>.
count specifies the initial number of records to be allocated followed by a colon; len the fixed-record length in bytes;
type specifies the type of data file to be created (T for tree-structured Data File, I for Formatted Item File, and C for
Contiguous Data File); and permissions specifies BITS Attribute letters, IRIS Protections, or UNIX Permissions as
three-digits.

To create a standard Text File, use the BUILD statement.

The filename is any legal filename or operating system full pathname beginning with /. If the filename is to replace an
existing file on the system, the name must be terminated with the ! character.

If the program is an IRIS program, an error is generated if the specified chn.expr is already in use.

EXAMPLES
CREATE #3, "<100:254C PWD> PAYROLL:FILENAME!"
CREATE #R, "<1:510T644> TEMPFILE"+STR(MSC(0))

ERRORS
Illegal parameter or syntax for command
Illegal filename
File already exists; use “!" to replace
Illegal channel number specified
Channel is already OPEN and in-use

See also: BUILD, Attributes, channel, filename, files, PREALLOCATE, IBITSFLAG

 UniBasic Statements 192

 UniBasic Reference Guide

DATA
SYNOPSIS: Define Internal Program Data.

DATA {str.lit} ...

DESCRIPTION

Each str.lit or is stored within the program as simple ASCII text. Multiple data items on the same line must be
separated by commas in the statement, but a comma cannot be the last character of the statement.

To include commas or special characters in the form \xxx\, the data element must be quoted.

No other statement may follow DATA on the same program line. All text up to the end of the line is considered part
of the DATA statement.

DATA statements may appear anywhere within a program and are ignored if executed, that is, they are treated like
REM comments.

Each DATA statement may contain as many values as can be entered, up to the size of the input buffer as defined by
the environment variable INPUTSIZE.

Numeric data items must be separated by comma, but can be in decimal and E-notation. A comma cannot be part of a
numeric item that will be read into a num.var.

For IRIS compatibility, you may include a %p or p% declaration before numeric items. These items will be ignored
when READ into a num.var. Since the data is stored as string (and can also be read as such), the precision is
determined at the time of the READ.

EXAMPLES
DATA 200,300,400,500,600,700.25,800,23.45
DATA "quoted string, has comma", "\215\\215\"

ERRORS

Syntax error

See also: PRECISIONS, READ, MAT READ, RESTORE

 UniBasic Statements 193

 UniBasic Reference Guide

DEF FN
SYNOPSIS: Define User Function.

DEF FN<letter>(num.var) = num.expr

DESCRIPTION
The FN <letter> designator must be a single letter A thru Z, such as FND, yielding a maximum of 26 concurrently
defined user functions. Each user function must have a DEF statement executed before it can be used. User functions
may be redefined using successive DEF statements with the same <letter> designator.

The parenthesized num.var is considered a dummy argument. The num.expr is the expression to be evaluated
whenever the function is called. When this occurs, the actual argument supplied will be substituted for every
occurrence of the dummy argument in the given expression. Any variable currently in use with the same name as the
dummy argument is not affected by the function call.

A user function may call another user function in its definition, provided the called function has already been defined.
User functions may be nested in this manner up to a maximum of 8 levels.

EXAMPLES
DEF FNA(X)=(X^3)*(X^2)*X
DEF FNC(V)=(V^4)*FNA(V) ! Nested FNA
DEF FNR(X)=SGN(X)*ABS(100*INT(X)+.5)/100

ERRORS
User defined functions nested too deep
Expression too complex for evaluation
Arithmetic error - (X/0, overflow, LOG(0) or SQR(-X))
Illegal function usage
Syntax error in DEFined function
Variable not defined
User function not defined

See also: Functions

 UniBasic Statements 194

 UniBasic Reference Guide

DIM
SYNOPSIS: Allocate space for variables.

DIM {%p,} var.list { {%p},var.list }

DESCRIPTION

The DIM statement allocates space and defines precision for variables which are considered local to the current
program. The form is identical to the COM statement, except that all variables defined by DIM are not automatically
passed during CHAIN statements unless specified using CHAIN WRITE and CHAIN READ.

Precisions can be defined for the variables in the var.list by including the optional %p or p% precision. All further
variables in the var.list will be at the last specified precision. The default precision is 2% (2-word floating) for IRIS,
and %4 for BITS applications. The last supplied precision in a COM or DIM statement is used as the default for all
automatically assigned variables.

If the var.list contains an str.var, in the form str.var$[num.expr], the num.expr within subscripts is evaluated,
truncated to an integer, and used as the maximum size of the string variable in characters. Any attempt to store data
beyond this maximum results in data truncation. String variables must appear in a DIM or COM statement before use
by any other statement. They can be re-dimensioned within the program to a smaller size only.

If the var.list contains a num.var without subscripts, it is allocated at the current default precision as a simple numeric
variable.

If the var.list contains a num.var in the form num.var[num.expr], or num.var[num.expr1,num.expr2], it is allocated at
the current default precision as a one or two dimensional array.var or mat.var respectively. The expression within
subscripts are evaluated, truncated to integers, and used to select the size (number of elements) of the array. Variables
specifying one expression result in a one-dimensional array (vector or list). Two expressions separated by a comma
result in a two-dimensional array (matrix). Any array used in a program without specifically being mentioned in a
DIM or COM statement is automatically dimensioned to [10] if used as an array.var, or [10,10] when used as a
mat.var.

It is considered good programming practice to define all variables (other than temporaries and variables to use the
default precision) in a DIM or COM statement.

The final %n executed in your program selects the default for any run-time variable assignments. If not specified, the
default precision is %4 for BITS programs and 2% for IRIS programs.

EXAMPLES
DIM A$[19],B$[1],T4$[132]
DIM C$[1762]
DIM A[5],T$[120],D[23,14],%3,X[17]
DIM 1%,A,B,2%,C,D,3%,E,F,4%

ERRORS

Variable precision cannot be changed
Array size exceeds initial DIMension
A string may not be re-DIMensioned
Illegal subscript specified
Attempt to DIMension an existing simple variable
Strings can have only one DIMension

 UniBasic Statements 195

 UniBasic Reference Guide

Subscript exceeds DIMension

See also: COM, PRECISION, STRINGS, ARRAYS, MATRICES, LET

 UniBasic Statements 196

 UniBasic Reference Guide

DUPLICATE
SYNOPSIS: Make a duplicate copy of a program or file.

DUPLICATE filename.expr

DESCRIPTION
The filename.expr is any str.expr containing the source filename to be duplicated, a space, and the destination filename
for the duplicate copy.

The Unix cp command is used to perform the duplication operation. An exact copy of the file is created, and the
process may take some time to complete. Since the command is sent to Unix, [ESC] and [EOBC] are disabled. To
abort the operation, press the BREAK or DEL character.

If the file is an Indexed Data File, two cp commands are performed; one for the data portion (lower-case name), and
one for the ISAM portion (upper-case name).

If the file is a Universal Indexed Data File, two cp commands are performed; one for the data portion (filename), and
one for the ISAM portion (filename with an .idx extension).

DUPLICATE does not check for existence of the destination filename. If a check is desired, perform an OPEN or
CALL $FINDF first.

EXAMPLES
DUPLICATE "PAYROLL PAY1QTRBKUP"
DUPLICATE "/usr/ub/23/file /u/u1/23/file"

ERRORS
Illegal pack or filename

See also: Unix ln, cp, mv commands, Filenames and Pathnames

 UniBasic Statements 197

 UniBasic Reference Guide

EDIT
SYNOPSIS: Format numeric and string expressions.

EDIT format str.expr, destination str.var ; var.list

DESCRIPTION

The format str.expr is any str.expr defining the format string to apply to the list of variables in the var.list. Output is
formatted according to the rules for the String Operator: USING.

destination is any string variable to receive the formatted result.

var.list is any list of numeric or string variables (num.var, str.var, num.expr, str.expr) to be formatted into the
destination str.var. Only numeric data is formatted, string data is copied exactly to the destination.

Each item in the var.list must be separated by commas.

The EDIT statement is used to format string and numeric output. EDIT operates similar to LET USING; formatting
output and storing the result in a string variable. Unlike LET USING, EDIT allows a list of arguments for the
formatted result.

EXAMPLES
EDIT "$#,##&.##",D$;T,E,F,"TAXES",T9
EDIT A$,B$;"TOTAL DUE",Z,"BALANCE",Q,R$,T9

ERRORS
Formatted Output overflows output string

See also: String Operator USING, PRINT USING, LET USING

 UniBasic Statements 198

 UniBasic Reference Guide

END
SYNOPSIS: Normal termination of a running program.

END

DESCRIPTION

The END statement is used to indicate the normal termination of a program. An END statement causes program
execution to cease, and the user is returned to BASIC Program Mode following the prompt:

 Ready

Other statements may follow an END, and inclusion of an END is optional. If a program reaches its physical end of
the program and no END statement exists, an implied END is performed.

END leaves the current program (with all variables) in the user’s partition. If the program is an IRIS program, all
channels are closed automatically.

If the running program is a BITS program, all channels normally remain open.

If the running program executing the END statement has additional attributes <O> or <E>, special conditions are
observed as documented under Supplemental Protection Attributes.

EXAMPLES
END

ERRORS
none

See also: STOP, SYSTEM, CHAIN, Supplemental Protection Attributes

 UniBasic Statements 199

 UniBasic Reference Guide

ENTER
SYNOPSIS: Accept Variables from a CALL Statement

ENTER var.list

DESCRIPTION

A subprogram accepts argument variables from a CALL statement within a separate BASIC program. CALL
<subprogram> invokes a BASIC program as a subroutine.

The ENTER statement can be located on any line of the subprogram, but the variables cannot be used until the
ENTER statement has been executed. This means that the ENTER statement should be at the beginning of the
program in most cases.

Only one ENTER statement is allowed, and the number and types of variables in the statement must match the CALL
statement exactly or an error message is displayed.

The var.list may be defined as any combination of str.vars, num.vars, mat.vars, str.exprs, num.exprs, array.vars or
str.lit, depending on the requirements of the subprogram. The subprogram can only return data within arguments that
are passed as variables, subscripted numeric variables, or matrix variables. A matrix variable in CALL or ENTER is
given as a numeric variable with empty subscripts; e.g. A3[].

If a subprogram is called with arguments, but no ENTER statement is executed, no error will occur and the arguments
will not be changed. If a subprogram has no parameters, an ENTER statement with no parameters can be used to
detect unnecessary arguments on the invoking CALL statement.

Called subprograms can be nested indefinitely, limited only by the maximum process size in Unix.

EXAMPLE
(from master program) CALL PGM,B$,A,D$[4,7]
(from called subprogram) ENTER B$,J,F$

ERRORS

ENTER statement is illegal if not in a subprogram
The ENTER statement can only be executed once in a subprogram
Number/types of arguments do not match parameter list
Parameter variable in ENTER statement has already been allocated

See also: CALL, LIB

 UniBasic Statements 200

 UniBasic Reference Guide

EOFCLR
SYNOPSIS: Clear End-of-File branching.

EOFCLR stn

DESCRIPTION

EOFCLR clears any special end-of-file branching in effect. Normal error processing is resumed. If an error branch
is in effect from an ERRSET, ERRSTM, or IF ERR, it will be in control of further end-of-file errors.

EXAMPLES
EOFCLR

ERRORS
none

See also: IF ERR, ERRSET, ERRSTM, EOFSET

 UniBasic Statements 201

 UniBasic Reference Guide

EOFSET
SYNOPSIS: Enable End-of-File error branching.

EOFSET stn

DESCRIPTION

EOFSET traps any further occurrence of the error, “Illegal record number or End of File". If such an error occurs on
any channel, the program will branch to the stn given in the EOFSET statement. EOFSET affects only this single
error. Other errors are processed in the current error handling mode.

IF ERR, ERRSET and ERRSTM statements are used to trap all errors, including end-of-file. The EOFSET
statement is used to override normal error branching for this special error.

EOFSET is typically used by BITS applications when reading a text file. Other applications may utilize this function
to handle Formatted Item or Contiguous Files.

EOFSET branching remains in effect until specifically cleared by EOFCLR. Other error branching disable functions
do not clear this special branch.

EXAMPLES
EOFSET 1050
EOFCLR

ERRORS

No such statement number

See also: IF ERR, ERRSET, ERRCLR, ERRSTM, EOFCLR

 UniBasic Statements 202

 UniBasic Reference Guide

EOPEN
SYNOPSIS: Exclusively OPEN a Data File.

EOPEN #channel, filename.expr {, { #channel} filename.expr} ...

DESCRIPTION

The channel is any num.expr which, after evaluation, is truncated to an integer and used to select the channel on
which to open the file for read and write access once it has been created.

The EOPEN statement exclusively links a selected file to a channel.
EOPEN differs from OPEN in that the request will exclusively lock the file to the program. Other EOPEN, OPEN,
or ROPEN requests by you or other users will not be allowed.

Note: At this time, EOPEN cannot guarantee that another does not already have the file opened, however an
EOPENED file cannot be subsequently opened by another user.

An IRIS application cannot EOPEN certain types of files such as SAVED BASIC Programs. A special error is
generated when a file exists, but is generally unavailable.

EXAMPLES
EOPEN #1,"23/MMFILE", C$
EOPEN #2,"FILE1","FILE2",#10,"FILE4"

ERRORS
File is Read Protected
No such file
File is already OPENed and Locked
Channel is already OPENed
Not a data file (Can't OPEN or replace)

See also: OPEN, ROPEN, File Attributes and Permissions, Accessing Data Files Through a Channel

 UniBasic Statements 203

 UniBasic Reference Guide

ERRCLR
SYNOPSIS: Clear Error Branching.

ERRCLR

DESCRIPTION

ERRCLR clears any error-branching in effect and returns normal error processing to the application. Normal error
processing is to abort the current running program and output the error message text:

 Error in statement stn;sub-stn / Text description of error

Special end-of-file branching in effect from the EOFSET statement is not cleared by ERRCLR.

ERRCLR is used to clear automatic branch-on-error conditions previously set using ERRSET, ERRSTM and IF
ERR.

Normal error termination does not close all opened data files.

EXAMPLES
ERRCLR

ERRORS
none

See also: Error Messages, EOFSET, ERRCLR, IF ERR, ERRSTM JUMP, ERR, SPC, MSC, MSF

 UniBasic Statements 204

 UniBasic Reference Guide

ERRSET
SYNOPSIS: Enable Branch to statement on error.

ERRSET stn

DESCRIPTION

ERRSET is used to specify a stn to receive program control upon the occurrence of any BASIC error.

Error branching remains in effect until an ERRCLR is executed.

When the ERRSET statement is executed, any existing error branching from an IF ERR, or ERRSTM is reset to
branch to the selected stn upon occurrence of any error.

ERRSET does not affect the state of the special EOFSET branch on end-of-file error.

EXAMPLES
ERRSET 8000

ERRORS

No such statement number

See also: Error Messages, EOFSET, ERRCLR, IF ERR, ERRSTM JUMP, ERR, SPC, MSC, MSF

 UniBasic Statements 205

 UniBasic Reference Guide

ERRSTM
SYNOPSIS: Specify statements to execute on an error.

ERRSTM any basic stmts

DESCRIPTION

The ERRSTM statement specifies a line of statements to be executed upon the occurrence of any error.

Error statement processing remains in effect until an ERRCLR statement is executed.

When the ERRSTM statement is executed, any existing error branching from an IF ERR, or ERRSET is reset to
perform the stmts following ERRSTM upon the occurrence of any error. Normal execution resumes at the next
BASIC line, reserving all stmts following ERRSTM for when an error occurs.

ERRSTM must be the last statement of a multi-statement line.

ERRSTM has no effect on any special EOFSET end-of-file branch in effect.

EXAMPLES
ERRSTM PRINT "ERROR OCCURRED AT LINE:";SPC 10
ERRSTM CLOSE \ STOP
ERRSTM IF SPC 8 = 42 STOP ELSE REM

ERRORS
Syntax error

See also: Error Messages, EOFSET, ERRCLR, IF ERR, ERRSET JUMP, ERR, SPC, MSC, MSF

 UniBasic Statements 206

 UniBasic Reference Guide

ESCCLR
SYNOPSIS: Clear any ESCape branching in effect.

ESCCLR

DESCRIPTION
ESCCLR removes any special ESCape branching or disabling in effect.

Previous ESCape branching or disable set by ESCSET, ESCSTM or ESCDIS statements is disabled, and normal
ESCape termination of a program is resumed.

The [EOBC] character may be used to override and abort any program that has ESCape disabled, or an ESCape
branch in effect.

EXAMPLES
ESCCLR

ERRORS
none

See also: ESCSET, ESCDIS, ESCSTM, IF ERR

 UniBasic Statements 207

 UniBasic Reference Guide

ESCSET
SYNOPSIS: Enable branch to statement on ESCape.

ESCSET stn

DESCRIPTION
ESCSET specifies a stn to receive program control upon pressing of the ESCape key.

Escape branching remains in effect until an ESCCLR is executed.

The [EOBC] character may be used to override and abort any program that has ESCape processing.

When the ESCSET statement is executed, any existing ESCape branching from the ESCSTM or ESCDIS is reset to
branch to the ESCSTM stn upon the occurrence of an ESCape.

ESCCLR is used to clear automatic branch-on-ESCape and resume normal ESCape processing. Normal ESCape
processing terminates the running BASIC program and produces a STOP at prompt on the screen:

 STOP at statement xx;yy in program name

Normal ESCape termination does not close all opened data files.

Note that ESCape’s function may be assigned to keys other than ESCape itself, just as the ESCape key may be
assigned to perform some other function. The ESCape statements described above will act upon any key currently
defined as an [ESC].

EXAMPLES
ESCSET 8000

ERRORS

No such statement number

See also: JUMP, ERR, SPC, MSC, MSF, STOP, Input Character Processing

 UniBasic Statements 208

 UniBasic Reference Guide

ESCDIS
SYNOPSIS: Disable ESCape key.

ESCDIS

DESCRIPTION

The ESCDIS statement prevents unauthorized ESCape termination of any BASIC program. Any pressing of the
ESCape key by the user is ignored.

ESCDIS remains in effect until an ESCSET, ESCSTM or ESCCLR is executed.

When the ESCDIS statement is executed, any existing ESCape branching is reset to ignore further ESCape
characters.

The [EOBC] character may be used to override and abort any program that has ESCape processing

EXAMPLES
ESCDIS

ERRORS
none

See also: JUMP, ERR, SPC, MSC, MSF, Input Character Processing

 UniBasic Statements 209

 UniBasic Reference Guide

ESCSTM
SYNOPSIS: Specify statements to execute on ESCape.

ESCSTM any basic stmts

DESCRIPTION

The ESCSTM statement specifies a line of statements to be executed upon the pressing of an ESCape key.

ESCape statement processing remains in effect until an ESCCLR statement is executed.

The [EOBC] character may be used to override and abort any program that has ESCape processing.

When the ESCSTM statement is executed, any existing ESCape branching from the ESCSET or ESCDIS is reset to
perform the stmts following ESCSTM upon the occurrence of any error. Normal execution resumes at the next
BASIC line, reserving all stmts following ESCSTM for an ESCape.

ESCSTM must be the last statement of a multi-statement line.

Note that ESCape’s function may be assigned to keys other than ESCape itself, just as the ESCape key may be
assigned to perform some other function. The ESCape statements described above will act upon any key currently
defined as an [ESC].

EXAMPLES
ESCSTM PRINT "ESCAPE PRESSED AT LINE";ERR(2)
ESCSTM CLOSE \ STOP
ESCSTM CLOSE \ CHAIN "MAINMENU"

ERRORS
Syntax error

See also: JUMP, ERR, SPC, MSC, MSF, Input Character Processing

 UniBasic Statements 210

 UniBasic Reference Guide

EXECUTE
SYNOPSIS: Compile and Execute BASIC Statement.

EXECUTE str.expr

DESCRIPTION
The str.expr must contain at least one valid BASIC statement without a preceding stn. This statement is executed as if
it were in the program in place of the EXECUTE statement.

Multi-statement lines are not allowed inside the string. Only statements which are allowed in immediate mode are
available for EXECUTE. In this guide, the status of each statement with regard to immediate mode is documented in
the upper-right corner of the page using a keyboard symbol.

EXECUTE itself cannot be included within the str.expr. EXECUTE is useful where the syntax of a BASIC
statement itself must be made variable. For example, allowing a user to enter a numeric expression with INPUT and
then evaluating such an expression would require considerable program code. EXECUTE could be used by
constructing an appropriate LET statement within a string, and allowing UniBasic to perform the evaluation.

EXAMPLES
EXECUTE "LET A = SQR(B7) * 100"

ERRORS
All possible encoding and runtime errors.

See also: Each statement and function to be included.

 UniBasic Statements 211

 UniBasic Reference Guide

FOR
SYNOPSIS: Looping; repeating a group of statements.

FOR num.var = initial TO final {STEP step }

DESCRIPTION
The FOR statement is used in conjunction with the NEXT statement for repetitive statement execution. Statements
between the FOR/NEXT may be re-executed a given number of iterations. This repetitive execution is known as a
loop.

The num.var is termed the index variable and is used to control the loop.

initial is any num.expr which, after evaluation defines the first value of num.var for the loop. This value is stored in
num.var if the loop is to be executed (see below).

final is any num.expr which, after evaluation is stored as the final value of num.var for the loop.

The optional step is evaluated and used as the increment for each iteration of the loop. num.var is incremented by this
value for each iteration. If no explicit step is defined, the default step value is 1.

Looping is initiated by setting the index variable equal to the initial value. At this point, a preliminary check is made
to see if the loop should be executed at all. If: initial > final AND step > 0, or initial < final AND step < 0, then the
loop statements are not executed and the program resumes following the associated NEXT statement (NEXT with
same index variable). If not, execution continues with the statement following the FOR.

Upon execution of the associated NEXT statement, the step value is added to the index. If the new index will exceed
the final value, normal program execution resumes at the statement following the NEXT with the index variable
unchanged for BITS applications, and set to the terminating value for IRIS applications; e.g. if the step value is such
that the index will eventually equal the final value, the loop terminates with index = final for BITS, and index =
final+step for IRIS. In IRIS applications, index is set to the first value causing the loop to terminate.

A step value of zero will produce an infinite loop.

A complete FOR/NEXT loop may be executed on a single line in immediate mode:

 10 FOR I=1 TO 10 \ PRINT I \ NEXT I

An error is generated if, in immediate mode, a NEXT is not included on the line containing FOR.

FOR/NEXT loops may be nested if certain precautions are taken. The following is an example of valid nesting:

 10 FOR A=1 TO 10
 20 FOR B=1 TO 5
 30 FOR C=B+1 TO 4*A
 40 REM Statements
 50 NEXT C
 60 NEXT B
 70 NEXT A

 UniBasic Statements 212

 UniBasic Reference Guide

The range of FOR/NEXT loops may not overlap. The following is an example of invalid nesting:

 10 FOR I=1 TO 10
 20 FOR J=I+1 TO 20
 30 REM Statements
 40 NEXT I
 50 NEXT J

FOR/NEXT statements may be nested to the number of level defined in the environment variable FORNEXTNEST
- 1.

EXAMPLES
FOR I=1 TO 3
 REM Statements
NEXT I

Initially, I is set to 1, final is set to 3 and step defaults to 1. Each execution of the NEXT first checks if (I+1)>3.
When (I+1)>3, execution resumes following the NEXT with I=3, if the program is a BITS program, and I=4 if the
program is an IRIS program.

 10 FOR I=10 TO 1 STEP -2
 20 REM Statements
 30 NEXT I

Initially, I is set to 10, final is set to 1, and step is set to -2. Each execution of the NEXT first checks if (I-2)<1.
When (I-2)<1, the loop terminates, in this example with I=2. The loop is performed 5 times for I = 10, 8, 6, 4, and 2.
A BITS program terminates the loop with I=2, whereas IRIS programs would terminate with I=0.

ERRORS
Nested FOR with the same Index variable
FOR without matching NEXT
Variable not specified

See also: NEXT, Environment Variable FORNEXTNEST

 UniBasic Statements 213

 UniBasic Reference Guide

GOSUB
SYNOPSIS: Unconditional branch saving return point.

GOSUB stn

DESCRIPTION
The GOSUB statement is used in conjunction with the RETURN statement to provide internal program subroutines.
Commonly executed groups of statements can be used as subroutines to save user space as well as produce a more
structured program.

GOSUB, like GOTO, performs an unconditional branch to the specified line number. Unlike GOTO, however, the
statement number performing the GOSUB is saved. Upon the execution of a RETURN statement, normal execution
would resume at the statement following the GOSUB. GOSUB and RETURN are not paired as are FOR/NEXT; i.e.
any RETURN will return to the last GOSUB issued.

Subroutines may be nested to the number of level defined in the environment variable GOSUBNEST before a
RETURN must be executed.

Failure to return from all nested levels can cause an error.

See the RETURN statement for variations on returning from subroutines.

EXAMPLES
GOSUB 1000
GOSUB START_INPUT:

ERRORS
Gosubs nested too deep
No such statement number or label

See also: GOSUBNEST, RETURN

 UniBasic Statements 214

 UniBasic Reference Guide

GOTO
SYNOPSIS: Unconditional branch to a statement.

GOTO stn

DESCRIPTION
The GOTO statement is used to unconditionally branch to another statement within a program and resume normal
execution there.

GOTO always transfers control to the first sub-statement on the specified line, and the line must exist. For transfer to
any sub-statement on a line, see the JUMP statement.

The verb GOTO may also be entered as GO TO .

A statement that performs a GOTO itself may cause an infinite loop terminated only by ESCape, or ESCape Override
[EOBC].

In immediate mode, GOTO is used to specify the next statement to be executed for single-step mode or CONTINUE.

EXAMPLES
GOTO 1000
GOTO BEGIN:

ERRORS
No such statement number or label

See also: JUMP, GOSUB

 UniBasic Statements 215

 UniBasic Reference Guide

IF
SYNOPSIS: Conditional statement execution.

IF relation {AND relation}{OR relation} {THEN} stmt {ELSE stmt}

DESCRIPTION

The IF statement tests an arithmetic or string relation and conditionally performs statements based on the relation
being true or false. In general, these relations are defined as:

 num.expr relation num.expr
 - or -
 str.expr relation str.expr
 - or -
 num.expr
 - or -
 str.expr

The relation is one of the Relational Operators or Boolean Operators. If no relation is specified, the statement is
interpreted as true if the num.expr is non-zero or str.expr is a non-null string.

The IF statement will test the given relation for validity and execute the stmt following THEN if and only if the
relation proves true. If the relation is not true, the statement is checked for the ELSE operator. If found, the stmt
following the ELSE will be executed; otherwise, the program continues normally.

Entry of the THEN operator is generally optional.

The stmt following THEN and/or ELSE may be any BASIC statement or a stn alone implying a GOTO stn. The
verb GOTO can also be specifically entered, with the same result. Either THEN or GOTO must be supplied in order
to perform a GOTO.

In IRIS mode, a false IF condition continues execution with the next statement line, instead of with the next sub-stn.
When an IF is true, all remaining statements on the line are executed. An ELSE can be used to override this feature.
Both of the following examples perform the same function. In the first example, both statements are executed in IRIS
mode if the relation A=100 is true. If false, execution resumes on the next line of statements.

The second example performs a GOTO the next statement if the reverse relation is true, otherwise the ELSE is
executed following with the remaining statements on the line:

 IF A=100 GOSUB 1000 \ GOTO 1000
 IF A<>100 GOTO 120 ELSE GOSUB 1000 \ GOTO 1000

In BITS mode, a false IF condition continues execution with the next sub-stmt (if any), or proceeds to the next
statement line. Statements following both the THEN and ELSE operators must be single statements only; any
backslash code \ is considered the end of the IF statement. In order to execute a series of statements based on a
relation, the relation’s logic must be reversed and the true condition made to branch to the next statement after the
series.

 IF A=100 GOSUB 1000 ELSE IF B=100 STOP ELSE 200
 IF A<>100 GOTO 110 \ GOSUB 1000 \ GOSUB 2000

 UniBasic Statements 216

 UniBasic Reference Guide

A blocked-IF structure provides a more convenient method of executing several statements for both the true and false
conditions for both IRIS and BITS applications. The general form of a blocked-IF is:

IF relation {AND relation}{OR relation} {REM Comment}
{THEN} {REM This is a comment}
 stmts to be executed on a single line or multiple lines
{ELSE {REM This is a comment}
 stmts to be executed on a single line or multiple lines}
ENDIF {REM This is a comment}

Blocked-IF statements are assumed whenever an IF statement ends following a relation. No stmts may follow the
relation excepting an optional REM.

Inclusion of an ELSE block is optional. The THEN statement is completely ignored and can be omitted, if desired.
THEN, ELSE, and ENDIF must be the only statements on their line (except that they may be followed by a trailing
REM comment).

Statements to be executed on the relation being true follow the IF (or THEN) on subsequent lines. All statements up
to the associated ELSE or ENDIF are part of the true condition.

ELSE defines an optional block of stmts to execute when the corresponding Blocked-IF was false.

ENDIF defines the end of a blocked IF.

Blocked-IFs can be nested to any level, and are indented like FOR-NEXT loops for readability. There must be an
ENDIF for every blocked-IF in the program. The integrity of the blocked-IFs is checked by the RUN, CHAIN,
SAVE, VERIFY and CHECK commands. Once checked, a program is flagged OK eliminating further verification
until a statement is changed within a program.

EXAMPLES
IF A*5 > B*10 THEN GOSUB 200
IF LEN(A USING A$ TO ".") >132 PRINT #3;
IF A-5 THEN 340 ELSE IF J=100 GOSUB 100 ELSE STOP
IF C$[1,1]<=Z$[10,10] AND C$<>"X" THEN 280
IF (J=10 OR C=20) AND (T=10 OR F=12) STOP
Blocked-IF:
IF (A=100 AND B=200) OR (C=200 AND D=300)
 GOSUB 1000 \ PRINT T
 IF J
 GOSUB 2200 \ WRITE #3,R;A$
 ELSE
 GOSUB 2200 \ READ #3,R;A$
 ENDIF
ENDIF

ERRORS
Arithmetic Overflow
IFs without 'ENDIF'
'ELSE' without 'IF'
'ENDIF' without 'IF'

See also: Operators and Expressions, Boolean operators AND OR, Arithmetic Operators, String Operator
USING, Concatenation Operators, Unary Operators, String Operator TO, CRT Mnemonics and
Expressions, Numeric and String Expressions

 UniBasic Statements 217

 UniBasic Reference Guide

IF ERR
SYNOPSIS: Specify statements to execute on an error.

IF ERR error mode expr {stmt}

DESCRIPTION

IF ERR 0 is used to specify a line of statements to be executed upon the occurrence of any error. IF ERR 1 may also
be used to specify an error branch, however a separate error number is not reserved for CTRL+C.

When an IF ERR 0 statement is executed, any existing error branching from a previous IF ERR 0 , ERRSET, or
ERRSTM is reset to the stmts following the IF ERR 0. Normal execution resumes at the next BASIC line, reserving
all stmts following IF ERR 0 for error processing.

ESCape is also trapped generating a special Error code to the application.

ESCSTM, ESCSET, EOFSET, and ESCDIS statements can be used in addition to IF ERR.

In immediate mode, IF ERR can only be used to clear an existing error branch. Attempting to set a new branch
results in an error.

Error statement processing remains in effect until an ERRCLR or IF ERR 0 statement is executed without any
trailing stmt.

IF ERR statements must be the last statement of a multi-statement line.

EXAMPLES
IF ERR 0 GOSUB 1000
IF ERR 0

ERRORS
Syntax error

See also: Error Messages, JUMP, ERR, SPC(8),SPC(10), MSC, MSF, ERRSTM, ERRCLR

 UniBasic Statements 218

 UniBasic Reference Guide

INDEX #
SYNOPSIS: Indexed File maintenance statement.

INDEX #channel ; mode, index, key, record, status

DESCRIPTION

The channel is any num.expr which, when truncated to an integer, specifies an opened channel currently linked to a
UniBasic Indexed Data file.

The mode is any num.expr which, when truncated to an integer, specifies a mode of operation for the INDEX
statement. For a detailed list of mode operations, See also: Indexed Data Files.

The index is any num.expr which, when truncated to an integer, specifies to which Index or Directory (list of keys) the
operation is being directed.

The key is any DIMensioned str.var which must be DIMensioned to at least the size of the Key for the specified
Index.

The record is any num.var and contains (or returns) a value for the statement mode.

The status is any num.var used to return a status value to the program. Refer to the following pages for a list of status
values and their meanings.

Parameters may be separated by either a comma or semicolon terminator.

EXAMPLES
INDEX #5;4,1,K$,R1,E \ IF E GOTO 1000
E=3 \ INDEX #J,1,0,K$,R1,E \ IF E GOTO 1000

ERRORS
Selected channel is not open
Illegal parameter or syntax for command
Selected data record is locked
File is not indexed or mapped
Illegal or nonexistent index number selected
Index selected is not yet initialized
Indexed file structure error or svar dim length < Key length

See also: Indexed Data Files, SEARCH #

 UniBasic Statements 219

 UniBasic Reference Guide

Summary of INDEX Modes

 Mode Operation

 0 Define and Create indices within a Contiguous Data File.

 1 Return miscellaneous index information.

 2 Search for an exact key.

 3 Search for the next highest key.

 4 Insert a new key into an index.

 5 Delete an existing key from an index.

 6 Search for the previous key (Search Backward).

 7 Unused, included for compatibility.

 8 Maintain the B-Tree insertion algorithm for an index.

 9 Temporarily same as Mode 6 - Reserved for future use.

Detailed Table of INDEX Modes

Mode Index Status Operation Performed

 0 1<d<63 For a new Indexed File, sets the key length of the selected index to the number of bytes
specified by record.var. The maximum key length is 122 bytes. Indices must be defined
starting at one and proceed sequentially.

 0 0 Freeze the file definition and build the ISAM portion of the file. Total number of initial data
records is specified by the record.var.

 1 >0 Return the key length of the specified index in bytes.

 1 0 =0 Returns the record number of the First Real Data Record. Normally zero unless the file was
built using BUILDXF or copied from an IRIS or BITS system.

 1 0 =1 Return the number of Available Records in the file. This value is either the value of the
environment variable AVAILREC, or the value based upon the files current size.

 1 0 =2 Allocate and return a new record for the application.

 UniBasic Statements 220

 UniBasic Reference Guide

Mode Index Status Operation Performed

 1 0 =3 Return a record to the file that is no longer needed. Deleted records will be re-used before the
file is extended.

 1 0 =4 Return in record.var the number of records in the file. IRIS Applications only; Error for
BITS applications.

 1 0 =5 Return in record.var the number of records in the file. For BITS applications, performs the
same operation as 4 above.

 1 0 =6 Set the First Real Data Record to the value supplied in record.var. This option is only
available during file structuring.

 1 0 =7 Return the current number of records in use (allocated) in the data portion of the file.

 2 Search the specified index for the exact match of the supplied key.var. If found, return the
full key in the supplied key variable, and the associated record number in record.var. The
status.var is set to 0 if the key was found, and 1 if the key.var was not in the index.

 3 Search the specified index for the first key whose value logically exceeds the supplied
key.var. If found, status.var is set to 0, the full key is returned in key.var, and the associated
record number is returned in record.var.

 4 Insert key.var into the specified index using the supplied record.var as the associated pointer.
The record should have been previously allocated using mode 1, status = 2 above. A
status.var of 0 indicates a successful operation. If the key.var already exists in the index, a 1
is returned as status.var.

 5 Delete the supplied key.var from the specified index. If successful, record.var is returned as
the associated pointer, and the status.var is set to 0. A status.var of 1 indicates an unsuc-
cessful operation; i.e., the key.var was not found in the index. The record should be returned
to the file using mode 1, status = 3 above.

 6 Search the specified index for the first key whose value is logically less than the supplied
key.var. If found, status.var is set to 0, the full key is returned in key.var, and the associated
record number is returned in record.var.

 7 No operation. Reserved for future use.

 8 B-Tree algorithm maintenance. If record.var is negative, return in record.var the current B-
Tree algorithm for index. If record.var is positive, change the insertion algorithm to the value
passed in record.var. Set to zero (default) for random insertion, 1 for increasing insertion, 2
for decreasing insertions.

 9 Temporarily, the same as Mode 6. Reserved for future use.

 UniBasic Statements 221

 UniBasic Reference Guide

Table of INDEX status return values

 Value Description of Status

 0 No error, the Index operation was successful.

 1 Operation was unsuccessful; i.e. key not found.

 2 End of index. Given on modes 3, 6 and 9 when the beginning or end of the index is reached.

 3 End of data; all records are allocated. This error is only generated when the environment variable
PREALLOCATE is defined to limit the number of data records.

 4 File has no Indices, cannot perform an Indexed File operation.

 5 Indexed file structure error; given when key length DIM is less than the actual size of the key from an
Index on Modes 2, 3, 6 and 9. Indicates a DIMension error or structure problem, possibly a c-tree file
structuring error. Printing the value of ERR(8) will provide a more concise description of the error.

 6 Index number not in sequence during creation. You must sequentially define all directories.

 7 File is not a Contiguous File.

 8 File is already Indexed.

 9 Value of record is negative or too large.

 10 Illegal Index Number. Must be between 1 and 62.

 UniBasic Statements 222

 UniBasic Reference Guide

INPUT
SYNOPSIS: Retrieve keyboard or channel input.

INPUT {#chn.expr;} {crt.expr;} {control} {"prompt"} var.list

DESCRIPTION

The INPUT statement assigns values to variables. The values are accepted from either keyboard (operator) input, or
through a channel (file or device).

If a chn.expr is specified, the standard input for this statement will be satisfied from the selected channel, record and
byte-displacement. If the running program is a BITS program and chn.expr is not specified (or the selected channel is
not open), input will be taken from the keyboard. When requesting input from a chn.expr, the crt.expr, control, and
"prompt" options should not be used.

If a crt.expr is specified, it is evaluated and output based upon the information from current active term file. If no
term file is active, the crt.expr is ignored. If the crt.expr contains undefined mnemonics, those undefined will be
ignored. Typically, a crt.expr is used to position the cursor on the screen and/or clear lines, etc. prior to the request
for input. Use of a crt.expr will suppress the normal prompt unless a specific "prompt" is specified.

If a "prompt" is specified, the default prompt-message ? is replaced by the literal text within quotes. A null prompt ""
suppresses the output of the prompt-message as does the inclusion of any crt.expr.

If a control is specified, the input is restricted by a character count, length of time, or both. A special control is
provided to read the contents of the terminal's input buffer and is used by programs to read parameters entered on a
command line. Two different mechanisms exist to invoke control features.

 (mode.expr, num.var) control with a returned response

The mode.expr is evaluated and truncated to an integer. The second parameter must be a num.var and will be set
following the INPUT as the response.

If the mode.expr evaluates to zero, the entire contents of the input buffer is selected as the standard input. The
num.var is not set to any value in this mode. Typically, this mode is used within a program that can accept its input
from a command line. To read the last command line, the input must be performed prior to any other INPUT or
PRINT statements which corrupt the input buffer. Programs such as: PORT(u), LIBR(u), QUERY(u), etc. use this
mode to read the command line into a string variable and then parse off the parameters.

If the mode.expr evaluates to a positive value, the program is suspended for that number of tenth-seconds or until the
[EOL] character is entered terminating the input. The maximum wait time is 65535 tenth-seconds, or approximately
109 minutes. The actual number of tenth-seconds that were spent waiting for INPUT is returned as a positive value in
num.var. If no [EOL] character (return) is received within the specified interval, the num.var is set to the negative of
the specified tenth-second wait interval and any input characters are passed to the INPUT var.list.

If the mode.expr evaluates to a negative value, the value is converted to a positive number selecting the maximum
number of characters to be accepted for input. -5 causes the system to wait for the input of 5 characters. The actual
number of input characters is returned in the num.var. The [EOL] character may be used to terminate a character
limited input prior to exhausting the specified character count.

 LEN / TIM control with SIGNAL response

 UniBasic Statements 223

 UniBasic Reference Guide

 LEN num.expr; Set num.var as the character limit
 TIM num.expr; Wait num.var tenth-seconds for input

The num.expr is evaluated and truncated to an integer. A semicolon must terminate the num.expr, or an error will
occur.

If a LEN num.expr; is specified, the num.expr is evaluated, truncated to an integer and set as the maximum number of
characters to be accepted for input. The [EOL] character may be used to terminate a character limited input prior to
exhausting the specified character count.

If a TIM num.expr; is specified, the num.expr is evaluated, truncated to an integer and set as the number of tenth-
seconds to wait for input. The maximum wait time is 65535 tenth-seconds, or approximately 109 minutes. If no input
is seen within the specified interval, a system SIGNAL is sent to the program with the actual number of characters
entered. See SIGNAL 5 to clear the message queue.

Both a TIM num.expr; and LEN num.expr; can be specified on the same INPUT statement.

GENERAL OPERATION OF DATA INPUT

Following the parsing of the optional parameters, the program is suspended while data is read from the standard input;
usually the terminal. Characters previously entered (and buffered) are processed first.

Characters are echoed (for keyboard input) unless echo is disabled by the previous entry of the [ECHO] toggle
character (normally CTRL+E), a SYSTEM 9 statement or the $ECHO CALL.

If the INPUT is not satisfied, the program is suspended until the [EOL] character (return) is entered, the specified
character limit is reached, or a time-out occurs on timed input. When any of these conditions occurs, the program
resumes operation and begins processing input into the variables defined in the var.list. The [ESC] or [EOBC]
characters will terminate input and abort the statement.

SYSTEM 26 and 27 alter the operation of character limited input. Normal operation is to automatically resume
execution of the program when the limiting number of characters have been processed. Executing a SYSTEM 27
forces character limited INPUT to require entry of the [EOL] character (return). When the limit is reached, the
terminal's bell is sounded and extra characters (except BACKSPACE or CTRL+X) are ignored. SYSTEM 26 resets
character limited input to operate normally, that is, resume execution when the limiting number of characters have
been processed.

No special processing is performed on the characters received. Data is passed to the program exactly as received from
the operating system. If you are attempting to connect a system directly to IRIS or BITS, you will need to configure
the system to strip the high-order bit using the UNIX stty command, or use CALL 60,3,str.var to toggle the
IRIS/BITS data into standard format.

When binary input (SYSTEM 14) or IOBI is enabled, all characters are passed directly to the program excluding
CTRL+S (XOFF) and CTRL+Q (XON). All character input processing for [EOL], [ESC], [BACKSPACE], etc. is
suspended and the program must process all input data.

WARNING: When using Binary Input, it is possible to lock the terminal if your program does not provide a
way to terminate itself. If you lock a terminal, use another UniBasic port to HALT or PORT
EVICT(u) the locked program.

 UniBasic Statements 224

 UniBasic Reference Guide

When a str.var is specified in the var.list, all characters are copied up to, but not including the [EOL] character. If the
input is larger than the specified str.var, the extra input characters are discarded. If the input does not fill up the
destination str.var, a zero-byte terminator is placed after the last character of data.

If a num.var is specified in the var.list, the input characters are converted to numeric and stored into the num.var. An
error is generated if the input is not numeric or contains characters other than digits + - . or E notation. If error
branching is in effect, the MSC(1) function (Last INPUT Element) may be used to determine which input item was in
error. For example:

 10 ERRSET 40
 20 INPUT A,B,C,D
 30 END
 40 PRINT "ERROR IN INPUT VARIABLE";MSC(1)

The user would enter the item or items, separating multiple items with a comma "," or [EOL]. If too many items are
entered, a non-abortive error is generated and the extra items are ignored.

If a non-numeric value is entered for a numeric variable, the message \Invalid numeric\? is displayed and the entire
input must be re-entered. Numeric values may be entered in scientific notation; however, commas are not allowed
within a numeric item; e.g. 1,200 must be entered as 1200. To abort the INPUT statement, press ESCape.

BITS applications may use the INPUT statement with a channel. INPUT # is similar to terminal INPUT, however,
the above mentioned CRT, prompt, and limit features are unavailable. The INPUT # statement reads one line of data
into the terminal’s buffer. Processing proceeds as with normal INPUT. IRIS users read sequential data using the stan-
dard READ statement. For example:

 100 INPUT #4;D,E,F,G

To successfully load these variables, the input source (file or device) would have to contain 4 numeric literals in the
form:

 number , number , number , number

INPUT # terminates upon the transfer of a new-line, form-feed, zero byte, or end of input buffer. If INPUT #
terminates on a form-feed, it will be the last character of data. New-line may not be transferred as data. Carriage
returns are ignored when transferred.

Normally, the optional record expr and byte expr specifications are not used, as line-oriented data is generally of
variable length. Each successive INPUT # starts its transfer immediately after the previous one has been completed.

EXAMPLES
INPUT TIM 10; LEN 30; "CUSTOMER NAME >"A$
INPUT @10,23;"Press [RETURN]" T$
INPUT (-1,K) "Enter a single character "A$
INPUT "4 numbers w/ comma ? "A,B,C,D

ERRORS
INPUT of wrong type or insufficient
Syntax error
User partition space exhausted

See also: SYSTEM, $TERM, Input Character Processing, CALL $ECHO

 UniBasic Statements 225

 UniBasic Reference Guide

INTCLR
SYNOPSIS: Clear program interrupt branch.
 INTCLR

DESCRIPTION

INTCLR restores normal operation with respect to user interrupts. CTRL+C, SIGNAL 1, and SEND no longer
automatically interrupt the program and branch to a specific INTSET statement number.

EXAMPLES
INTCLR

ERRORS
None

See also: INTSET, SIGNAL, [INTR], SEND

 UniBasic Statements 226

 UniBasic Reference Guide

INTSET
SYNOPSIS: Define a branch for program interrupts.

INTSET stn

DESCRIPTION
INTSET sets the selected stn to receive control each time an interrupt character is pressed or a message is waiting to
be received. CTRL+C is normally defined as an interrupt character, [INTR], but may be changed within the term file.
INTCLR removes the branching, and further interrupt requests or messages are ignored.

A program branch is defined to transfer execution to a pre-defined statement when either an ‘interrupt’ character is
pressed or a message is transmitted to your port via the SEND or SIGNAL statements.

The interrupt handling routine can do any processing desired and return to the main program as if the branch never
occurred. Secondary interrupts are inhibited until the program clears the initial interrupt. This is done using the
ERR(3) function, which also yields the original interrupted statement number. Generally, an interrupt handling
routine loops until all interrupts or messages are received. The main body of the program is resumed using the
statement:

 stn JUMP ERR(3)
or
 stn JUMP ERR(3);ERR(7)

The latter form is required if multi-statement lines are used within the program.

The interrupt function should not use the ERR(3) function other than shown above unless it is re-entrant and stacks
multiple return locations.

EXAMPLES
INTSET 1000 ! Branch on Signal, CTRL+C

ERRORS
No such statement number

See also: SEND, [INTR], SIGNAL, SEND

 UniBasic Statements 227

 UniBasic Reference Guide

JUMP
SYNOPSIS: Computed GOTO unconditional branch to stn.

JUMP stn {; sub-stn} {, num.var}

DESCRIPTION
The stn is any num.expr which, after evaluation is truncated to an integer and used as the statement number to branch
to. The optional sub-stn is any num.expr which, after evaluation is truncated to an integer and used as the sub-
statement on that line. JUMP performs an unconditional branch to the selected statement (and sub-statement). On
multi-statement lines, sub-statements are numbered starting at 1.

If the optional num.var is supplied, it will be set to the statement number of line following JUMP. This is similar to
the GOSUB statement, as a subsequent JUMP to this variable will essentially perform a RETURN. The num.var
will is set to zero when the JUMP is the last statement of a program.

JUMP statements are in no way affected by the RENUMB command. Therefore, they are not an acceptable
substitute for GOTO or GOSUB when a literal stn can be used.

JUMP is best used in conjunction with system functions that supply statement numbers, retaining the program's
ability to be renumbered.

EXAMPLES
JUMP K*10
JUMP SPC(10)
JUMP ERR(1);ERR(4),J

ERRORS
No such statement number

See also: GOTO, GOSUB, SPC, ERR, INTSET, ESCSET, ERRSET

 UniBasic Statements 228

 UniBasic Reference Guide

KILL
SYNOPSIS: Delete a data or program file.

KILL filename.expr ...

DESCRIPTION
The filename.expr may contain a single filename or list of filenames to be deleted. Multiple strings may each contain
a single filename or group of filenames separated by spaces.

If an error occurs, the statement is aborted and any remaining filenames within the str.expr are not deleted.
Furthermore, other filename.exprs are not processed.

An application may delete a program or data file currently in use or opened by itself or another user. The effect is to
remove the entry of the filename from the system directory preventing it from being opened again. When the last user
closes the file, the system releases the disk space. Prior to closing, all types of access, including extending the file is
permitted.

EXAMPLES
KILL "23/ABC 23/DEF"
KILL A$,B$,C$

ERRORS
File does not exist
Read Protected File
Write Protected File

See also: DELETE, MFDEL(u), KILL(u), filename

 UniBasic Statements 229

 UniBasic Reference Guide

LET
SYNOPSIS: Assign values to numeric & string variables.

{LET} var = expr {(, | ;) } ...
{LET} str.var = num.expr USING str.expr {, num.expr ...}
{LET} str.var = str.var TO str.expr { (; | :) num.var}

DESCRIPTION
var is any num.var, str.var, array.var or mat.var to be assigned a value.

expr is any expression whose result matches the type of the supplied var.

A numeric variable num.var, array.var, or mat.var may be assigned any numeric expression or numeric string
whereas string variables str.var may be assigned any string expression or numeric value. The functions STR and
VAL may be used to convert a numeric result to string or vice versa to match the destination var.

The LET verb is optional, and is assumed when not entered. Although entry of the LET verb is optional, it is printed
whenever the program is listed.

Multiple assignments may appear on a single line separated by commas for BITS and semicolons for IRIS programs.

 Z=100;Q=1;N=0;A$="TXXX" ! IRIS Applications
 Z=100,Q=1,N=0,A$="TXXX" ! BITS Applications

Numeric formatting is performed within a LET statement with the USING operator. This is functionally equivalent
to the EDIT statement.

 LET D$=X USING "##,###.##"
 LET E$=X USING "##,###.##",Y,Z

The TO operator allows assignment of string data to terminate upon encountering a given str.expr. The str.expr may
be a single or multiple character string. The optional num.var returns the character position at which assignment
stopped.

 LET N$="ABCDEF%GHIJKL"
 LET S$=N$ TO "%":K ! IRIS Applications
 LET S$=N$ TO "%";K ! BITS Applications
 returns: S$="ABCDEF",K=7

When using the advanced forms for multiple assignments, choose the following delimiting characters to match the
operating system BASICMODE and/or program type currently loaded:

 Character function IRIS BITS

 String concatenation , +
 Multi-assignment ; ,
 Terminator for TO : ;

 UniBasic Statements 230

 UniBasic Reference Guide

EXAMPLES
LET V=1
LET T$=1/3
LET A=42;T=17;R7=91 !IRIS MULTI-LET
LET B[7]=(A*T)+(R7/4) USING "#####"
LET A$="TOTAL=",D[7]=A/T! BITS MULTI-LET
LET A$="1234565";T=A$;B$=A$ TO "45":T1

ERRORS
Syntax Error
String Expression not allowed here
String Expression must be used here

See also: TO Operator, USING Operator, Numeric and String Expressions, STR, VAL

 UniBasic Statements 231

 UniBasic Reference Guide

LIB
SYNOPSIS: Specify a library logical unit for callable subprograms.

LIB expr

DESCRIPTION
expr is any numeric expression to represent a numbered IRIS style logical unit number or string expression
representing a unix directory name.

A value of -1 may be used to clear a defined library logical unit.

The library unit is the first unit searched by CALL for a subprogram file, unless the subprogram filename itself
specifies a logical pathname.

SPC 23 is used to determine the current library logical unit, however its return value is only valid when the library
logical unit is numbered.

EXAMPLES
 LIB 1
 LIB "pgms"

ERRORS
None

See also: CALL, ENTER, SPC23

 UniBasic Statements 232

 UniBasic Reference Guide

MAT =
SYNOPSIS: Copy an entire matrix.

MAT dest mat.var = source mat.var

DESCRIPTION
mat.var is any numeric matrix variable name.

The dest mat.var must be at least as large as the source mat.var. In the following example, matrix A is dimensioned
as [5,5] and matrix B as [6,6]:

MAT B=A is acceptable.
MAT A=B Is illegal since A is not large enough to contain all of the elements

in B.

The copy is performed element by element. An error or integer truncation can occur if the precisions are not
compatible. Row and column zero are not copied. MAT = cannot be used to copy single element arrays.

EXAMPLES
MAT T=D0
MAT T[4,4] = D9
MAT T[5]=G

ERRORS
Syntax error
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 233

 UniBasic Reference Guide

MAT +
SYNOPSIS: Add elements from two matrices.

MAT dest mat.var = source mat.var1 + source mat.var2

DESCRIPTION
mat.var is any numeric matrix variable name.

The two matrices being added must be exactly the same dimensions (rows and columns). The dest mat.var, if not
already defined, is dimensioned at the current default precision for the same number of rows and columns as the
source mat.var . An error or integer truncation can occur if the precisions are not compatible. Row and column zero
are not added.

The same matrix variable may appear on both sides of the equation

The sum, matrix D, of matrix A and matrix B is:

 D[X,Y]=A[X,Y]+B[X,Y]

for each matrix element.

EXAMPLES
 MAT T=D0+A9
 MAT D0=D0+J

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 234

 UniBasic Reference Guide

MAT *
SYNOPSIS: Multiply elements of two matrices.

MAT dest mat.var = source mat.var1 * source mat.var2
MAT dest mat.var = (constant expr) * source mat.var

DESCRIPTION
mat.var is any numeric matrix variable name.

MAT * performs a multiplication, establishing a new matrix equal to the product of two matrices. Scalar
multiplication allows each element of a matrix to be multiplied by a constant.

Following the rules of matrix multiplication, if we multiply matrix A dimensioned [X,Y] by matrix B dimensioned
[R,S], then the resulting matrix will be dimensioned [X,S]. An error or integer truncation can occur if the two
precisions are not compatible. Row and column zero elements are not multiplied.

The same matrix variable may not appear on both sides of the equation.

Scalar multiplication causes each element of the given matrix to be multiplied by the value of the constant expr. The
constant expr. must be in parentheses, and immediately follow the equal sign (=).

EXAMPLES
MAT D=A*B
MAT Q=X*X
MAT C=(5)*A

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 235

 UniBasic Reference Guide

MAT CON
SYNOPSIS: Establish a constant matrix.

MAT dest array.var = CON { [subscript1 {, subscript2 }] }

DESCRIPTION
array.var is any numeric array.var or mat.var name.

Each element of the selected array.var or mat.var is set to the constant value one. Row and column zero are not set.

The optional subscript1 and subscript2 are evaluated, truncated to integer and used to select a new working size. The
total number of elements in the new size cannot exceed that of the old. A single element array can be converted to a
matrix or vice versa as long as the total number of elements does not exceed the original DIMensioned size. For
example, a [4,4] matrix has 25 actual elements and could be re-declared as CON[25].

A constant other than one can be accomplished using a combination of the CON function and Scalar multiplication:

 MAT A=CON \ MAT B=(5)*A \!Fill B with 5's.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT A=CON
MAT D0=CON[7,X/2]

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 236

 UniBasic Reference Guide

MAT IDN
SYNOPSIS: Establish an identity matrix.

MAT dest array.var = IDN { [subscript1 {, subscript2 }] }

DESCRIPTION
array.var is any numeric array.var or mat.var name.

The matrix function IDN establishes an identity matrix of all zeroes with a diagonal of ones.

Any matrix multiplied by an identity matrix of the same size results in the original matrix. For example: If matrix A
is dimensioned [3,3] and matrix B is an identity matrix also dimensioned [3,3], the result of: MAT C=A*B produces
matrix C equal to A. Row and column zero are not affected by IDN.

The optional subscript1 and subscript2 are evaluated, truncated to integer and used to select a new working size for
the array. The total number of elements in the new size cannot exceed that of the old. A single element array can be
converted to a matrix or vice versa as long as the total number of elements does not exceed the original DIMensioned
size. For example, a [4,4] matrix has 24 actual elements and could be re-declared as IDN[25]. An identity array is
an array of all zeros.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT Q=IDN
MAT T=IDN[4,4]
MAT A8=IDN[X,Y]

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 237

 UniBasic Reference Guide

MAT INV
SYNOPSIS: Invert a matrix.

MAT dest mat.var = INV(source mat.var)

DESCRIPTION
mat.var is any numeric 'square' matrix variable name.

The matrix function INV establishes one square matrix as the inverse of another.

Only square matrices (number of rows = number of columns) may be inverted. Both matrices must also be the same
precision and dimension. Row and column zero are not affected by INV.

The DET function supplies the determinant of the last matrix inverted by your program, e.g. if two matrices are
inverted before the DET function is used, the determinant returned will be from the second inversion.

Since numeric precision in UniBasic is accurate only to 20 significant digits, matrix elements will be rounded
accordingly.

EXAMPLES
MAT C=INV(A)

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 238

 UniBasic Reference Guide

MAT TRN
SYNOPSIS: Transpose a matrix.

MAT dest mat.var = TRN(source mat.var)

DESCRIPTION
mat.var is any numeric matrix variable name.

The matrix function TRN is used to establish one matrix as the transposition of another.

Transposition causes each element [X,Y] of the original matrix to be moved to element [Y,X] of the transposed
matrix. Note that this also causes the dimension of the transposed matrix to be the reverse of the original. For
example:

 Original matrix [3,4] Transposed matrix [4,3]
 1 2 3 4 1 5 9
 5 6 7 8 2 6 10
 9 10 11 12 3 7 11
 4 8 12

An error or integer truncation can occur if the two matrix precisions are not compatible. Row and column zero are not
affected by TRN.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT C=TRN(A)

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 239

 UniBasic Reference Guide

MAT ZER
SYNOPSIS: Zero an entire matrix.

MAT array.var = ZER { [subscript1 {, subscript2 }] }

DESCRIPTION
mat.var is any numeric array.var or mat.var name.

The matrix function ZER allows each element of a matrix to be set to zero. Row and column zero are not set.

The optional subscript1 and subscript2 are evaluated, truncated to integer and used to select a new working size for
the array. The total number of elements in the new size cannot exceed that of the old. A single element array can be
converted to a matrix or vice versa as long as the total number of elements does not exceed the original DIMensioned
size. For example, a [4,4] matrix has 25 actual elements and could be re-declared as ZER[24].

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT C=ZER
MAT R7=ZER[4,4]

ERRORS
Syntax error
Same matrix on both sides of MAT is illegal here
Matrix has zero DIMension
Matrix DIMensions are not compatible for this operation
Variable not specified
Matrices have different DIMensions
Variable name not DIMensionable

See also: Numeric, Array and Matrix Variables

 UniBasic Statements 240

 UniBasic Reference Guide

MAT INPUT
SYNOPSIS: Assign keyboard/file input to a Matrix.

MAT INPUT {#chn.expr;} array.var{[subscript1 {, subscript2 }]} ...

DESCRIPTION
The optional #chn.expr is any channel expression used to specify an input device or text file for the operation. Only
BITS applications may perform MAT INPUT #.

The array.var is any mat.var or array.var with or without subscripts.

MAT INPUT is used to assign values to an entire matrix. The values are accepted from either keyboard (operator)
input, or through a channel (file or device for BITS applications).

The optional subscript1 and subscript2 are evaluated, truncated to integer and used to select a new working size for
the array. The total number of elements in the new size cannot exceed that of the old. A single element array can be
converted to a matrix or vice versa as long as the total number of elements does not exceed the original DIMensioned
size. For example, a [4,4] matrix has 25 actual elements and could be re-declared as array[24].

Execution of a MAT INPUT statement pauses the program after output of a ? to your terminal. The program is then
suspended and data input is accepted. The user would enter all matrix items, separating each item with either a
comma , or [EOL] (return). MAT INPUT does not complete until all elements have been accepted.

The array elements are assigned by rows, starting with [1,1] thru [1,n], then continuing with [2,1] thru [2,n], etc. Row
and column zero are not assigned. For example, a 4 by 4 matrix might be entered as:
 17,42,87,12 <-
 18,14,26,14 <-
 15,0,18,29 <-
 34,29,86,69 <-

Using MAT INPUT from a channel is similar to terminal MAT INPUT, except the data is read from the channel and
must include row and column zero elements. The data must be separated by either commas or [EOL] (return), and
cannot be in the format generated by a MAT PRINT #. Only a BITS application may perform MAT INPUT #.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT INPUT T
MAT INPUT A,B[4,10],C
MAT INPUT #3;X
MAT INPUT #2,R,20;E1,E2

ERRORS
Syntax error
Matrix has zero DIMension
Variable not specified

See also: MAT PRINT, Numeric, Array and Matrix Variables, Channel Expression

 UniBasic Statements 241

 UniBasic Reference Guide

MAT PRINT
SYNOPSIS: Print contents of an array or matrix.

MAT PRINT { #chn.expr; } array.var { ; }...

DESCRIPTION
The optional #chn.expr is any legal channel expression re-directing the output to a file or device.

Each array.var is any array.var or mat.var to be printed in ASCII form without subscripts. Each variable may be
followed by either a comma (,) or a semicolon (;). A comma will cause the matrix variable preceding it to be spaced
using comma fields. These are generally 20 characters long, but can be changed by setting the environment variable
TABFIELD. A semicolon will cause minimal spacing between elements. Elements are normally preceded by a space
or "-", indicating negative or positive, and will be followed by one space. When all items in a matrix row have been
output, two blank lines are output to produce double spacing between rows.

Row and column zero elements are only printed for MAT PRINT in immediate mode and when the data is directed
through a channel.

If a channel is specified to MAT PRINT, output is attempted to that channel. If the selected channel is not open,
output is sent to the terminal.

EXAMPLES
MAT PRINT A
MAT PRINT I,J
MAT PRINT X;Y;Z;
MAT PRINT #3,T;H1,S1

ERRORS
Syntax error
Matrix has zero DIMension
Variable not specified

See also: Numeric, Array and Matrix Variables, Channel Expression.

 UniBasic Statements 242

 UniBasic Reference Guide

MAT RDLOCK #
SYNOPSIS: Read an array, matrix or string with locking.

MAT RDLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to read data.

MAT RDLOCK # transfers data into any var, mat.var, array.var or str.var. The operation is similar to a READ #
statement, except that an entire array or matrix is transferred; including row and column zero elements. If the
specified var is a string, its entire specified length is transferred including zero-byte terminators.

If the variable in the list is an array.var, an optional subscript1 and subscript2 may be specified. If given, these are
evaluated, truncated to integer and used to select a new working size for the array. The total number of elements in
the new size cannot exceed that of the old size. A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original DIMensioned size. For example, a [4,4] matrix has
25 actual elements and could be re-declared as array[24].

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. The transfer size is rounded up to an
even number of bytes. Either an even or odd subscript may be specified. The address for the start of the transfer
within the str.var is not changed. If an odd number of bytes is specified in the subscript (such as svar[2,2]), the size is
rounded up to an even number of bytes resulting in the transfer of 2 bytes into svar[2,3] in this example. All
characters are transferred including zero-bytes.

If the application is an IRIS program, the supplied (or current) byte displacement is rounded up to an even byte
position within the file.

MAT RDLOCK transfers data and unconditionally locks the record.. The data record remains locked until a non-
locking operation is performed by that same program to the same channel. While a record is locked, other users will
be unable to access the record. MAT RDLOCK# is identical to MAT READ# omitting the trailing semicolon. See
the MAT READ# statement for details on the transfer of data to different types of files.

EXAMPLES
MAT RDLOCK #3,R1,100;A
MAT RDLOCK #C,R;A$

ERRORS
Syntax error
Selected Channel is not OPEN

See also: Numeric, Array and Matrix Variables, Channel Expression, MAT READ, Numeric Variable Precision

 UniBasic Statements 243

 UniBasic Reference Guide

MAT READ
SYNOPSIS: Read an array, matrix, or string from DATA.

MAT READ array.var{[subscript1 {, subscript2 }]}...
MAT READ str.var ...

DESCRIPTION
The array.var is any numeric array.var or mat.var. A str.var is any string variable name. You may mix array.vars
and str.vars in a single MAT READ statement.

MAT READ attempts to transfer data into each array.var, mat.var or str.var listed in the statement. Transfer of each
array.var or mat.var element terminates at a comma (,) or at the end of the DATA statement. The format of the data
is left to the user. Attempting to read string data into a numeric variable produces the error DATA of wrong type
(numeric/string).

MAT READ transfers data sequentially from DATA statements until the entire matrix has been assigned. Row and
column zero are not read.

See the READ and DATA statements for other rules governing reading from DATA statements.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

EXAMPLES
MAT READ A[2,2], B$
MAT READ B$, J

ERRORS
Matrix has zero DIMension
Variable not specified

See also: Numeric, Array and Matrix Variables, READ, DATA

 UniBasic Statements 244

 UniBasic Reference Guide

MAT READ #
SYNOPSIS: Read array, matrix or string from a channel.

MAT READ #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to read data.

The var list is any list of variables: num.var, array.var, mat.var or str.var.

MAT READ transfers data into any var, mat.var, array.var or str.var. The operation is similar to a READ #
statement, except that an entire array or matrix is transferred; including row and column zero elements. If the
specified var is a string, its entire specified length is transferred including zero-byte terminators.

If the variable in the list is an array.var, an optional subscript1 and subscript2 may be specified. If given, these are
evaluated, truncated to integer and used to select a new working size for the array. The total number of elements in
the new size cannot exceed that of the old size. A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original DIMensioned size. For example, a [4,4] matrix has
25 actual elements and could be re-declared as array[24].

Any array created by a MAT statement with a single dimension assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. The transfer size is rounded up to an
even number of bytes. Either an even or odd subscript may be specified. The address for the start of the transfer
within the str.var is not changed. If an odd number of bytes is specified in the subscript (such as svar[2,2]), the size is
rounded up to an even number of bytes resulting in the transfer of 2 bytes into svar[2,3] in this example. All
characters are transferred including zero-bytes.

The optional semicolon (;) terminator is only available for IRIS applications eliminating the automatic record-lock
applied to the supplied record in the chn.expr. Applications may also utilize MAT RDLOCK # for operations with
locking, and MAT READ # for non-locking transfers.

If the application is an IRIS program, the supplied (or current) byte displacement is rounded up to an even byte
position within the file. .

If the transfer is to a Formatted Item file, the item type may be String or Binary for any str.var in the list, or Binary or
Numeric for any numeric variable. The byte displacement specifies the starting item for the transfer. If not specified,
item zero is assumed. No conversion takes place during the transfer of a binary item. It is the program's responsibility
to maintain the correct precisions of numerics being MAT READ# from the file.

If the transfer is to a Contiguous or Tree-structured Data file, the byte displacement specifies the starting byte within
the supplied record. Zero is assumed if no byte displacement is given. If the program is an IRIS program, any given
byte displacement is rounded up to an even value prior to transfer. Attempting to MAT READ# at byte displacement
one, automatically rounds up to two, for example.

 UniBasic Statements 245

 UniBasic Reference Guide

If the transfer is to a text file, the entire string is read and no conversions of returns to new-lines is performed. Each
transfer will read a fixed number of bytes. When printing text data that was MAT READ#, append a semicolon (;) to
the PRINT statement to prevent the insertion of automatic return/line-feeds.

Each item transferred causes the byte displacement to be incremented by the adjusted byte size of the item in the
var.list. Strings are sized by the algorithm (INT(d/2)+1), where d is the DIMensioned or subscripted size. num.vars,
arrays and matrices are sized as: (R+1) * (C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
MAT READ #3,R1,100;A,B$,C[12]
MAT READ #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not OPEN

See also: Numeric, Array and Matrix Variables, Channel Expression, MAT WRITE#, READ#, Numeric Data,
Numeric Variable Precision, Formatted Item Files, Contiguous Files, Text Files

 UniBasic Statements 246

 UniBasic Reference Guide

MAT WRITE #
SYNOPSIS: Write array, matrix or string to a channel.

MAT WRITE #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to write data.

The var list is any list of variables: num.var, array.var, mat.var or str.var.

MAT WRITE # transfers data from any var, mat.var, array.var or str.var to the file opened on the supplied chn.expr.
The operation is similar to a WRITE # statement, except that an entire array or matrix is transferred; including row
and column zero elements. If the specified var is a string, its entire specified length is transferred including zero-byte
terminators.

If the variable in the list is an array.var, an optional subscript1 and subscript2 may be specified. If given, these are
evaluated, truncated to integer and used to select a new working size for the array. The total number of elements in
the new size cannot exceed that of the old size. A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original DIMensioned size. For example, a [4,4] matrix has
25 actual elements and could be re-declared as array[24].

Any array created by a MAT statement with a single dimension assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision

If the variable in the list is a str.var, its size may be controlled by subscripts. The transfer size is rounded up to an
even number of bytes. Either an even or odd subscript may be specified. The address for the start of the transfer
within the str.var is not changed. If an odd number of bytes is specified in the subscript (such as svar[2,2]), the size is
rounded up to an even number of bytes resulting in the transfer of 2 bytes into svar[2,3] in this example. All
characters are transferred including zero-bytes.

The optional semicolon (;) terminator is only available for IRIS applications eliminating the automatic record-lock
applied to the supplied record in the chn.expr. Applications may also utilize MAT WRLOCK # for operations with
locking, and MAT WRITE # for non-locking transfers.

If the application is an IRIS program, the supplied (or current) byte displacement is rounded up to an even byte
position within the file.

If the transfer is to a Formatted Item file, the item type may be String or Binary for any str.var in the list, and Binary
or Numeric for any numeric variable. The byte displacement specifies the starting item for the transfer. If not
specified, item zero is assumed. No conversion takes place during the transfer of a binary item. It is the programs
responsibility to maintain the correct precisions of numerics being MAT READ from the file.

If the transfer is to a Contiguous or Tree-structured Data file, the byte displacement specifies the starting byte within
the supplied record. Zero is assumed if no byte displacement is given. If the program is an IRIS program, any given
byte displacement is rounded up to an even value prior to transfer. Attempting to MAT WRITE at byte displacement
one, automatically rounds up to two, for example.

 UniBasic Statements 247

 UniBasic Reference Guide

If the transfer is to a text file, the entire string is written and no conversions of returns to new-lines is performed.
Caution must be exercised to prevent the writing of zero-bytes which terminate a text file. Use MAT WRITE# with
subscripts such as [1,LEN(str.var)].

Each item transferred causes the byte displacement to be incremented by the adjusted byte size of the item in the
var.list. Strings are sized by the algorithm (INT(d/2)+1), where d is the DIMensioned or subscripted size. num.vars,
arrays and matrices are sized as: (R+1) * (C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
MAT WRITE #3,R1,100;A,B$,C[12]
MAT WRITE #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open
Write Protected File

See also: Numeric, Array and Matrix Variables, Channel Expression, MAT READ#, WRITE#, Numeric Data,
Numeric Variable Precision, Formatted Item Files, Contiguous Files, Text Files

 UniBasic Statements 248

 UniBasic Reference Guide

MAT WRLOCK #
SYNOPSIS: Write an array, matrix or string with locking.

MAT WRLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to write data.

MAT WRLOCK # transfers data from any var, mat.var, array.var or str.var to the file opened on the supplied
chn.expr. The operation is similar to a WRITE # statement, except that an entire array or matrix is transferred;
including row and column zero elements. If the specified var is a string, its entire specified length is transferred
including zero-byte terminators.

If the variable in the list is an array.var, an optional subscript1 and subscript2 may be specified. If given, these are
evaluated, truncated to integer and used to select a new working size for the array. The total number of elements in
the new size cannot exceed that of the old size. A single element array can be converted to a matrix or vice versa as
long as the total number of elements does not exceed the original DIMensioned size. For example, a [4,4] matrix has
25 actual elements and could be re-declared as array[24].

Any array created by a MAT statement with a single dimension assumes a second dimension of one. For example,
MAT C= ZER[15] and MAT C = ZER[15,1] are equivalent.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. The transfer size is rounded up to an
even number of bytes. Either an even or odd subscript may be specified. The address for the start of the transfer
within the str.var is not changed. If an odd number of bytes is specified in the subscript (such as svar[2,2]), the size is
rounded up to an even number of bytes resulting in the transfer of 2 bytes into svar[2,3] in this example. All
characters are transferred including zero-bytes.

If the application is an IRIS program, the supplied (or current) byte displacement is rounded up to an even byte
position within the file. .

MAT WRLOCK # transfers data and unconditionally locks the record. The data record remains locked until a non-
locking operation is performed by that same program to the same channel. While a record is locked, other users will
be unable to access the record.

MAT WRLOCK# is used by BITS applications and is identical to an IRIS MAT WRITE# omitting the trailing
semicolon.

See the MAT WRITE# statement for details on the transfer of data.

EXAMPLES
MAT WRLOCK #3,R1,100;A
MAT WRLOCK #C,R;A$

 UniBasic Statements 249

 UniBasic Reference Guide

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open
Write Protected File

See also: Numeric, Array and Matrix Variables, Channel Expression, MAT READ#, WRITE#, Numeric Data,
Numeric Variable Precision, Formatted Item Files, Contiguous Files, Text Files

 UniBasic Statements 250

 UniBasic Reference Guide

MODIFY
SYNOPSIS: Change filename or attributes/permissions.

MODIFY filename.expr

DESCRIPTION
The filename.expr is any string expression containing a source filename to be operated upon, and either new attributes
or destination filename.

The source filename specifies the file to be changed. The destination filename, if included, selects a new name or
location for the source filename. MODIFY utilizes the UNIX mv command to rename or relocate the source
filename. Commands in the following form are passed to the system:
 mv source destination
 mv SOURCE DESTINATION (If file Indexed)

For an Indexed Data File, two commands are issued; lower-case for the data portion, and uppercase for the ISAM
portion.

If the file is a Universal Indexed Data File, two cp commands are performed; one for the data portion (filename), and
one for the ISAM portion (filename with an .idx extension).

If the source filename contains a lu or directory specifier, these must also precede the destination filename or the
source filename is relocated to the current working directory.

attribute string may be expressed as a 2-digit IRIS protection code, 3-digit Unix permission, or as a set of attribute
letters. Either the IRIS or Unix types may also include Supplemental Protection Attribute letters preceding the
numeric protection digits.

EXAMPLES
MODIFY "2/FILE 23/OLDFILE"! Move the file
MODIFY "PAYROLL <77>"
A$= "JUNK" \ MODIFY A$+"<E666>"

ERRORS
File does not exist
File is Read Protected
File already exists; use '!' to replace

See also: Filenames and Pathnames, File Attributes, Protection and Permissions, Using IRIS Protections, Using
Unix Permissions, BITS Attributes, Supplemental Protection Attributes

 UniBasic Statements 251

 UniBasic Reference Guide

NEXT
SYNOPSIS: Continuation of FOR Loop Statement.

NEXT num.var

DESCRIPTION
num.var is any numeric variable previously used as the index variable for a FOR statement.

The NEXT statement is used to indicate the logical end of a program loop using FOR/NEXT.

The NEXT statement must have been preceded by execution of a FOR statement defining the parameters of the loop.
Nested FOR/NEXT loops are paired based on the num.var used as the index variable.

Upon execution of the NEXT, the loop’s step value is added to the index. If the new index exceeds the loop’s final
value, normal program execution resumes at the statement following the NEXT; otherwise, the index value is updated
by the step and execution reverts back to the statement following the associated FOR. If a step was not specified on
the associated FOR statement, one is assumed.

When a loop terminates in IRIS applications, the index variable contains the first value not used within the loop.
BITS applications terminate a loop with the last value actually used as a loop value.

In immediate mode, a NEXT statement is only executable on a multi-statement beginning with FOR, i.e.:

FOR I=1 TO 10 \ PRINT I \ NEXT I

EXAMPLES
NEXT J7

ERRORS
NEXT without a matching FOR

See also: FOR, FORNEXTNEST

 UniBasic Statements 252

 UniBasic Reference Guide

ON
SYNOPSIS: Conditional branch on value of expression.

ON num.expr GOTO stn list
ON num.expr GOSUB stn list

DESCRIPTION
The num.expr is any numeric expression which, after evaluation is truncated to an integer n. The program will then
branch to the nth stn in the given stn list. If no stn corresponds to n, then execution continues with the statement
following the ON.

GOTO and GOSUB work precisely as their singular counterparts. Branching will be to the first sub-statement of the
statement number given, and the statement must exist.

EXAMPLES
ON Q GOTO 200,300,400,500,600
ON (SGN(A)+2) GOTO 300,450,1000 ! Neg, Zero, Pos
ON (A/100) GOSUB 600,750,840,950

ERRORS
No such Statement Number
GOSUBS nested too deep

See also: GOTO, GOSUB, GOSUBNEST

 UniBasic Statements 253

 UniBasic Reference Guide

OPEN #
SYNOPSIS: Open a File for Read and Write Access.

OPEN #channel, filename.expr { ,#channel } ...

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an integer and used to select a channel number.

filename.expr is any str.expr containing a filename (including a path) to be opened for read and write access to the
program.

The OPEN statement links a selected file or device to the specified channel. The file must already exist on the system
or an error is generated.

Multiple str.expr's may be specified to open several files on successive channel numbers. Any new channel number
(#channel) in the filename list will cause assignment of channels to continue from that number.

In IRIS applications, if the specified channel is already in use, a CLOSE statement must be performed prior to an
OPEN.

Most files to which a user has access may be opened. The same file may be simultaneously opened by other users,
and may be opened on more than one channel. If a file is already opened for exclusive access via EOPEN by another
process, an error is generated. IRIS applications may not OPEN a saved BASIC program for access.

OPEN will link the selected file for read/write access and update each file’s last access date.

A file may not be OPEN if it, or its directory does not have read permission for the user requesting access. If the file
is read-only to the user, an implied ROPEN is performed and only read operations are allowed.

A BITS application may OPEN a file on a channel that is already opened for a different file. An implied CLOSE is
performed prior to opening the selected file.

EXAMPLES
OPEN #1,"12/DATAFILE","FILE2",#4,"/usr/path/AR.CHECK"
OPEN #3,"$LPT",L$+A$!EXPRESSION IS LU+FILENAME
OPEN #D,""

ERRORS
File does not exist
Not a Data File, cannot OPEN or Replace
File is in use and Locked
Channel is already OPENed and in use

See also: CLOSE, ROPEN, EOPEN, Filenames and Pathnames, Directories and Paths, Channel, LUST

 UniBasic Statements 254

 UniBasic Reference Guide

PAUSE
SYNOPSIS: Suspend Program Operation.

PAUSE delay

DESCRIPTION
The delay is any numeric expression which, after evaluation is truncated to an integer and used to specify a delay in
program operation. The delay is limited to an integer between 0 and (232)-1 representing the number of tenth-seconds
to delay.

This is the most accurate method of pausing the execution of a program. Other methods, such as finite program loops,
will be affected by the current usage of the system and most likely yield varying results.

The program is unconditionally suspended for the number of tenth-seconds specified in delay. An [ESC] without
ESCape branching or [EOBC] terminates a pause. If the application has an INTSET defined, the [INTR] (CTRL+C)
or [SIGNAL] (CTRL+B) will terminate the pause and perform the branch.

EXAMPLES
PAUSE 30
PAUSE FNA(Q7)
PAUSE A*10

ERRORS
Function argument of Statement mode out of range

See also: SIGNAL 3, HZ Environment Variable

 UniBasic Statements 255

 UniBasic Reference Guide

PORT
SYNOPSIS: Attach and control other ports.

PORT port, mode, status var { , (command str | acnt | return value)}

DESCRIPTION
port is any num.expr which, after evaluation is truncated to an integer and used to select a port number to attach and
effect a command.

mode is any num.expr which, after evaluation is truncated to an integer and used to select an operation for port. There
are 4 modes:

Mode Operation Performed.

 0 Attach selected port

 1 Place an attached port in command mode

 2 Transmit a command string to an attached port

 3 Return an attached port’s operational status

status is any num.var used to return the exception status of the operation. The meaning of the status depends upon the
mode selected.

command str is any str.var used for mode 2 to send the command to the specified port.

acnt is any num.expr which, after evaluation is truncated to an integer and used to select a different account for the
attached port when using mode 0. The account should be expressed as G*256+U, where G and U are the desired
group and user numbers respectively. It’s use is restricted: a group manager may attach only accounts within his own
group, root may attach any account. All other users may only attach their own account. The Group and User numbers
must be in the range 0 to 255. If not specified, the group and user id of the program executing the attach is set.

return value is any num.var used to return the operation status of the specified port for mode 3.

The PORT statement allows a port to be attached to a program. Once attached, commands may be transmitted to the
port for normal processing, and the current status or state of the attached port can be controlled and monitored. If the
attached port has a keyboard, it may be used as any other normal terminal. However, commands transmitted will
override any current keyboard operation.

Mode 0—Attach Selected Port

A PORT mode 0 statement must be issued once for each port being attached. Once attached, the port remains so until
signed-off (sending a BYE command or executing SYSTEM 0 to the port).

 UniBasic Statements 256

 UniBasic Reference Guide

PORT Mode 0 begins by attempting to attach the port. If the port is already running under UniBasic, the attach
operation is complete and successful.

If the port is not currently signed onto UniBasic, a background process is created as the supplied port number. It
assumes the caller’s environment and current working directory. It then becomes a unique process linked to the
supplied port number. This port is then available for CALL $TRXCO commands, PORT, SEND, RECV, and
SIGNAL statements from any other UniBasic user as well as the program performing the initial PORT Mode 0.

When sending commands to a port which is connected to a terminal and keyboard, you must ensure that port is
already running UniBasic before sending commands. Otherwise, a phantom port is created for the supplied port
number. If a user later attempts entry into UniBasic on a terminal designated as being the same port number, entry
into UniBasic will be rejected if PORT or PORTS is defined for that port number.

Note: It is impossible to create a phantom port from a child program.

Upon completion, the status variable is set to indicate:

 0 Successful, port is now attached.

 1 The selected port is already logged-on to the system and in-use.

 2 All available ports are already in use. In some configurations, the allowed number of concurrent users
is set less than the actual number of ports configured. This indicates that either another port or
phantom port must be signed-off, or the number of concurrent users increased on your license.

 3 Illegal account number selected. The selected group or user number is out of the range 0-255.

Mode 1—Place an Attached Port in Command Mode

PORT Mode 1 sends an ESCape Override Character [EOBC] to the selected port, terminating any running program
and placing the port into command mode.

Upon completion, the status variable is set to indicate:

 0 Successful, the selected port is now in command mode.

 1 The select port is not attached.

Mode 2—Transmit Command String to Attached Port

PORT Mode 2 requires that a command str be supplied following the status variable. The string data in command str
is then transmitted to the selected port. This command str may contain any legal command input for a terminal. It’s
entire length may not exceed the port’s input buffer size as defined by the environment variable INPUTSIZE. This is
generally 256 characters. Any command, such as NEW, LIST, BYE, RUN, etc., may be transmitted, as well as pro-

 UniBasic Statements 257

 UniBasic Reference Guide

gram statements. If a terminal is connected to the attached port, the command str is echoed as it is processed on the
attached port. An attached port connected to a terminal may also receive commands from its keyboard.

A command.str cannot be transmitted unless the attached port is in an 'input ready' state. A PORT Mode 3 status
check is suggested prior to sending a command.

Upon completion, the status variable is set to indicate:

 0 Successful, command transmitted and accepted.

 1 The selected port is not attached.

 2 The selected port is not in an ‘input ready’ state.

Mode 3—Return Attached Port’s Operational Status

PORT Mode 3 requires that a return value be supplied following the status variable. This variable will receive a
value indicating the port’s operational status. A PORT mode 3 should always precede any mode 2 command
transmission to check for 'input ready'. It may also be used to monitor the current state of the attached port.

 0 Successful, operational status returned.

 1 The selected port is not attached.

The value returned as the operational status consists of a mode, an 'Input Ready' flag, and an 'Output in Progress' flag.

This value may be divided into its respective parts as follows:

 Assume X = value returned by PORT mode 3.

 IF X>32767 THEN 'Input Ready' on attached port.

The 'Input Ready' flag must be removed from the value prior to testing the 'Output in Progress' flag, since both input
and output may be in progress.

 IF X>32767 THEN X=X-32768 \! Remove flag.
 IF X>16383 AND X<32768 THEN 'Output in Progress'

The attached port’s current mode can be determined by:

 LET M=X % 16 \! Retrieve mode.

 UniBasic Statements 258

 UniBasic Reference Guide

 Mode Current State

 0 Idle. At command mode or logged-off.

 1,2 Command input or execution.

 3 Run. Program execution in progress.

 4,5 List. Program listing in progress.

 6 Statement execution in immediate mode.

 7 Get. Program being loaded from text file.

 8 Initial Run. Becomes mode 3.

 9,10 Enter. Program statement entry using ENTer.

EXAMPLES
PORT 8,0,S \ IF S STOP ! ATTACH & CHECK STATUS
PORT P,1,S \ IF S STOP ! ABORT & GET READY
PORT P*2,2,E,C$[50] \ IF E STOP ! SEND COMMAND
PORT X,3,Y,Z \ IF Y STOP ! GET CURRENT MODE&STAT

ERRORS
Function Argument or Statement Mode out of range

See also: CALL $TRXCO, SWAP, SPAWN, Environment Variables: PORT, PORTS and INPUTSIZE, Port
Numbering & Phantom Ports, Launching UniBasic ports at startup

 UniBasic Statements 259

 UniBasic Reference Guide

PRINT
SYNOPSIS: Output ASCII to screen, file or device.

PRINT {#chn.expr;} { USING format } var.list

DESCRIPTION
PRINT may be abbreviated by the single character ;.

The optional #chn.expr is any legal channel expression selecting an open channel to re-direct output.

The optional USING format is str.expr including a valid USING Operator allowed for numeric formatting.

The var.list consists of variables, literals, or expressions; numeric or string. Each item in the var.list must be
separated by either a comma (,) or a semicolon (;). A comma performs a TAB to the next comma field before output
of the next item. This is generally 20 characters long, but may be changed by the setting of the environment variable
TABSIZE. A semicolon prevents additional spacing in the output.

Numerics are output preceded by a '-' or space indicating negative or positive, and followed by one space (The STR
function may be used to omit leading and trailing spaces). Strings are output exactly as stored, from the supplied
starting position terminating at the first zero-byte terminator. No preceding or trailing spaces are output.

When all items in the var.list are output, a new-line is output to advance the terminal to the next line (or mark end of
line in a text file). This can be suppressed by using a comma or semicolon as the last character in the PRINT
statement. In the case of a comma, a TAB is still performed.

The USING operator formats numeric data for columnar output. It may also be used to imbed commas, asterisk check
fill, floating dollar signs and other special output formats. It must be after any chn.expr and before the var.list, and
only one is allowed per statement. For additional information, see the string operator USING.

An output column counter (base zero) is maintained for each terminal holding the current character position on the
output line. This counter is reset anytime the [EOL] is output (usually a return) or a @0,y cursor positioning
operation is performed.

The TAB function is used to skip the terminal to a specific column. Its form is:

 TAB (num.expr)

The num.expr must be a positive value in the range 0 to 255 or an error will be generated. The value is truncated to
an integer and set to zero if it is greater than 255 and less than 32768. A TAB to a position less than the current
position is ignored. A TAB is performed by generating the required number of spaces to skip to the desired position.

After all items in the var.list are placed into the terminal buffer, it is flushed immediately. No SIGNAL 3,0 is
required to start output, and is ignored if executed.

If a chn.expr is specified for PRINT, the output is redirected to the selected channel. If the channel is not open,
output is transmitted to the terminal. This allows a program to selectively output to the terminal or a printer by
including an OPEN of the printer pipe on the selected channel. A separate output column counter is maintained for
each channel opened, so that the TAB and comma operator will operate on applications doing both screen and file
output operations.

 UniBasic Statements 260

 UniBasic Reference Guide

PRINT # is generally used to output to a text file, or pipe such as a line printer. The most common form used for
output to a line printer is:

 PRINT #chn.expr; var.list

The optional record, byte displacement and time-out specifications of a chn.expr are normally unused, as line-oriented
data is generally of variable length. Each successive PRINT # continues its transfer immediately following the
previous, unless a new record or byte displacement is specified.

EXAMPLES
PRINT "AVAILABLE";TAB(40);A*100;"$";Z
;@0,23;’CL’;"Error in Program";
PRINT #K; USING T$;X,Y,Z,Z/10

ERRORS
Function Argument is out of range
Write Protected file

See also: TAB Function, Numeric and String Expressions, TABSIZE, Channel Expression, STR Function,
String operator USING

 UniBasic Statements 261

 UniBasic Reference Guide

RANDOM
SYNOPSIS: Seed random generator for RND function.

RANDOM num.expr

DESCRIPTION
The num.expr is evaluated, truncated to a positive integer and used to seed the system’s pseudo-random number
generator. Seeding implies that a sequence is selected and initiated based on the value supplied. Each value from 1 to
65535 will select a unique pseudo-random sequence for the RND function. A seed value of zero selects a further
random sequence based upon the current system time, yielding 36000 different sequences.

Typically, a non-zero seed value is used during program debugging, causing the RND function to yield the same
sequence of numbers with each successive run. Once the program is completed, a RANDOM 0 is issued to produce
better random selection.

EXAMPLES
RANDOM 5
RANDOM 0
RANDOM ((N*100)/E^2)

ERRORS
Arithmetic Overflow
Function argument or Statement Mode out of range

See also: RND function

 UniBasic Statements 262

 UniBasic Reference Guide

RDLOCK #
SYNOPSIS: Read and unconditionally lock a record.

RDLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to read data.

RDLOCK # transfers data into any var, mat.var, array.var or str.var.

If the variable in the list is an array.var, an optional subscript1 and subscript2 may be specified. If given, these are
evaluated, truncated to integer and used to select a single element. If no subscripts are supplied, only the first element
is transferred.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are transferred including
zero-bytes.

RDLOCK transfers data and unconditionally locks the record. The data record remains locked until a non-locking
operation is performed by that same program to the same channel. While a record is locked, other users will be unable
to access the record.

RDLOCK# is identical to READ# omitting the trailing semicolon.

See the READ# statement for details on the transfer of data to different types of files.

EXAMPLES
RDLOCK #3,R1,100;A
RDLOCK #C,R;A$

ERRORS
Syntax error
Channel is not Opened

See also: READ#

 UniBasic Statements 263

 UniBasic Reference Guide

RDREL #
SYNOPSIS: Read a relative 512-byte block from a file.

RDREL # chn.expr; str.var

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to read data. The chn.expr must
include a record which is used to define the relative block within the file to read. The byte displacement and time-out
expressions are ignored and unnecessary.

The str.var is any string variable DIMensioned at least 512 bytes. A starting subscript may be supplied as long as the
DIMensioned size is at least 512 bytes larger than the supplied subscript.

RDREL uses the supplied record as a relative 512 byte block pointer into the file. For example, record 0 specifies
the first 512 bytes in the file, record 1, the second 512 bytes, etc.

Record -1 may be used to load the first 512 bytes of the file. This includes the header and possibly part of record 0.
Some headers (of formatted item files) may be larger than 512 bytes and may not be read in entirety. To retrieve
header information in a truly machine independent fashion, it is recommended that CALL 127 be used to unpack the
information. RDREL # of record -1 is used to change header information by conversion and other utilities.

RDREL is generally used to copy files or otherwise read portions of files not accessible with a normal READ#
statement. Processing of the data is left completely up to the user.

EXAMPLES
RDREL #7,K;A$! READ A BLOCK
RDREL #7,K+1;A$[513] ! APPEND A SECOND BLOCK

ERRORS
Channel Not Opened
Illegal Record or End of File

See also: WRREL#

 UniBasic Statements 264

 UniBasic Reference Guide

READ
SYNOPSIS: READ variables from DATA statements.

READ var.list

DESCRIPTION
The var.list contains any num.var, array.var, mat.var or str.var names. An array.var or mat.var with subscripts
specifies only that single element. Omission of a subscript selects only the first element.

READ begins transferring data sequentially from the lowest numbered DATA statement found in the program.
Subsequent READ statements resume transfer at the next element of the DATA statement. After all of the items in a
given DATA statement have been read, reading continues with the next highest numbered DATA statement. When
all DATA statements have been read, any subsequent READ will produce the error Out of Data. The RESTOR
statement can be used at any time to start reading from a specific DATA statement.

READ attempts to transfer data into each variable listed in the var.list. Transfer of a variable terminates at a comma
(,) or at the end of the DATA statement. The format of the data is left to the user. You may not transfer string data
into any numeric variable. Generally, string items need not be enclosed in quotes (" "), but can be if desired. Quotes
will be necessary if it is desired to include a comma inside a string item.

EXAMPLES
READ A,B,D[10],A[4,4]
READ A$

ERRORS
Out of Data
String Variable is not Dimensioned
Illegal Subscript Supplied
Data of wrong type (numeric/string)

See also: DATA, RESTOR, MAT READ, String Data and Literals, Numeric, Array and Matrix Variables,
Variable Names

 UniBasic Statements 265

 UniBasic Reference Guide

READ #
SYNOPSIS: Read array, matrix or string from a channel.

READ #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to read data.

READ # transfers data into any var, mat.var, array.var or str.var.

If the variable in the list is an array.var or mat.var, only the first element ([0] or [0,0]) is read. Subscripts may be
used to select any individual element to be transferred. The number of bytes transferred is based upon the variable's
dimensioned size. The transfer is performed according the rules for a num.var.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. The entire size is then transferred
including zero bytes. When no subscript, or a single subscript, is specified, IRIS programs increment the total number
of bytes transferred. When reading from a contiguous formatted file only, READ will stop at the first null byte in a
record, preserving the existing data within the string variable.

The optional semicolon (;) terminator is used by IRIS applications to eliminate the automatic record-lock applied to
the supplied record in the chn.expr. BITS applications utilize RDLOCK # for operations with locking, and READ #
for non-locking transfers.

If the running program is an IRIS program, the following steps are performed prior to transfer:

 1. If the variable to be transferred is a num.var, array.var, or mat.var, the supplied (or current) byte
displacement is rounded up to an even byte position within the file.

 2. If a full str.var is supplied (single or no subscript), its size is incremented by one to account for an
extra null byte (A null will be forced into the last position following the transfer). Finally, if the
transfer is from a text file, an error is generated if any num.var is supplied.

If the transfer is to a Formatted Item file, the item type may be String or Binary for any str.var in the list, and Binary
or Numeric for any num.var, array.var, or mat.var. The byte displacement specifies the starting item for the transfer.
If not specified, item zero is assumed. No conversion takes place during the transfer of a binary item. It is the
program's responsibility to maintain the correct precisions of numerics being READ from the file.

If the transfer is to a Contiguous or Tree-structured Data file, the byte displacement specifies the starting byte within
the supplied record. Zero is assumed if no byte displacement is given, and IRIS programs round up the byte
displacement if odd on a numeric variable transfer.

If the transfer is from a text file (IRIS Programs only), data is read up to and including the next new-line character in
the file. The new-line is converted and stored in the string as a \215\ for compatibility. A null string is returned when
the end of a text file is reached.

Each item transferred causes the byte displacement to be incremented by the adjusted byte size of the item in the
var.list. Strings are sized by the algorithm (INT(d/2)+1), where d is the DIMensioned or subscripted size. num.vars,

 UniBasic Statements 266

 UniBasic Reference Guide

arrays and matrices are sized as: (R+1) * (C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
READ #3,R1,100;A,B$,C[12]
READ #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open

See also: Numeric, Array and Matrix Variables, Channel Expression, WRITE#, MAT READ#, RDLOCK#,
Numeric Data, Numeric Variable Precision, Formatted Item Files, Contiguous Files, Text Files

 UniBasic Statements 267

 UniBasic Reference Guide

RECV
SYNOPSIS: Receive communication message.

RECV port, (string | value1, value2) {, delay }

DESCRIPTION
port is any num.var to receive the sender's port number, or -1 if no messages are waiting for your port.

string is any str.var up to 512 bytes in length to receive a string message.

value1 and value2 are any two num.vars to receive 2 numeric messages. If the second parameter is a num.var, two
numeric variables must be specified. Their two values are then received. The two variables need not be the same
precision.

The optional delay is any numeric expression which, after evaluation is truncated to an integer to specify a delay
period (in tenth-seconds) during which the program awaits a message. If zero, or not included, no pause is invoked,
but any currently waiting message will be received. Any message appearing during a specified delay allows RECV to
accept the transmitted data and resume program execution immediately. If no message appears during the entire
delay, port is set to -1.

If the program has an INTSET branch enabled, any message sent to your port will cause a branch to the selected
statement. The interrupt handling routine can then perform a RECV to receive the message.

RECV is identical in operation to SIGNAL 2.

EXAMPLES
RECV P,A,B,600 ! Wait 60 seconds
RECV P,A$

ERRORS
Arithmetic Overflow

See also: SIGNAL, SEND, INTSET

 UniBasic Statements 268

 UniBasic Reference Guide

REM
SYNOPSIS: Non-executed Program Comments.

REM any ASCII characters

DESCRIPTION
The REM statement allows the placement of comments within a program. A REM statement is ignored during
execution, but may be referenced within the program.

When REM statements are entered, all characters following the REM up to the [EOL] (usually return) are considered
the comment. This includes leading and trailing spaces and control characters.

A ! may be used to abbreviate the verb REM during entry. During listing, REM is listed if it is the first statement of
the line, otherwise ! is displayed. When a REM statement is processed during program execution, the statement is
ignored. Branching (GOTO, GOSUB, etc.) to REM statements is acceptable with little program overhead.

Note that, since all characters following a REM are considered part of the REM, the REM is always the last
statement on it’s line.

 400 PRINT A \ REM OUTPUT TOTAL \ GOTO 200

Line 400 outputs the value of A and continues with the next program line. The “GOTO 200" is considered to be part
of the comment.

EXAMPLES
REM Request input of customer name
GOSUB 1000 ! Go receive response

ERRORS
none

 UniBasic Statements 269

 UniBasic Reference Guide

RESTOR
SYNOPSIS: Reset DATA pointer for READ Statement.

RESTOR {stn}

DESCRIPTION
RESTOR may also be entered as RESTORE.

RESTORE resets the DATA statement pointer to the first data item of the first DATA statement in the program, just
as when the program started.

Including an optional stn sets the pointer the first data item of the first DATA statement encountered at or past that
stn.

If no further DATA statements are found, the pointer will be set to return an “Out of DATA" error during the next
READ.

EXAMPLES
RESTOR
RESTORE 2200

ERRORS
No such statement number
Out of Data

See also: DATA, READ

 UniBasic Statements 270

 UniBasic Reference Guide

RETURN
SYNOPSIS: Return from prior GOSUB subroutine call.

RETURN {(+ | -) increment }

DESCRIPTION
The optional increment is any num.expr which, after evaluation is truncated to an integer to specify an offset forward
or backward (+ or -) from the normal RETURN.

The RETURN statement is used with GOSUB and indicates the end of a program subroutine.

A normal RETURN (or RETURN +0) resumes execution at the statement following the matched GOSUB. A value
of +1 would branch to the second statement following the GOSUB (the first statement past a normal RETURN). A
value of -1 would branch to the statement of the GOSUB itself.

BITS programs treat GOSUB and RETURN as line rather than statement oriented functions. A normal RETURN
resumes execution at the next line of a program; that is subsequent statements on the same line as the GOSUB are
ignored. -1 is used to re-execute the line containing the GOSUB and +1 skips the line following. A special
RETURN + 0 returns within a multi-statement line to the statement following the GOSUB, if any. Typical BITS
applications performing GOSUB on multi-statement lines use RETURN +0 for an error condition, and normal
RETURN {+ - } as normal exits.

EXAMPLES
RETURN
RETURN +1

ERRORS
RETURN without prior GOSUB

See also: GOSUB, GOSUBNEST

 UniBasic Statements 271

 UniBasic Reference Guide

REWIND #
SYNOPSIS: Reset a file to the first data byte.

REWIND # channel {, ...}

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an integer and used to select a channel number.

Multiple #channel designations are permitted separated by comma.

The REWIND statement resets the selected channel's current file position to the beginning of the file. The position is
reset to record 0, byte displacement 0. If the next file transfer does not specify a record or byte displacement, the
transfer will start at the first data byte of the file.

The effect of REWIND is to reset the current file position as when the channel was initially opened. REWIND is
typically used with Text Files accessed sequentially.

A REWIND operation is ignored when issued to a channel linked to a pipe.

REWIND is identical in operation to SETFP #channel, 0, 0 ;

EXAMPLES
REWIND #T, #7, #(J*2)

ERRORS
Channel Not Opened

See also: Text Files, SETFP#

 UniBasic Statements 272

 UniBasic Reference Guide

ROPEN #
SYNOPSIS: Open a file for Read-Only access.

ROPEN #channel, filename.expr { ,#channel } ...

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an integer and used to select a channel number.

filename.expr is any string expression containing a pathname, or filename to be opened for read-only access to the
program.

The ROPEN statement links a selected file or device to the specified channel. The file must already exist on the
system or an error is generated.

Multiple filename.expr's may be specified to open several files on successive channel numbers. Any new channel
number (#channel) in the filename list will cause assignment of channels to continue from that number.

In IRIS applications, if the specified channel is already in use, a CLOSE statement must be performed prior to an
ROPEN .

Most files to which a user has access may be opened. The same file may be simultaneously opened by other users,
and may be opened on more than one channel.

A file may be opened for read-only using ROPEN even if it is already opened for exclusive access via EOPEN. IRIS
applications may not ROPEN a saved BASIC program for access.

ROPEN will link the selected files for read-only access without updating its last access date. In addition, a file
opened for read-only may read records locked by other applications making this statement especially valuable for
reports and general inquiries.

A file may not be ROPEN if it, or its directory does not have read permission for the user requesting access.

A BITS application may OPEN a file on a channel that is already opened for a different file. An implied CLOSE is
performed prior to opening the selected file.

EXAMPLES
ROPEN #1,"DATAFILE","FILE2",#4,"AR.CHECK"
ROPEN #3,"$LPT",L$+A$!EXPRESSION IS LU+FILENAME

ERRORS
File does not exist
Not a Data File, cannot OPEN or Replace
Channel is already OPENed and in use

See also: CLOSE, EOPEN, Filenames and Pathnames, Directories and Paths, Channel

 UniBasic Statements 273

 UniBasic Reference Guide

SEARCH
SYNOPSIS: Search string for sub-string.

SEARCH source, target, location

DESCRIPTION
source and target are any str.exprs.

location is any num.var to contain the byte position of the target within the source, or zero if not found.

source is searched for the first occurrence of target. If found, location is set to the character position of the located
substring. If not found, a zero is returned. If the source being searched is a single str.var, it may include a starting
subscript if desired, and searching begins at the selected position. Note however that any position returned will be
relative to this starting position.

When performing multiple SEARCH operations on a single string, it is best to initialize a num.var to 1; adjusting for
each located identical sub-string.

 290 LET J=1
 300 SEARCH T$[J],"H-",R
 310 IF R THEN LET J=(J+R)-1

Here, location is adjusted for the offset caused by a starting subscript. If the substring is not found, location is
returned as zero. The adjustment needed for any given starting subscript ‘A’ can be defined as:

 actual position in string = starting subscript + location - 1

SEARCH performs a 7-bit comparison on both strings. This means, for example, that a \15\ code is considered equal
to a \215\ code. Searching terminates when a null byte is encountered in the source str.expr. Entry of the verb
SEARCH followed by a # character is interpreted as an ISAM file SEARCH statement and treated as such.

EXAMPLES
SEARCH P$+A$,".",K
SEARCH A$[J],"TIME",K \ J=J+K-1

ERRORS
String expression must be used here

See also: LET TO, CALL $STRING, CALL 44, CALL 56

 UniBasic Statements 274

 UniBasic Reference Guide

SEARCH #
SYNOPSIS: Indexed File maintenance statement.

SEARCH #channel , mode , index ; key, record , status

DESCRIPTION

channel is any num.expr which, after evaluation is truncated to an integer, and used to select an opened channel
currently linked to an Indexed Data file.

The mode is any num.expr which, when truncated to an integer, specifies a mode of operation for the SEARCH
statement. For a detailed list of mode operations, see Indexed Data Files.

The index is any num.expr which, when truncated to an integer, specifies which Index or Directory (list of keys) the
operation is being directed.

The key is any DIMensioned str.var which must be DIMensioned to at least the size of the Key for the specified
Index.

The record is any num.var and contains (or returns) a value for the statement mode.

The status is any num.var used to return a status value to the program. Refer to the following pages for a list of status
values and their meanings.

Parameters may be separated by either a comma or semicolon terminator.

EXAMPLES
SEARCH #5,4,1;K$,R1,E \ IF E GOTO 1000
E=3 \ SEARCH #J,1,0;K$,R1,E \ IF E GOTO 1000

ERRORS
Selected channel is not open
Illegal parameter or syntax for command
Selected data record is locked
File is not indexed or mapped
Illegal or nonexistent index number selected
File is write protected
Index selected is not yet initialized
Indexed file structure error or svar dim length < Key length

See also: Indexed Data Files, INDEX #, AVAILREC, BUILDXF, PREALLOCATE, ERR()

Summary of SEARCH # Modes

 Mode Operation

 0 Define and Create indices within a Contiguous Data File.

 UniBasic Statements 275

 UniBasic Reference Guide

 1 Return miscellaneous index information.

 2 Search for an exact key.

 3 Search for the next highest key.

 4 Insert a new key into an index.

 5 Delete an existing key from an index.

 6 Search for the previous key (Search Backward).

 7 Unused, included for compatibility.

 8 Maintain the B-Tree insertion algorithm for an index.

 9 Temporarily same as Mode 6 - Reserved for future use.

Detailed Table of SEARCH # Modes

Mode Index Status Operation Performed

 0 1<d<63 For a new Indexed File, sets the key length of the selected index to the number of bytes
specified by record.var. The maximum key length is 122 bytes. Indices must be defined
starting at one and proceed sequentially.

 0 0 Freeze the file definition and build the ISAM portion of the file. Total number of initial data
records is specified by the record.var.

 1 >0 Return the key length of the specified index in bytes.

 1 0 =0 Returns the record number of the First Real Data Record. Normally zero unless the file was
built using BUILDXF or copied from an IRIS or BITS system.

 1 0 =1 Return the number of Available Records in the file. This value is either the value of the
environment variable AVAILREC, or the value based upon the files current size.

 1 0 =2 Allocate and return a new record for the application.

 1 0 =3 Return a record to the file that is no longer needed. Deleted records will be re-used before the
file is extended.

 1 0 =4 Return in record.var the number of records in the file. IRIS Applications only; Error for
BITS applications.

 1 0 =5 Return in record.var the number of records in the file. For BITS applications, performs the
same operation as 4 above.

 1 0 =6 Set the First Real Data Record to the value supplied in record.var. This option is only
available during file structuring.

 UniBasic Statements 276

 UniBasic Reference Guide

Mode Index Status Operation Performed

 1 0 =7 Return the current number of records in use (allocated) in the data portion of the file.

 2 Search the specified index for the exact match of the supplied key.var. If found, return the
full key in the supplied key variable, and the associated record number in record.var. The
status.var is set to 0 if the key was found, and 1 if the key.var was not in the index.

 3 Search the specified index for the first key whose value logically exceeds the supplied
key.var. If found, status.var is set to 0, the full key is returned in key.var, and the associated
record number is returned in record.var.

 4 Insert key.var into the specified index using the supplied record.var as the associated pointer.
The record should have been previously allocated using mode 1, status = 2 above. A
status.var of 0 indicates a successful operation. If the key.var already exists in the index, a 1
is returned as status.var.

 5 Delete the supplied key.var from the specified index. If successful, record.var is returned as
the associated pointer, and the status.var is set to 0. A status.var of 1 indicates an unsuc-
cessful operation; i.e., the key.var was not found in the index. The record should be returned
to the file using mode 1, status = 3 above.

 6 Search the specified index for the first key whose value is logically less than the supplied
key.var. If found, status.var is set to 0, the full key is returned in key.var, and the associated
record number is returned in record.var.

 7 No operation. Reserved for future use.

 8 B-Tree algorithm maintenance. If record.var is negative, return in record.var the current B-
Tree algorithm for index. If record.var is positive, change the insertion algorithm to the value
passed in record.var. Set to zero (default) for random insertion, 1 for increasing insertion, 2
for decreasing insertions.

 9 Temporarily, the same as Mode 6. Reserved for future use.

 UniBasic Statements 277

 UniBasic Reference Guide

Table of SEARCH # status return values

 Value Description of Status

 0 No error, the Index operation was successful.

 1 Operation was unsuccessful; i.e. key not found.

 2 End of index. Given on modes 3, 6 and 9 when the beginning or end of the index is reached.

 3 End of data; all records are allocated. This error is only generated when the environment variable
PREALLOCATE is defined to limit the number of data records.

 4 File has no Indices, cannot perform an Indexed File operation.

 5 Indexed file structure error; given when key length DIM is less than the actual size of the key from an
Index on Modes 2, 3, 6 and 9. Indicates a DIMension error or structure problem, possibly a c-tree file
structuring error. Printing the value of ERR(8) will provide a more concise description of the error.

 6 Index number not in sequence during creation. You must sequentially define all directories.

 7 File is not a Contiguous File.

 8 File is already Indexed.

 9 Value of record is negative or too large.

 10 Illegal Index Number. Must be between 1 and 62.

 UniBasic Statements 278

 UniBasic Reference Guide

SEND
SYNOPSIS: Transmit a message to another port.

SEND port, (string | value1, value2)

DESCRIPTION
port is any num.expr which, after evaluation is truncated to an integer selecting a UniBasic port number to receive a
message transmission.

string is any str.expr up to 512 bytes in length to transmit to the selected port.

 - or -

value1 and value2 are any two num.exprs to transmit to the selected port.
If the second parameter is numeric, two numeric expressions must be specified. Their two values are then transmitted.
The two variables need not be the same precision.

It is up to the program on the receiving port to execute the appropriate RECV or SIGNAL 2 statement to receive the
type (string/numeric) of data transmitted. If that program has an INTSET branch enabled, SEND will cause an
interrupt to occur in it.

SEND is identical in operation to SIGNAL 1.

EXAMPLES
SEND 12,22,33
SEND P,A$

ERRORS
Illegal Port Number selected
Communication Buffer is full

See also: RECV, SIGNAL, Communications File, INTSET

 UniBasic Statements 279

 UniBasic Reference Guide

SETFP #
SYNOPSIS: Set file position for sequential access.

SETFP # chn.expr ;

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file to reposition. A semicolon must terminate the
chn.expr.

SETFP specifies a new file position on a channel for the next sequential access READ, WRITE, etc. not specifying a
record or byte displacement. If the next transfer specifies its own record and byte displacement position, the former
position is overridden. The byte displacement specification is optional and, if not included, will default to byte zero of
the selected record.

For item files, only the record specification is relevant, as byte position will be affected by the file’s record format
when the transfer begins. SETFP is normally used by BITS applications, since IRIS sequential transfers are record
and not byte oriented.

SETFP to record 0, byte displacement 0 is identical in operation to a REWIND.

EXAMPLES
SETFP #6,R,I;
SETFP #5,0,0; ! Same as REWIND #5;

ERRORS
Channel Not Opened
Illegal Record or End of File

See also: REWIND#, READ#, WRITE#, Formatted Item Files, Contiguous Data Files, Indexed Data Files,
Tree-Structured Data Files, Channel Expression

 UniBasic Statements 280

 UniBasic Reference Guide

SIGNAL
SYNOPSIS: Transmit/Receive messages and pause.

SIGNAL mode {optional parameters}
SIGNAL 1, port, (string | value1, value2)
SIGNAL 2, port, (string | value1, value2) {, delay }
SIGNAL 3, delay
SIGNAL 5, port, value1, value2 {, delay }
SIGNAL 6, type, value1, value2

DESCRIPTION

The mode is evaluated, truncated to integer, and used to specify the desired operation for SIGNAL.

 Mode Operation Performed

 1 Transmit a message to another port number.

 2 Receive a pending message sent to this port number.

 3 Pause the program a specific amount of time.

 4 unused.

 5 Receive System SIGNAL for Input time-out.

 6 Clear all messages waiting for this port number.

port is any num.expr which, after evaluation is truncated to an integer selecting a UniBasic port number for
transmission. port must be any num.var if the mode specifies reception of a message.

string is any str.expr when transmitting data, or str.var dimensioned up to 512 characters when receiving string data
from another port.

value1 and value2 are any num.exprs when transmitting data, or num.vars when receiving numeric data from another
port. If the second parameter is numeric, two numeric expressions must be specified. Their two values are then
transmitted. The two variables need not be the same precision.

The optional delay for SIGNAL 2 or 5 is any num.expr which, after evaluation is truncated to an integer to specify a
delay period (in tenth-seconds) during which the program awaits a message. If zero, or not included, no pause is
invoked, but any currently waiting message is received. Any message appearing during a specified delay allows
SIGNAL to accept the transmitted data and resume program execution immediately. If no message appears during
the entire delay, port is set to -1.

type is any num.expr which, after evaluation is truncated to an integer selecting the type of signals to be cleared for
mode 6.

The [SIGNAL] input character (usually CTRL+B) transmits a message of 2 numeric zeros or a null string to your
current port number. This message is retrieved using RECV or SIGNAL 2.

 UniBasic Statements 281

 UniBasic Reference Guide

Mode 1 - Transmit a message to another port

The string expression up to 512 bytes in length, or 2 num.expr values are placed into the communication buffer for
transmission to the selected port. Messages may be transmitted to your current port number, or any port number that
is logged on. An IRIS error 62 is returned if the destination port is invalid.

Messages are FIFO (First in, First out). Messages include those transmitted using SEND, SIGNAL 1, and CALL
$TRXCO.

If numeric data is transmitted, full floating point precision (6-word Base 10000) is transmitted. When numeric values
are received with SIGNAL 2, they are converted to the precision of the supplied value1 and value2 num.vars.

An error is generated if the communication buffer is full, or an illegal port number is specified. Messages transmitted
to a port not signed into a UniBasic process are discarded, and no error is generated.

Messages awaiting a port are deleted when that port ends its session (BYE, SYSTEM 0, terminated SPAWN or
UniBasic -F commands).

Mode 2 - Receive messages sent to your port

A scan is performed for the oldest SIGNAL 1 or SEND message transmitted to your port number. If found, port is
set to the port number of the sender. If no messages are waiting, port is set to -1.

The received message is copied into string or value1 and value2 as specified. It is the programs' responsibility to
select the same format (str.var or 2 num.vars) used by the sender. The sender's port number is returned in the
supplied port variable. Typically, an application designer chooses one format for all message transmission and
reception.

If delay is specified and no message is waiting, the program is paused for the specified number of tenth-seconds. If
any message is transmitted during the delay, the pause is terminated allowing immediate reception. A -1 is returned in
port if no message is received within the delay period.

The [SIGNAL] input character (usually CTRL+B) transmits a message of 2 numeric zeros or a null string to your
current port which may be retrieved using SIGNAL 2.

All messages may be cleared by performing repeated SIGNAL 2 statements until port is returned with -1, or by
issuing a SIGNAL 6.

If the program has an INTSET in effect, transmission of a message by another port or [SIGNAL] character performs
an interrupt branch.

Messages awaiting a port number are deleted when that port number ends its session (BYE, SYSTEM 0, terminated
SPAWN or UniBasic -F commands).

Mode 3 - Pause Program Operation

The program is unconditionally suspended for the number of tenth-seconds specified in delay. An [ESC] without
ESCape branching or [EOBC] terminates a pause. If the application has an INTSET defined, the [INTR] (CTRL+C)
or [SIGNAL] (CTRL+B) will terminate the pause and perform the branch.

 UniBasic Statements 282

 UniBasic Reference Guide

If delay is zero, the statement is ignored and no pause is performed. The maximum pause time is approximately
(232)-1 tenth-seconds.

Mode 5 - Receive System Signal

A scan is made for the oldest system message directed to your port number. If no system message is waiting, port is
set to -1.

If a system message is waiting, port is set to -2, value1 is set to the type of system message, and value2 returns
specific information.

The only system message currently implemented is for INPUT timed-out. This occurs when an application performs
an INPUT TIM, and the input times-out without response from the keyboard. port is set to -2, value1 is set to 0, and
value2 is set to the number of characters entered prior to time-out.

Programs performing an INPUT TIM should immediately follow with a SIGNAL 5 to check the sense of the timed
input and prevent overflowing the communication buffer. If port returns -1, a response was entered within the pre-
scribed time limit.

Mode 6 - Clear all outstanding signals

All user messages, system messages or both may be cleared using SIGNAL 6. The type selects the messages to be
cleared from the system:

Type Function Performed

 -1 Remove all user messages; SIGNAL 1, SEND.

 -2 Remove all system messages.

 -3 Remove both user and system messages.

SIGNAL 6 may be used to clear the message queue for this port number . Messages are automatically deleted when a
port ends its session (BYE, SYSTEM 0, terminated SPAWN or UniBasic -F commands).

EXAMPLES
SIGNAL 1,P,A,B*100
SIGNAL 2,P,A,B,300 !Wait 30 seconds
SIGNAL 3,30 !Pause 3 seconds
SIGNAL 5,P,A,B
SIGNAL 6,-3,A,A

ERRORS
Illegal Port Number selected
Function Argument or Statement Mode out of range
Communication buffer is full

See also: SEND, RECV, PAUSE, INTSET, INPUT TIM, SPC(6), MSC(0), Port Numbering and Phantom Ports,
Message Queues

 UniBasic Statements 283

 UniBasic Reference Guide

SPAWN
SYNOPSIS: Launch a background BASIC program.

SPAWN filename.expr {, port num.var }

DESCRIPTION
The filename.expr is any legal str.expr containing the filename or pathname of a BASIC program.

SPAWN performs a Unix fork() creating another process to run the BASIC program. This child process inherits the
current environment and current working directory. All channels are closed, and no COM or CHAIN WRITE
variables may be passed.

SPAWN is simpler than the PORT or CALL $TRXCO functions to launch a phantom port into a BASIC program.
It is especially suited for launching background reports, spoolers and other programs communicated with using
SEND, RECV or SIGNAL.

When the program terminates to command mode or BASIC program mode from STOP, non-trapped error, END,
CHAIN "", or SYSTEM 0/1, the process terminates releasing the port.

SPAWN locates an unused port number scanning backward from the value of the environment variable MAXPORT
(default 255).

The optional port num.var is returned with the port number assigned to the background program. SEND and
SIGNAL, as well as CALL $TRXCO and PORT statements may be used to communicate with a port initiated by
SPAWN as long as the running program is not terminated to command mode or BASIC program mode.

EXAMPLES
SPAWN "1/SPOOLER"
SPAWN A$,K ! Start program, get port number

ERRORS
System is out of Channels - Notify Manager (No available port located)

See also: CALL $TRXCO, SEND, RECV, PORT, SIGNAL, Port Numbering and Phantom Ports, MAXPORT

 UniBasic Statements 284

 UniBasic Reference Guide

STOP
SYNOPSIS: Terminate program into DEBUG mode.

STOP {str.expr}

DESCRIPTION
The STOP statement terminates a running program and is functionally identical to the SUSPEND statement.

str.expr is an optional string expression to be displayed.

The STOP statement terminates a program and returns the user to BASIC program mode.

The STOP statement is usually used to indicate an error condition or some other abnormal mode of program
termination. A STOP statement, non-trapped [ESC] or [EOBC] (usually CTRL+D) causes program execution to
cease. The program is left in the partition (unless Supplemental Attributes <E> or <O> are enabled), channels remain
open, and variables retain their values. The user is returned to BASIC program mode with the message:

 STOP at statement stn ; sub-stn in: program

stn is the statement number containing the STOP, sub-stn is the statement within the line, and program is the filename
of the current BASIC program.

If the running program was started by SWAP, the various levels are displayed:

 STOP at statement 1400; 1 in: program2
 SWAP at statement 2400; 2 in: program1

This example indicates that a STOP occurred in program2, which was swapped to from program1.

Other statements may follow a STOP in the program.

EXAMPLES
100 STOP
220 STOP "Irrecoverable error, contact support"

ERRORS
String Expression must be used here

See also: Supplemental Program Attributes, END, CHAIN, SYSTEM, SUSPEND

 UniBasic Statements 285

 UniBasic Reference Guide

SUSPEND
SYNOPSYS: Terminate program into DEBUG mode.

SUSPEND {str.expr}

DESCRIPTION
The SUSPEND statement is functionally identical to the STOP statement.

str.expr is an optional string expression to be displayed.

The SUSPEND statement is usually used to indicate an error condition or some other abnormal mode of program
termination. A SUSPEND statement, non-trapped [ESC] or [EOBC] (usually CTRL+D) causes program execution
to cease. The program is left in the partition (unless Supplemental Attributes <E> or <O> are enabled), channels
remain open, and variables retain their values. The user is returned to BASIC program mode with the prompt:

 SUSPEND at statement stn ; sub-stn in: program

stn is the statement number containing the SUSPEND, sub-stn is the statement within the line, and program is the
filename of the current BASIC program.

If the running program was started by SWAP, the various levels are displayed:

 SUSPEND at statement 1400; 1 in: program2
 SWAP at statement 2400; 2 in: program1

This example indicates that a SUSPEND occurred in program2, which was swapped to from program1.

Other statements may follow a SUSPEND in the program.

EXAMPLES
100 SUSPEND
220 SUSPEND "irrecoverable error, contact support"

ERRORS
String Expression must be used here

See also: Supplemental Program Attributes, END, CHAIN, SYSTEM, STOP

 UniBasic Statements 286

 UniBasic Reference Guide

SWAP
SYNOPSIS: Pause & execute another BASIC program.

SWAP {mode,} filename.expr

DESCRIPTION
mode is any num.expr which, after evaluation is truncated to an integer to select channel and common variable pass-
along into the SWAP program. If mode is omitted, mode 2 is assumed.

SWAP suspends execution of the current program, saves all open channels and variables, using the Unix fork()
function to create another identical UniBasic process. This child (swapped) process inherits the current environment,
variables, open channels, and current working directory from the parent (calling process).

The selected filename.expr is loaded following the same rules as CHAIN. Common variables declared using COM or
CHAIN WRITE statements following the SWAP statement, and open channels passed to the child process are pro-
cessed according to the mode as follows:

 Mode Function Performed

 0 Close all open files in the child. Do not pass any common variables, i.e. ignore COM and CHAIN
WRITE.

 1 Pass all open channels to the child, and process the common variables according to the rules for COM
or CHAIN WRITE.

 2 (default) Close all open files for the child, but process any common variables according to the rules for
COM or CHAIN WRITE.

The parent is the initial process (UniBasic) launched from the shell or automatically during login to the system. It is
also the name given to a copy that is currently waiting for a child to complete.

The child is each identical process created by the SWAP statement using the Unix fork(). The child inherits a
complete copy of the current process including program, variables, open files, current working directory and
windows. The parent is suspended while the child runs. When a child terminates, the parent continues automatically,
unaware of the events of the child. To prevent the loss of type-ahead, the parent replaces its type-ahead buffer with
the actual type-ahead left by the child .

A child can itself be considered a parent if it performs a SWAP statement. SWAP statements may nest until memory
is exhausted, or the Unix Process Table overflows. A unique relationship exists between the parent and child pro-
cesses. Variables, File Positions and Window Tracking all flow forward from parent to child, however no
information is passed back to the parent upon termination of a child.

Any screen operations performed by a child are unknown to the parent. If a child process is performing screen I/O,
the application should make use of Windows. Each child process should create and delete a window for its screen
I/O. Failure to properly manage process levels performing screen I/O results in an incorrect Window Tracking Map
when the parent resumes execution.

 UniBasic Statements 287

 UniBasic Reference Guide

When a child inherits open files, Unix uses the same entries in the system open file table. A child can change its copy
of the current pointers as well as add or remove locks on records. These operations may confuse the parent. Also,
since the child is a different process, it will be blocked from reading a record locked by the parent .

For example, if the parent reads 5 records sequentially, the child may read 5 additional records in proper order. Upon
termination of the child, the parent may read another 5 records in sequential order. The parent's UniBasic channel
table is not updated for the operations of the child. The CHF/CHN functions will not match the Unix pointers for
sequential access. If all file access by the parent uses a Record/Byte position, there is no need for concern.

When the SWAP program terminates using END, SYSTEM, or CHAIN "", its process is killed, and the calling
program resumes execution at the statement immediately following the SWAP. To the caller, it appears as if the
SWAP statement never occurred.

If a non-trapped [ESC], [EOBC] (usually CTRL+D) or STOP statement occurs, the swapped program is terminated to
BASIC program mode to allow debugging. Execution of a termination statement while in debug mode (END,
SYSTEM, or CHAIN ""), terminates the swap level and resumes execution in the calling program. In debug mode,
the FILES command displays open channels and SWAP levels.

Data may be passed from a swapped program back to the calling program using temporary files, or by placing it into
the type-ahead buffer using CALL $INPBUF. Data may not be transferred to the calling program using common
variables.

Important: a child program can communicate with other ports using CALL 98, etc., and assumes the same port # as
the parent. However a child cannot create (log-on) a new phantom port because the phantom, being a mirror image of
the child, exits when its running program exits.

EXAMPLES
SWAP "23/PROGRAM3"
SWAP 0,A$

ERRORS
File does not exist
Function Argument or Statement Mode out of range

See also: CALL $SWAPF, CHAIN READ, CHAIN WRITE, STOP, END, CHAIN, SPAWN, FILES, HOT-
KEY, Using Dynamic Windows, WINDOW

 UniBasic Statements 288

 UniBasic Reference Guide

SYSTEM
SYNOPSIS: System functions & commands.

SYSTEM (mode {, parameters}) {; ...}

DESCRIPTION
mode is any str.expr which is to be passed directly to Unix for execution in a sub-shell, or num.expr which, after
evaluation is truncated to an integer to select an internal special operation.

mode may also be any num.expr which, after evaluation is truncated to an integer and used to specify the operation to
be performed. Some modes require a second parameter which is any num.expr which, after evaluation is truncated to
an integer. The parameters are separated by the mode using a comma.

Multiple SYSTEM modes may be invoked separating each with a semicolon.

When mode is any str.expr, it is passed directly to Unix. This Unix command can be used to launch another
application, or perform a system commands such as mv, cp, etc. If an optional status var follows, the stat_loc that is
returned from wait(2) (see Unix Programming Reference Manual) is stored. Any changes to a terminal's stty settings
are restored to its original setting upon return to UniBasic.

Following execution of the system command by the operating system, the program resumes operation.

If the system command performs any output, your screen will be compromised unless a new Window was opened
prior to, and closed after, the SYSTEM command.

 Mode Operation Performed

 0 Terminate a UniBasic session (BYE command). You may also terminate other users by including a
port number as an additional parameter. The general form: SYSTEM 0,N terminates port N.

 1 Clear the port’s program partition (issue a NEW command), and stop the program.

 4 Un-assign all non-common variables. All dimensioned str.vars, array.vars, and mat.vars, as well as
simple num.vars are unassigned. This allows re-dimensioning of partition space as long as all
variables to be used are re-assigned.

 5 Un-assign all variables. Same effect as SYSTEM 4, except common variables (COM and CHAIN
WRITE) are also affected.

 6 Select baud rate. This mode requires the special form: SYSTEM 6, N where N is a new baud rate.

 8 Enable terminal echo. Each character input will be echoed by the system to the terminal.

 9 Disable terminal echo. Each character input is received by the system, but not echoed to the terminal.
This feature allows for password or other secretive input.

 12 Enable Tab mode. Not supported at this time.

 13 Disable Tab mode. Not supported at this time.

 UniBasic Statements 289

 UniBasic Reference Guide

 14 Enable Binary Input mode. All characters input are directly accepted as data. This includes [EOL]
(usually return), requiring the use of character limited INPUT. While in Binary Input mode, ASC
returns data in true internal format without high-bit toggling.

 15 Disable Binary Input mode. Normal character processing is resumed.

 16 Enable Binary Output mode. Each character output will be full 8-bit data with no parity generation by
the system. Every possible character from 0 thru 3778 may be output. While in Binary Output mode,
CHR will not toggle the supplied argument to provide true Binary output capability.

 17 Disable Binary Output mode.

 18 Enable limited IRIS compatibility mode. Certain statements are affected by SYSTEM 18 mode,
causing them to function in an IRIS-compatible fashion. This mode affects system operation less, and
is therefore less IRIS-compatible, than setting BASICMODE=IRIS.

 19 Disable limited IRIS compatibility mode.

 20 Enable Trace mode. See Trace Mode.

 21 Disable Trace mode.

 22 Set a program breakpoint. See Program Breakpoints.

 23 Clear a program breakpoint.

 26 Automatic limited input. Causes character limited input to terminate when the specified number of
characters have been entered. Affects INPUT statement.

 27 Disable Automatic limited input. Causes character limited input to require an [EOL] (usually return)
to be entered, even after the specified limit has been reached. Entry of each extra character sounds the
terminal bell until [EOL] is entered.

 28 Get value of Environment Variable. This function requires the special form: SYSTEM 28, str.var
where str.var initially contains the name of an environment variable. If found, its value is overwritten
in the string, otherwise the str.var is unchanged. Note: Most environment variables are in upper-case
characters.

Each port is returned to its normal operational modes (8, 13, 15, 17, 19, 21, 23, and 26) when a program is completed
or aborted. CHAIN, SWAP, or SPAWN statements set modes 19, 21, and 23, clearing limited IRIS mode, trace and
breakpoint.

EXAMPLES
SYSTEM "ls -l >filename"
SYSTEM 14;16;

ERRORS
Function Argument or Statement Mode out of range

See also: TRACE, Trace Mode, Program Breakpoints, BYE, NEW, IO Mnemonics, Using Dynamic Windows

 UniBasic Statements 290

 UniBasic Reference Guide

TRACE
SYNOPSIS: Enable statement trace debugging.

TRACE (ON { #channel }| OFF)

DESCRIPTION

Trace mode is used when it is desirable to observe the statement number program flow without performing single
steps. SYSTEM 20 or TRACE ON enables tracing; SYSTEM 21 or TRACE OFF turns trace off. These statements
may be used in immediate mode, or imbedded within specific code segments of a program. For each statement
executed, the statement number stn and sub-statement number sub-stn (statements on the same BASIC line) is printed.

The TRACE ON statement can be followed by an optional channel number for redirecting trace output to a file or
driver.

The channel number that is given must be opened prior to executing the TRACE statement. If the channel is
subsequently closed, trace output defaults to the terminal. The following information is output during trace mode:

 TR - statement number ; sub-statement number BITS Applications
 [statement number] IRIS Applications.

In BITS mode, “TR -" indicates trace mode is enabled and the next stn and sub-stn to be executed are displayed. In
IRIS mode, a new-line is performed, and the stn only is displayed within []. The execution of the statement then
proceeds. Output from a PRINT is displayed following the trace information.

Tracing is automatically disabled when another program is loaded using CHAIN, SWAP, or SPAWN.

EXAMPLES
TRACE ON
TRACE OFF
TRACE ON #5

ERRORS
Syntax error
Channel not opened
File is Write-protected

See also: SYSTEM 20, SYSTEM 21

 UniBasic Statements 291

 UniBasic Reference Guide

UNIT
SYNOPSIS: Access & control current working directory.

UNIT directory, mode {, return}

DESCRIPTION
directory is any str.expr containing or returning a Unix pathname.

mode is any num.expr which, after evaluation is truncated to an integer to select the desired operation.

The optional return is any num.var used to return information about a directory for certain modes.

 Mode Operation Performed

 3 Returns the number of the available blocks in the specified file system.

 5 Change the current working directory to the selected pathname.

An error occurs if the selected pathname is illegal or protected.

EXAMPLES
A$="/usr/ub/2" \ UNIT A$,5
UNIT "sys",3,B ! B returns number of available blocks

ERRORS
Illegal Pack or Filename

See also: Directories and Pathnames

 UniBasic Statements 292

 UniBasic Reference Guide

UNLOCK #
SYNOPSIS: Unlock any locked records on a channel.

UNLOCK # channel {, # channel ...}

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an integer and used to select a channel number.

Any record locked by your program on the specified channel becomes unlocked. No error is generated if no record
has been locked. A record locked by another user cannot be unlocked.

Generally, UNLOCK is only used in special circumstances, such as having one file open on two channels. In this
case, UNLOCK can be used to prevent the program from locking itself out of a record.

In IRIS applications, the statement WRITE # channel ;; is identical to UNLOCK #.

EXAMPLES
UNLOCK #5, #K, #K+1

ERRORS
Channel Not Opened

See also: WRITE #, Record Locking

 UniBasic Statements 293

 UniBasic Reference Guide

WINDOW
SYNOPSIS: Maintain Dynamic Windows.

WINDOW (ON | OFF | CLOSE | CLEAR)
WINDOW (OPEN | MODIFY) parameters following on next line:
 @ulc,ulr; (SIZE ncol,nrow; | TO @lrc, lrr;) {USING str.expr}

DESCRIPTION
@ specifies a crt.expr in the form of a Cursor Address. ulc is any num.expr which, after evaluation is truncated to an
integer to select the Upper Left Column for the Window. ulr is any num.expr which, after evaluation is truncated to
an integer to select the Upper Left Row. Following the crt.expr must be a semicolon.

SIZE selects the size of a Window in columns and rows. TO specifies the size using a crt.expr in the form of a
Cursor Address of the last character position in the Window. Either form may be used. If SIZE is used, ncol is any
num.expr which, after evaluation is truncated to an integer to select the number of columns. nrow is any num.expr
which, after evaluation is truncated to an integer to select the number of rows. If TO is specified, lrc is any num.expr
which, after evaluation is truncated to an integer to select the Lower Right Column for the Window. lrr is any
num.expr which, after evaluation is truncated to an integer to select the Lower Right Row. Following the crt.expr
must be a semicolon.

The optional USING str.expr is any string expression to be centered and printed as the title of a Window. The size
must be less than the number of columns in the Window, or it is truncated. The inclusion of USING specifies that a
graphical border is to be placed around the Window. The str.expr may be a null-string for a box without heading.
The specification of a graphical border reduces the usable space in the Window by one row, and column on the top,
bottom and each side.

Note: Before using Windows, the default term file must be defined correctly for number of rows, columns,
and mnemonics. The environment variable WINDOWS must be defined for the total number of open
windows to be used by the application. See Using Dynamic Windows and Terminal Translation
$TERM files.

Window Tracking is normally off so that console commands and Unix functions operate on a full screen. Whenever a
program terminates, Window Tracking is turned off. If a program is terminated by [ESC], [EOBC], STOP, or
Breakpoint, debugging is permitted and Windows remain open, otherwise all Windows are cleared. In either case,
Tracking is disabled and screen data may be corrupted.

WINDOW ON enables Window Tracking and should precede any other WINDOW function. The Window Tracking
Map is initialized by clearing the screen. Subsequent WINDOW ON statements are ignored. By default, a
WINDOW ON is performed automatically whenever a clear-screen is sent in run mode on PC/ANSI monitors
(crt_type :23) to simulate protected fields.

WINDOW OFF temporarily disables Window Tracking. Further screen operations are not updated in the Window
Tracking Map, and access outside the current Window is allowed. If Window Tracking was on and protected fields
are used, they won't be protected once Window Tracking is turned off. WINDOW OFF may be used to improve

 UniBasic Statements 294

 UniBasic Reference Guide

screen performance in programs not using Windows. It is a good idea to combine a clear-screen operation with a
change in Window Tracking status.

WINDOW OFF and ON may also be used when secondary Windows (other than the first full-screen) are opened,
and access to the full screen is desired. When Tracking is turned off, cursor access is to the full screen. When
Tracking is again turned on, the cursor is re-positioned to the last tracked position. Turning Tracking off to modify
data outside the screen should be limited to the display of errors or messages in a common area. Any other screen
modification is not tracked and, if SWAP is used, the parent is unaware of these changes.

WINDOW OPEN creates a new Window with the supplied parameters. If Tracking is not on, an implied
WINDOW ON is performed. All crt.expr are relative to upper left corner of a Window and all data is forced within
its boundaries. MSC(33) and MSC(34) will reflect the inside limits of the Window, and MSC(42) will be
incremented to reflect the number of open Windows. Scrolling occurs only on the bottom line of the window.

WINDOW MODIFY is used to change the size of the current Window based upon the supplied parameters.
Functions MSC(33) and MSC(34) are updated to reflect the current size. The size of a Window may be changed as
many times as desired but it cannot extend beyond the original parameters specified to WINDOW OPEN. If the
Window must be enlarged, perform a WINDOW CLOSE, followed by another WINDOW OPEN. WINDOW
MODIFY may be used to create your own borders, to modify the border created by WINDOW OPEN, or implement
a series of panes inside a Window that can be accessed randomly.

WINDOW MODIFY merely redefines the writable region inside a window. The window itself is not actually closed
and re-opened. No underlying data is revealed or hidden by this statement.

WINDOW CLOSE deletes the current Window repainting the original underlying data. MSC(33) and MSC(34)
now reflect the size of the previous Window and MSC(42) is decremented. A Window must always be deleted at the
same parent / child level it was created. For example, you perform a WINDOW OPEN in program A, then CHAIN
to program B, which in turn performs a SWAP or [Hot-Key] swap to program C (a child of B). If program C opens
any windows, then WINDOW CLOSE should be performed before returning control to program B.

WINDOW CLEAR clears all Windows back to Window Zero and clears the screen. Underlying data from each
opened Window is not displayed.

Note: Because of the nature of the parent and child mentioned above, always delete a Window from the same
program it was created to correctly maintain the Window Tracking Map.

EXAMPLES
WINDOW ON
WINDOW OPEN @5,5; TO @60,20; USING "Help"
WINDOW OPEN @0,0; SIZE 80,24;
WINDOW MODIFY @7,7 TO @62,18;
WINDOW OFF
WINDOW CLOSE
WINDOW CLEAR

ERRORS
No term file loaded
WINDOWS Environment Variable not defined or zero
CRT X,Y coordinate out of range
No more Windows to Close; check MSC(4)
Window Tracking is not on

See also: Using Dynamic Windows, Hot-Key, CALL $SWAPF, SWAP

 UniBasic Statements 295

 UniBasic Reference Guide

WRITE #
SYNOPSIS: Write array, matrix or string from a channel.

WRITE #chn.expr; var list...{;}

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file from which to read data.

WRITE # transfers data from any var, mat.var, array.var or str.var to the file opened on the selected chn.expr.

If the variable in the list is an array.var or mat.var, only the first element ([0] or [0,0]) is written. Subscripts may be
used to select any individual element to be transferred. The number of bytes transferred is based upon the variable
DIMensioned size. The transfer is performed according the rules for a num.var.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. When no subscript, or single subscript,
is specified, IRIS programs increment the total number of bytes transferred to account for an extra null byte. In BITS
applications, no increment is performed and the entire supplied size is transferred including zero-bytes.

The optional semicolon (;) terminator is used by IRIS applications to eliminate the automatic record-lock applied to
the supplied record in the chn.expr. BITS applications utilize RDLOCK # for operations with locking, and READ #
for non-locking transfers.

In IRIS applications, the statement WRITE # channel ;; is identical to UNLOCK #.

If the running program is an IRIS program, the following steps are performed prior to transfer:

 1. If the variable to be transferred is a num.var, array.var, or mat.var, the supplied (or current) byte
displacement is rounded up to an even byte position within the file.

 2. If a full str.var is supplied (single or no subscript), its size is incremented by one to account for an
extra null byte. If two subscripts are supplied, no increment is performed. From this, the maximum
size is determined. The str.var is scanned for the first zero-byte. Data is written from the string,
stopping at the maximum size or following the first zero-byte. If the write terminated prior to the
maximum size, the file pointers are adjusted as if the maximum size was written. Finally, if the
transfer is from a text file, an error is generated if any num.var is supplied.

If the transfer is to a Formatted Item file, the item type may be String or Binary for any str.var in the list, and Binary
or Numeric for any num.var, array.var, or mat.var. The byte displacement specifies the starting item for the transfer.
If not specified, item zero is assumed. No conversion takes place during the transfer of a binary item. It is the pro-
gram's responsibility to maintain the correct precisions of numerics being written to the file.

If the transfer is to a Contiguous or Tree-structured Data file, the byte displacement specifies the starting byte within
the supplied record. Zero is assumed if no byte displacement is given, and IRIS programs round up the byte
displacement if odd on a numeric variable transfer.

If the transfer is to a text file (IRIS Programs only), data is written up to and including the first zero-byte in the string.
The file position is then decremented pointing at the zero-byte for subsequent write operations.

 UniBasic Statements 296

 UniBasic Reference Guide

Each item transferred causes the byte displacement to be incremented by the adjusted byte size of the item in the
var.list. Strings are sized by the algorithm (INT(d/2)+1), where d is the DIMensioned or subscripted size. num.vars,
arrays and matrices are sized as: (R+1) * (C+1) * (size of P) where R is the number of rows, C is the number of
columns, and P is the number of bytes occupied by precision P.

EXAMPLES
WRITE #3,R1,100;A,B$,C[12]
WRITE #C,R;A$

ERRORS
Data does not match item specification and cannot be converted
Selected channel is not open
Selected record is locked
File is Write Protected

See also: Numeric, Array and Matrix Variables, Channel Expression, READ#, MAT WRITE#, WRLOCK#,
Numeric Data, Numeric Variable Precision, Formatted Item Files, Contiguous Files, Text Files

 UniBasic Statements 297

 UniBasic Reference Guide

WRLOCK #
SYNOPSIS: Write and unconditionally lock a record.

WRLOCK #chn.expr; var.list...

DESCRIPTION
The # chn.expr is any legal channel expression selecting an open file to read data from.

WRLOCK # transfers data from any var, mat.var, array.var or str.var into the file opened on chn.expr.

If the variable in the list is an array.var, an optional subscript1 and subscript2 may be specified. If given, these are
evaluated, truncated to integer and used to select a single element. If no subscripts are supplied, only the first element
is transferred.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are transferred including
zero-bytes.

WRLOCK transfers data and unconditionally locks the record. The data record remains locked until a non-locking
operation is performed by that same program to the same channel. While a record is locked, other users will be unable
to access the record.

WRLOCK# is identical to WRITE# omitting the trailing semicolon.

See the WRITE# statement for details on the transfer to different files.

EXAMPLES
WRLOCK #3,R1,100;A
WRLOCK #C,R;A$

ERRORS
File is Write Protected
Selected Record is Locked
Channel is not Opened

See also: WRITE#, RDLOCK#

 UniBasic Statements 298

 UniBasic Reference Guide

WRREL #
SYNOPSIS: Write a relative 512-byte block from a file.

WRREL # chn.expr; str.var

DESCRIPTION
chn.expr is any legal channel expression that selects an open file to which to write data. The chn.expr must include a
record which defines the relative block to write within the file. The byte displacement and time-out expressions are
ignored and unnecessary.

The str.var is any string variable dimensioned at least 512 bytes. A starting subscript may be supplied as long as the
dimensioned size is at least 512 bytes larger than the supplied subscript.

WRREL uses the supplied record as a relative 512 byte block pointer into the file. For example, record 0 specifies
the first 512 bytes in the file, record 1, the second 512 bytes, etc.

Record -1 may be used to write the first 512 bytes of the file. This includes the header and possibly part of record 0.
Some headers (of formatted item files) may be larger than 512 bytes and may not be written in entirety. To retrieve
header information in a truly machine independent fashion, it is recommended that CALL 127 be used to unpack the
information. WRREL # of record -1 is used to change header information by conversion and other utilities.

WRREL is generally used to copy files or otherwise write portions of files not accessible with a normal WRITE#
statement. Processing of the data is left completely up to the user.

EXAMPLES
WRREL #7,K;A$! READ A BLOCK
WRREL #7,K+1;A$[513] ! APPEND A SECOND BLOCK

ERRORS
Channel Not Opened
Illegal Record or End of File
Write Protected File

See also: RDREL#

 User CALLS 299

 UniBasic Reference Guide

User CALLS
This section documents the standard "C" language CALL statements included with all versions of UniBasic. Some
systems may include additional CALL statements added by your supplier for specific applications.

To add or change User calls requires the UniBasic Development Package. The development system includes a
README file explaining existing CALLs and how to add and remove CALLs.

 User CALLS 300

 UniBasic Reference Guide

CALL $ATOE
SYNOPSIS: Convert ASCII to EBCDIC.

CALL (77 | $ATOE), str.var

DESCRIPTION
CALL $ATOE converts a supplied ASCII string to EBCDIC.

EXAMPLES
CALL $ATOE, A$
CALL 77, A$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, ASCII Characters, CALL $ETOA, CALL 53

 User CALLS 301

 UniBasic Reference Guide

CALL $AVPORT
SYNOPSIS: Find available port number.

CALL $AVPORT, port {, starting {, ending } }

DESCRIPTION
port is any num.var to return the first available port number. -1 is returned when no available port number is found.

starting is any optional num.expr which, after evaluation, is truncated to an integer, and used to specify the first port
number to search. If omitted, the search begins at Port 0.

ending is any num.expr which, after evaluation, is truncated to an integer, and used to specify the last port number to
search. If omitted, the maximum port number as defined by the environment variable MAXPORT (default 999) is
assumed. An ending expression can only be specified if a starting value was given.

EXAMPLES
CALL $AVPORT, G !Get first Port
CALL $AVPORT, G, 32 !Get available phantom

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, PORT, PORTS, MAXPORT

 User CALLS 302

 UniBasic Reference Guide

CALL $CALLSTAT
SYNOPSIS: Get name of CALLing program.

CALL $CALLSTAT, str.var

DESCRIPTION
Str.var is a string variable the receives the name of the program that CALLed the current program or “” if the current
program was not started by a CALL statement.

EXAMPLE
CALL $CALLSTAT,F$

ERRORS

Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL

 User CALLS 303

 UniBasic Reference Guide

CALL $CKSUM
SYNOPSIS: Calculate checksum on a file.

CALL $CKSUM, filename, start, end, result {, status}

DESCRIPTION
filename is any str.var containing a filename or pathname to a file to which you have read-permission. The file is
opened and read to compute a checksum on its data. The checksum computed is machine independent.

start is any num.expr which, after evaluation, is truncated to an integer and used to specify the starting word address in
the file for the computation. Zero specifies the start of the file.

end is any num.expr which, after evaluation, is truncated to an integer and used to specify the last word address in the
file for the computation. (-1) specifies the current physical end of the file.

result is returned with the computed checksum.

status is optionally returned with a completion status as determined by the CALL. The following exception status is
reported:

 Status Description
 0 Operation was successful
 1 filename is not a string
 3 start is negative
 5 end is negative (cannot checksum memory)
 6 start is larger than end.
 8 filename not found

EXAMPLES
CALL $CKSUM, "program", 0, -1, A, B

ERRORS

Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL

 User CALLS 304

 UniBasic Reference Guide

CALL $CLU
SYNOPSIS: Change the current logical unit.

CALL $CLU, lu.num{,status}

DESCRIPTION
lu.num is a value specified for logical unit number, pack name, or Unix directory name. If lu.num is passed as -1,
change the current logical unit to the default working directory.

status is optionally returned with a completion status as determined by the CALL. The following exception status is
reported:

 Status Description

 0 Operation was successful

 1 Invalid logical unit number

 2 Logical unit number not found

EXAMPLE
CALL $CLU,1,S
CALL $CLU,N

ERRORS

Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CLU Command, CALL

 User CALLS 305

 UniBasic Reference Guide

CALL $DATE
SYNOPSIS: Verify and reformat a date.

CALL $DATE, source, destination, length, status

DESCRIPTION
source is any str.expr containing a date in the form of MMYY, MMDDYY, or MMDDYYYY.

destination is any str.expr containing a returned date in the form of YYMM, YYMMDD, or YYYYMMDD,
depending on the length. If the environment variable EUROPEAN is set, the form of YYDDMM or YYYYDDMM
is returned, depending on the length.

length is any num.expr for the length of the destination date. Valid lengths are 4, 6, and 8.

status is an exception value returned to caller providing completion status of the desired operation. A status value of
zero (0) indicates valid date. A status value of one (1) indicates an invalid date.

EXAMPLE
CALL $DATE,S$,D$,L,E

ERRORS

Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL 24

 User CALLS 306

 UniBasic Reference Guide

CALL $ECHO
SYNOPSIS: Set or clear terminal echo.

CALL (78 | $ECHO), mode

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an integer and used to select the operation for $ECHO.

 Mode Function Performed

 0 Disable terminal echo.

 1 Enable terminal echo.

 2 Toggle terminal echo.

Terminal echo is the process whereby each character entered to the terminal is displayed on the screen. When echo is
disabled, input is still processed by the system, but is not visible on the screen.

EXAMPLES
CALL $ECHO,0 !Turn off terminal to get password
CALL $ECHO,1 !Re-enable echo
CALL 78, 1

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, IRIS IO Mnemonics, SYSTEM 8/9, CALL 44

 User CALLS 307

 UniBasic Reference Guide

CALL $ENV
SYNOPSIS: Change the value of an environment variable.

CALL $ENV , varname$, value$

DESCRIPTION
varname$ is the variable name to be changed.

value$ is the new value to be given varname$.

$ENV places the string varname$ =value$ into the environment of your process. Any environment variables can be
added or changed, with the exception of the following UniBasic parameters which are not changeable:

 ALTCALL BCDVARS FORNEXTNEST GOSUBNEST
 INPUTSIZE ISAMBUFS ISAMFILES ISAMSECT
 LUST NUMLINES PORT PORTS
 PROGSIZE TERM VARSIZE WINDOWS

EXAMPLES
CALL $ENV,"SCOPEPROMPT","@"

ERRORS

Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: Installing UniBasic, UniBasic Environment Variables

 User CALLS 308

 UniBasic Reference Guide

CALL $ETOA
SYNOPSIS: Convert EBCDIC to ASCII.

CALL (76 | $ETOA), str.var

DESCRIPTION
The str.var specifies a string of EBCDIC characters to be converted to ASCII.

EXAMPLES
CALL $ETOA,A$!Convert the string
CALL 76,A$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, CALL $ATOE, CALL 53

 User CALLS 309

 UniBasic Reference Guide

CALL $FINDF
SYNOPSIS: Lookup a file on the system.

CALL (96 | $FINDF), filename, status

DESCRIPTION
filename is any str.expr containing a filename or full pathname to lookup.

status is any num.var used to return a flag. If the supplied filename is found, a non-zero status is returned. A zero
indicates that the supplied filename does not exist.

EXAMPLES
CALL $FINDF, "23/filename", K
CALL $FINDF, "/usr/bin/UniBasic", j
CALL 96, "14/FILENAME", K

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, LUST, Filenames and Pathnames, CALL 127, CALL $RDFHD, CALL $RENAME

 User CALLS 310

 UniBasic Reference Guide

CALL $INPBUF
SYNOPSIS: Place data into type-ahead buffer.

CALL $INPBUF, str.expr

DESCRIPTION
The supplied str.expr is copied (appended) to the contents of the current type-ahead buffer.

$INPBUF may be used to pass data from a child process back to the parent when using SWAP statements or
[Hot-Key] swapping.

CALL $STRING may be used to drain the contents of the type-ahead buffer.

EXAMPLES
CALL $INPBUF, A$!Copy data to type-ahead
CALL $INPBUF, A$ + "\215\"

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, WINDOW, Windows and Output Considerations, SWAP, CALL $STRING

 User CALLS 311

 UniBasic Reference Guide

CALL $LOCK
SYNOPSIS: Lock an opened file.

CALL $LOCK, channel, mode, status

DESCRIPTION
channel is any num.expr which, after evaluation, is truncated to an integer, and used to select an opened data file
channel.

mode is any num.expr which, after evaluation, is truncated to an integer, and used to specify the operation. A zero
value unlocks the file, and non-zero is used to lock the file.

status is any num.var used to return a successful or exception status as follows:

 Status Description
 0 Operation successful
 1 Illegal Channel Number
 2 Channel not open
 6 File is already Locked
 7 File is not locked

$LOCK is similar to EOPEN. The selected file is locked to prevent other users from opening the file. $LOCK will
not provide locks against other users who already have the file opened.

$LOCK is rejected if the file is already locked by another user using $LOCK or EOPEN.

EXAMPLES
CALL $LOCK, 1, 1, E ! lock
CALL $LOCK, 1, 0, E ! unlock

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, EOPEN

 User CALLS 312

 UniBasic Reference Guide

CALL $LOGIC
SYNOPSIS: Perform Logical Operations.

CALL (88 | $LOGIC), operator, variable1, variable2, result

DESCRIPTION
operator is any num.expr which, after evaluation, is truncated to an integer and used to specify the operation for
$LOGIC:

 1 AND
 2 OR
 3 XOR
 4 NOT

variable1 and variable2 select two identical types of variables to perform an operation upon.

result must be the same type as the supplied variable1 and variable2, and will hold the resulting data from the
operation.

If the supplied variables are numeric, they are truncated to unsigned integers (shorts) to perform the operation. String
variables are processed a byte at a time until the DIMensioned length of the shortest argument passed is reached.

An AND operation results in a 1 bit when the corresponding bit of both variables is 1.

An OR operation results in a 1 bit when either of the corresponding bits is 1, or when both are 1.

An XOR (exclusive OR) results in a 1 bit when only one of the corresponding bits of both variables is 1.

A NOT operation only requires variable1. variable2 must be specified for syntactical reasons (use the same variable),
but is not used. NOT results in a 1 bit if the bit of variable1 is zero, and results in 0 if the bit is 1.

Entire strings (including zero bytes) can be operated upon using $LOGIC. To copy a string in its entirety, AND the
string to itself. To fully zero fill (zero byte) a string, XOR it with itself.

 X Y X AND Y X OR Y X XOR Y NOT Y

 0 0 0 0 0 1
 0 1 0 1 1 0
 1 0 0 1 1
 1 1 1 1 0

EXAMPLES
CALL $LOGIC, 1, A$, A$, B$! AND 2 strings
CALL $LOGIC, 1,A[0],32768,J! Is value negative
CALL 88, 1, A$, A$, B$! AND 2 strings

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL

 User CALLS 313

 UniBasic Reference Guide

User CALL parameters out of order

See also: CALL, CALL 59

 User CALLS 314

 UniBasic Reference Guide

CALL $NCRC32
SYNOPSIS: Calculate 32-bit CRC Checksums.

CALL $NCRC32, result, string{,initialcrc}

DESCRIPTION
A 32-bit CRC checksum value is calculated for the characters in the string variable string and returned in the numeric
variable result. The result variable should be a 3% or 4% numeric variable to avoid overflow. The checksum includes
the entire DIMed size of string unless subscripts are used. A checksum can be calculated across multiple strings by
specifying the previous accumulated checksum as the optional third parameter initialcrc.

EXAMPLES
CALL $NCRC32, C, A$[1,10] ! CRC of first 10 characters
CALL $NCRC32, C, B$, C ! Add CRC of B$ to previous CRC

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, CALL $LOGIC

 User CALLS 315

 UniBasic Reference Guide

CALL $RDFHD
SYNOPSIS: Read file header information.

CALL (97 | $RDFHD), lu,rec,file,act ,typ,siz,stat,cst,inc,fcd,fla,hdr

DESCRIPTION
lu may be either a str.expr or num.expr used to select the logical unit to be searched. If lu is a str.expr, any Unix
pathname may be specified.

rec is any num.var. It is evaluated, truncated to an integer, and used to select the record number in the directory to be
read. Entry zero is always the filename '.' (directory). If the specified entry rec is empty, then the next entry is read
automatically until a valid entry is located, or the end of the directory is reached. When the end of the directory is
reached, rec is returned with the value (-1).

Following the $RDFHD call, rec is incremented by one so that successive calls may be performed without program
adjustment. Therefore, the returned rec is always one greater than the entry in the directory corresponding to the
returned information.

file must be any str.var (DIMensioned at least 15 bytes) to receive the name of the file from the directory entry.

act is any num.var used to return the Unix user number. This information is not in IRIS format. Only the user's
number is returned, not the group number or the privilege.

typ must be any num.var used to return the files IRIS type:

 Type Description
 0 Directory P
 1 System program S
 2 BASIC program B
 24 Text file T
 25 Formatted file F
 26 Contiguous file C
 30 Peripheral driver $

siz must be any num.var used to return the files current size in blocks.

stat must be any num.var used to return the current files status word. Zero is always returned.

cst must be any num.var used to return the current cost in dimes. Zero is always returned.

inc must be any num.var used to return the current income in dimes. Zero is always returned.

fcd must be any num.var used to return the files creation age expressed in hours since the base system year as returned
by the function SPC(20).

fla must be any num.var used to return the files last access date expressed in hours since the base system year as
returned by the function SPC(20).

 User CALLS 316

 UniBasic Reference Guide

hdr must be any num.var used to return the files inode (Header block) block number.

 User CALLS 317

 UniBasic Reference Guide

EXAMPLES
CALL $RDFHD,0,R,N$,A,T,S,S1,C,I,D,L,H
IF (R < 0) END ! END OF DIRECTORY
CALL 97,0,R,N$,A,T,S,S1,C,I,D,L,H

ERRORS
Illegal or unimplemented user CALL number or name
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order
Read Protected File

See also: CALL, CALL 127, CALL $RENAME, CALL $FINDF

 User CALLS 318

 UniBasic Reference Guide

CALL $RENAME
SYNOPSIS: Rename a File or Program.

CALL $RENAME, lu , oldfilename, newfilename, channel, status

DESCRIPTION
lu is any num.expr which, after evaluation is truncated to an integer and used to specify the logical unit containing the
file to be renamed. To select the current working directory, specify (-1) for lu. Any value set in lu is used as a default
when the supplied oldfilename does not contain a directory specifier.

oldfilename is any str.expr used to select the filename to be modified. If the filename is in the form lu/filename, the
supplied name overrides the value passed in lu.

newfilename is any str.expr used to specify the new filename for the supplied oldfilename.

channel is any num.expr which is ignored.

status is any num.var used to return an exception status from $RENAME as follows:

 Status Description
 0 Operation was successful, file renamed.
 1 Operation was not successful.

$RENAME uses the Unix mv command.

EXAMPLES
CALL $RENAME,1,"3/FILENAME","3/FILE1",99,A

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL, MODIFY, CALL $FINDF, CALL $RDFHD

 User CALLS 319

 UniBasic Reference Guide

CALL $STRING
SYNOPSIS: Miscellaneous string functions.

(a) CALL (82 | $STRING), mode, string
(b) CALL (82 | $STRING), mode, string, number
(c) CALL (82 | $STRING), mode, number, string

DESCRIPTION

mode is any num.expr which, after evaluation is truncated to an integer to specify the operation of $STRING.

 Mode Format Operation Performed
 1 a Convert all characters to upper-case.
 2 a Convert all characters to lower-case.
 3 b Convert single character to ASCII.
 4 c Convert ASCII value to single character.
 5 a Read the Input/Output buffer.
 6 b Convert 2-characters to binary.
 7 c Convert binary to 2 ASCII characters.

string is any str.var if the resulting operation returns string data, or any str.expr if the resulting operation returns
numeric information.

number is any num.var if the resulting operation returns numeric data, or any num.expr if the resulting operation
returns string information.

During case conversion, modes 1 and 2, only alphabetic letters are modified. All other characters remain unchanged.

mode 3 converts the single character pointed to by the supplied subscripted string to an ASCII value between 0 and
255, and returns the value in number. The value returned is toggled from internal to IRIS 8-bit format. The
application should utilize IRIS style ASCII (above 128) for printable characters.

mode 4 converts the supplied number into an ASCII character into the supplied position in the string. If the value is
greater than 255, the modulus 256 value is converted (x % 256). The value is toggled from IRIS to internal format.
The character at the position immediately following the specified position in string is zeroed.

mode 5 is used to read the contents of the terminals Input/Output buffer (Type-ahead data placed into the buffer by
CALL $INPBUF is not accessible). All characters up to the first [EOL] (usually return) are placed into string. This
option permits a program to read parameters on the same line as the program name, such as:

 #RUN REPORT 132 DISPLAY

CALL $STRING must precede any PRINT or INPUT statements within the program, or the contents of the buffer
will have been modified.

 User CALLS 320

 UniBasic Reference Guide

mode 6 is used to convert 2 adjacent characters at the starting position in string to a 16-bit integer returned in number.
The formula used is:

 First character * 256 + second character

mode 7 converts number into 2 ASCII characters using the formula: First char = number / 256, and second char =
number % 256. No additional null character is stored.

EXAMPLES
CALL $STRING,5,A$! Read Buffer
CALL 82,5,A$! Read Buffer

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL, CALL 29, CALL 30, CALL 43, CALL 44, CALL 56, CALL 57, CALL 60

 User CALLS 321

 UniBasic Reference Guide

CALL $SWAPF
SYNOPSIS: Control Hot-Key swapping.

CALL $SWAPF, mode {, executive program name}

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an integer to select the function performed whenever the
[Hot-Key] is pressed during INPUT. Pressing a [Hot-Key] has no effect until an INPUT statement is reached.

 Mode Description

 0 Disable the Dynamic [Hot-Key] operation.

 1 SWAP on Dynamic [Hot-Key] with channels OPEN with normal common variables as contained in
COM statements.

 2 SWAP on Dynamic [Hot-Key] with normal common variables as contained in COM statements.

 3 SWAP on Dynamic [Hot-Key] with channels OPEN and no common variables.

The optional executive program name is any str.expr defining a program to SWAP to whenever the [Hot-Key] is
pressed, and the mode is non-zero. This can be any BASIC program pathname up to 62 characters in length.

The default values assigned by the system, if a CALL $SWAPF is not issued, is mode 1, executive program name is
sys/exec.

An error is generated if a [Hot-Key] is pressed and the specified executive program name does not exist.

EXAMPLES
CALL $SWAPF,0 !Disable Hot-key this program
CALL $SWAPF,2,"AR.CUST" ! To Cust maint, no files

ERRORS
Error detected in/by user CALL routine

See also: CALL, WINDOW, [HOT-KEY], Windows and Output Considerations

 User CALLS 322

 UniBasic Reference Guide

CALL $TIME
SYNOPSIS: Get date and time.

CALL (99 | $TIME), string

DESCRIPTION
string is any str.var, DIMensioned at least 22 bytes, to return the current date and time using the Unix function
localtime(). If you are receiving an incorrect time, check your environment to be sure that you have included the TZ
(Time-zone) environment variable if required. Please refer to your system documentation for information on the
function localtime.

CALL $TIME may not be used to reset the system time. That function must be performed using the Unix date
command from the root password.

Date format returned is:
 Mon dd, year HH:MM:SS IRIS applications
 dd Mon Year HH:MM:SS BITS applications.

EXAMPLES
CALL $TIME, T$ \ PRINT T$
CALL 99, A$

ERRORS
Error detected in/by user CALL routine

See also: CALL, MSF(0), MSF(3)

 User CALLS 323

 UniBasic Reference Guide

CALL $TRXCO
SYNOPSIS: Phantom port control.

CALL (98 | $TRXCO), port, command, {, status {, priority }}

DESCRIPTION
port is any num.expr which, after evaluation is truncated to an integer and used to select the port number for this
operation.

command is any str.expr which selects a command to be sent to the specified port. The supplied command is copied
into the specified port’s type-ahead buffer to be processed the next time port is awaiting input. The command may be
any system command or prompt response for a running program. Multiple commands, separated by \215\ may be
included in the command string.

The optional status is an exception value returned to the caller providing completion status of the desired operation:

 Status Description

 0 Successful operation; command transmitted.

 1 port is not a numeric expression.

 2 Specified port is out of range 0 to 1023.

 3 Specified port is not running UniBasic.

 4 Specified port is the user's own port.

 5 command is not a valid str.expr.

 6 unix fork() operation failed, or port is not ready for input.

 7 Specified port has input already in progress.

The optional priority is any num.expr which, after evaluation is truncated to an integer and used as the system priority
for the command transmitted. The valid range is from 1 to 7. The supplied value is converted to a Unix value for the
nice() function changing the process priority.

$TRXCO begins by attempting to attach the port. If the port is already running UniBasic, the command is copied
into the port’s type-ahead buffer. A carriage return is appended to the string supplied.

If the port is not currently running a UniBasic process, a background process is created as the supplied port number.
It assumes the callers login, .profile configurations, environment and current working directory. It then becomes a
unique process linked to the supplied port number. This port is then available for CALL $TRXCO commands,
PORT, SEND, RECV, and SIGNAL statements from any other UniBasic user as well as the program performing the
initial CALL $TRXCO.

When sending commands to a port which is connected to a terminal and keyboard, you must ensure that port is within
UniBasic before sending commands. Otherwise, a phantom port is created for the supplied port number. If a user
later attempts entry into UniBasic on a terminal designated as the same port, entry will be rejected.

If the program is an IRIS program and the command consists of a single \334\ character, the current job on the port is
logged off. If any other character, such as \215\ follows the \334\, the current job on the port is aborted and the port is

 User CALLS 324

 UniBasic Reference Guide

placed in command mode. A \334\ always aborts any running command on the port even if the port has Error or
Escape branching in effect.

Always pause at least 2 seconds between subsequent $TRXCO calls to the same or different ports. This permits the
receiving port time to respond and avoids an overflow of the inter-process communication buffer.

It is impossible to create a phantom port from a child program. See the SWAP statement for details.

EXAMPLES
A$="LIBR [$LPT] 1/ @ ^ \215\BYE\"
CALL $TRXCO,10,A$,E,2 !LIBR Low priority
IF E STOP ! Error trying to start LIBR
CALL 98,10,A$,E,2 !LIBR Low priority

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL, PORT, Port Numbering and Phantom Ports, Environment Variables: PORTS & PORT
Environment Variables, Launching UniBasic Ports at Startup, CALL $AVPORT

 User CALLS 325

 UniBasic Reference Guide

CALL $VOLLINK
SYNOPSIS: Create a Polyfile volume.

CALL (91 | $VOLLINK), channel, master chan, vol, stat, param

DESCRIPTION
channel is any num.expr which, after evaluation is truncated to an integer and used to select an open channel
containing a built contiguous file to be converted into a polyfile volume.

If channel is negative, only parameters are returned in the param array.

master chan may be any num.expr which, after evaluation is truncated to an integer and used to select an open channel
containing the master volume of a polyfile.

vol may be any num.expr which, after evaluation is truncated to an integer and used to select an operation:

Volume Operation

 = 0 Create the vol opened on channel as the master volume. The polyfile flag is set in the files header, and

record zero is available to the application.

status is any num.var used to return an exception status from $VOLLINK.

param is any num.array DIMensioned as array[n] where n is at least 10.

If status is returned as a non-zero value, then an error occurred.

Status Description

 1 Illegal channel number
 16 Volume vol is not defined.

As implemented in UniBasic, $VOLLINK can only be used following initial creation of the contiguous file to define
the master volume. Attempts to define additional volumes or receive full status information is not available at the
time of this writing.

EXAMPLES
CALL $VOLLINK,5,5,0,S,E ! Structure Volume 0
CALL 91,5,5,0,S,E ! Structure Volume 0

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL, Indexed Data Files

 User CALLS 326

 UniBasic Reference Guide

CALL 15
SYNOPSIS: Pack and Unpack Numeric Strings.

CALL 15, source , dest

DESCRIPTION
source is any str.var used as the source string. If dimensioned greater than dest, a pack is performed. If dimensioned
less, an unpack is performed.

dest is any str.var used to contain the destination string. Receives data following pack/unpack.

CALL 15 permits strings containing only numeric digits (0 thru 9) to be packed or unpacked into four-bit nibbles
(two digits per byte). The packed string is then half the length of the original string. Generally, this call is used to
reduce file size when numeric-only keys are used.

In addition to digits, the characters “+,-.” and space are valid for packing. The following table depicts each digit’s
packed representation:

CHAR PACKED CHAR PACKED

 + 0001 , 0010
 - 0011 . 0100
Space 0101 0 0110
 1 0111 2 1000
 3 1001 4 1010
 5 1011 6 1100
 7 1101 8 1110
 9 1111

EXAMPLES
CALL 15,A$,B$
CALL 15,B$,A$

ERRORS
String Expression must be used here
Error detected in/by user CALL routine

See also: CALL, CALL 20/21, CALL 45/46

 User CALLS 327

 UniBasic Reference Guide

CALL 18/19
SYNOPSIS: Pack and Unpack Radix 50.

CALL 18, ascii , packed ! Pack a string
CALL 19, packed , ascii , {flag} ! Unpack a string

DESCRIPTION
ascii is any str.var containing ASCII characters to be packed into Radix 50. Packing permits 3 characters to be stored
into 2-byte positions reducing a strings length by 33%.

packed is any str.var DIMensioned at least 66% of the size of the ascii and contains packed Radix 50 characters.

Radix 50 packing allows 3 bytes of string information to be packed into 2 physical bytes of storage using the formula:

 (C1*40+C2)*40+C3 where C is a character’s pack value..

A 40-character (508) subset is utilized for this type of packing. Lower case letters will be converted to upper case
automatically. The resulting packed string is 66% the length of the ascii string.

flag is any optional num.var used to specify whether to remove trailing spaces following an unpack. If the flag is
omitted or zero, then ascii will be space-filled past the end of data and up to its dimensioned length.

The following table depicts each valid radix 50 character and its packed representation:

CHAR/PACK CHAR/PACK CHAR/PACK CHAR/PACK

 0 01 A 11 K 21 U 31
 1 02 B 12 L 22 V 32
 2 03 C 13 M 23 W 33
 3 04 D 14 N 24 X 34
 4 05 E 15 O 25 Y 35
 5 06 F 16 P 26 Z 36
 6 07 G 17 Q 27 , 37
 7 08 H 18 R 28 - 38
 8 09 I 19 S 29 . 39
 9 10 J 20 T 30 SP 00

EXAMPLES
DIM A$[100],B$[66]
CALL 18,A$,B$!PACK
CALL 19,B$,A$,1 !UNPACK TRIM TRAILING SPACES

ERRORS
String Expression must be used here
Not enough parameters passed to CALL

See also: CALL, CALL 48/49

 User CALLS 328

 UniBasic Reference Guide

CALL 20/21
SYNOPSIS: Pack/Unpack Numeric Strings.

CALL 20, source, dest ! Pack
CALL 21, source, dest ! Unpack

DESCRIPTION
When using CALL 20, source is any str.var containing only numeric digits to be packed into BCD data, 2 digits per
byte. dest is any str.var DIMensioned at least 50% of the DIM of source to receive the packed data.

When using CALL 21, source is any str.var containing a previously CALL 20 packed string variable to be converted
back to ASCII digits. The resulting un-packed data is placed into the string variable dest. The DIMension of dest
must be at least twice the DIM of source.

The following table depicts each digits packed representation:

 DIGIT PACKED DIGIT PACKED

 0 0001 5 0110
 1 0010 6 0111
 2 0011 7 1000
 3 0100 8 1001
 4 0101 9 1010

EXAMPLES
A$="0123456787778877878"
CALL 20,A$,B$! PACK
CALL 21,B$,A$! UNPACK

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
String Expression must be used here

See also: CALL, CALL 15, CALL 45/46

 User CALLS 329

 UniBasic Reference Guide

CALL 22/23
SYNOPSIS: Check for Numeric /Arithmetic Field.

CALL 22, string
CALL 23, string

DESCRIPTION
string is any str.expr which is to be checked for numeric or arithmetic data.

CALL 22 scans the selected string to ensure that it contains no non-numeric bytes. Acceptable characters are the
digits 0 thru 9 only, however, a null string is accepted. An error is generated if any non-numeric character is
encountered, or if the parameter passed is not a string variable.

CALL 23 scans the selected string to ensure that it contains a valid arithmetic field. Characters accepted are the digits
0 thru 9, a maximum of one period (decimal point), and a prefixed sign (+ or -). At least one digit must be present,
except in the case of a null string, which will be accepted. An error will be generated if any invalid character is
detected or the parameter passed is not a string variable.

EXAMPLES
CALL 22,"12345"
CALL 23,"+1234.55"

ERRORS
Error detected in/by user CALL routine
String Expression must be used here

See also: CALL, CALL $STRING, CALL 29, CALL 30, CALL 43, CALL 44, CALL 56, CALL 57, CALL 60

 User CALLS 330

 UniBasic Reference Guide

CALL 24
SYNOPSIS: Verify Date Inputs.

CALL 24, date {,result {, result flag {,mode}}}

DESCRIPTION
date is any str.var containing a date to be verified. Many different date formats are supported. Valid date formats
are:
1) xxx dd, {19}yy 2) dd xxx {19}yy 3) mm/dd/yy
4) mm.dd.yy 5) mm.dd.yyyy 6) mm/dd/yyyy

xxx is a month name of three characters or more, such as “JAN”, “APR”, “AUGUST”, etc. dd is the day of the month,
and yy or yyyy is the year. Any separator may be used between the fields with form 3 and 4 above as long as the same
character is used, i.e. 12.22.88, or 12-22-88.

If the environment variable EUROPEAN is set, dates in forms 3 and 4 are assumed to be day month year.

If the date is valid, date is rearranged to the form ‘yymmdd’ or ‘yyyymmdd’, as determined by the optional mode
parameter, without separators. If invalid, an error is generated.

The optional mode is any num.expr which, after evaluation is truncated to an integer and determines the number of
digits returned to represent the year. A two digit year, i.e. ‘yymmdd’', is returned if mode is unspecified or zero. A
four digit year, i.e. ‘yyyymmdd’, is returned if mode is non-zero.

The optional result is any str.var which, if included, receives the rearranged date leaving date unaffected.

The optional result flag is any num.var which, if included, receives the status of the verify operation; 0 for valid date,
and 1 for an invalid date.

CALL 24 is also used to convert dates for input to CALL 25.

EXAMPLES
LET A$="JAN 23, 1990"
CALL 24,A$,B$,F \ IF F THEN STOP

ERRORS
Error detected in/by user CALL routine
String Expression must be used here

See also: CALL, CALL 25, CALL 27, CALL 28, CALL $TIME

 User CALLS 331

 UniBasic Reference Guide

CALL 25
SYNOPSIS: Convert to Julian Date.

CALL 25, {flag,} date {, result date {, status }}

DESCRIPTION
flag is any optional num.expr used to specify the type of date format for input and output. If flag is not specified, zero
is assumed. Flags are:

 flag Input Date Output Date Comment

 0 yymmdd yyddd year and day of year; e.g. 98365
 1 yymmdd ddddd days since January 1, 1968
 2 yymmdd yyyyddd 4 digit year and day of year; e.g. 1998365
 4 yyyymmdd yyddd 2 digit year and day of year; e.g. 98365
 5 yyyymmdd ddddd days since January 1, 1968
 6 yyyymmdd yyyyddd 4 digit year and day of year; e.g. 1998365

date is any str.var in post CALL 24 form, i.e. YYMMDD. If date is valid, it is rearranged to the selected Julian date
form. If invalid, an error is generated.

The optional result date is any str.var which, if included, receives the converted date leaving date unchanged.

The optional status is any num.var which, if included, receives the error status; 0 for valid date, and 1 for invalid date.

CALL 27 is used to convert Julian dates back to printable dates.

EXAMPLES
CALL 25,A$,B$,S \ IF S STOP

ERRORS
Error detected in/by user CALL routine
String Expression must be used here.

See also: CALL, CALL 24, CALL 27, CALL 28

 User CALLS 332

 UniBasic Reference Guide

CALL 27
SYNOPSIS: Convert from Julian to Printable Date.

CALL 27, {flag,} jul date {, result date {, status }}

DESCRIPTION
flag is any optional num.expr used to specify the type of date being passed to and returned from CALL 27. If flag is
not specified, zero is assumed. Flags are:

 flag Input Date Output Date Comment

 0 yyddd dd/mm/yy year and day of year; e.g. 98365
 1 ddddd dd/mm/yy days since January 1, 1968
 2 yyyyddd dd/mm/yy 4 digit year and day of year; e.g. 1998365
 4 yyddd dd/mm/yyyy 2 digit year and day of year; e.g. 98365
 5 ddddd dd/mm/yyyy days since January 1, 1968
 6 yyyyddd dd/mm/yyyy 4 digit year and day of year; e.g. 1998365

jul date is any str.var in Julian date form generated by CALL 25. If the date is valid, jul date is rearranged to
‘MM/DD/YY’ or ‘MM/DD/YYYY’ form. If invalid, an error is generated. The environment variable DATESEP is
used as the separation character, and EUROPEAN specifies date conversion to the format: DD/MM/YY or
DD/MM/YYYY.

result date is any optional str.var which, if included, receives the converted jul date and jul date is unchanged.

The optional status is any num.var which if included, receives the error status; 0 for valid jul date, and 1 for invalid jul
date.

EXAMPLES
CALL 27,A$,B$,S \ IF S STOP

ERRORS
Error detected in/by user CALL routine
String Expression must be used here.

See also: CALL, CALL 24, CALL 25, CALL 28

 User CALLS 333

 UniBasic Reference Guide

CALL 28
SYNOPSIS: Convert to Printable Date.

CALL 28, date {,result date {, status {,mode}}}

DESCRIPTION
date is any str.var containing a date in post CALL 24 form, i.e. YYMMDD or YYYYMMDD. Date is converted to
standard ‘MM/DD/YY’ or ‘MM/DD/YYYY’ output format as determined by the optional mode parameter.

An error is generated if the parameter is not a string variable dimensioned at least 8 bytes, or if date is invalid. If the
environment variable EUROPEAN is set, the date is converted to the form DD/MM/YY or DD/MM/YYYY as
determined by the optional mode parameter. The environment variable DATESEP is used as the separation character.

The optional mode is any num.expr which, after evaluation is truncated to an integer and determines the input and
output date formats for the CALL. If mode is not specified, zero is assumed. Modes are:

mode Input Date Output Date
 0 yymmdd mm/dd/yy
 1 yyyymmdd mm/dd/yy
 4 yymmdd mm/dd/yyyy
 5 yyyymmdd mm/dd/yyyy

The optional result date is any str.var which, if included, receives the rearranged date leaving date unchanged.

The optional status is any num.var which, if included, receives the error status; 0 for valid date, and 1 for invalid
date.

EXAMPLES
CALL 28, A$

ERRORS
Error detected in/by user CALL routine

See also: CALL, CALL 24, CALL 25, CALL 27

 User CALLS 334

 UniBasic Reference Guide

CALL 29
SYNOPSIS: Edit numeric Field.

CALL 29, string, mask, result

DESCRIPTION
string is any str.var which contains data to be edited.

mask is any str.expr used as a field mask to edit the data supplied in string. This may consist of any combination of
the following characters:

 A Fixed length alphabetic (A-Z). The current source byte must be alphabetic.

 N Fixed length numeric (0-9). The current source byte must be numeric.

 X Variable length alpha-numeric (any character). The current source byte may be any character.

 V Variable length alphabetic. The current source byte can be alphabetic. If not, comparison continues
with the next mask byte.

 Z Variable length numeric. The current source byte can be numeric. If not, comparison continues with
the next mask byte.

 / Field separator. The current source byte may be any one of “/”, “.”, or “-”.

 . Decimal point. The current source byte must be a “.”, unless followed by “V” or “Z” in the mask.

 - Minus sign. The current source byte must be “-”, unless this is the first byte of the mask. If so,
comparison continues with the next mask byte.

Any other character that appears in the mask must appear in the source string in the corresponding position.

result is any str.var defined to receive the edited string.

CALL 29 verifies that a given string conforms to the specifications of another string, termed a mask. The edit is
performed by comparing the string with the mask , byte by byte.

The following table illustrates some typical editing examples:

 MASK EFFECT

 -ZZZ.ZZ Allows a number between -999.99 and 999.99 with a maximum of 2 fractional digits.

 ANA NAN This mask is used for the Canadian Postal Code. The source string length must be 7 bytes,
with a space in the fourth position. Each letter and digit must be in its fixed place.

 NZZZ.NZ Allows a minimum of 1 digit before and after the decimal, and a maximum of 4 before and 2
after. The decimal point must exist. Note that “0.0” is allowed.

 User CALLS 335

 UniBasic Reference Guide

 VVVNZZ Source “A45” results in edit of “A045”.

In a sequence of fixed and variable length numeric edit characters (“N” and “Z”), the fixed length character must
appear before the variable length character.

In numeric fields, an edit results in left zero-filling of the field.

An error will occur if:

o Any parameter is not a string variable.
o Source does not conform to mask.
o Destination string dimension is too small.
o Same string used for source and destination.

EXAMPLES
CALL 29,S$,M$,D$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
String Expression must be used here

See also: CALL, EDIT, USING

 User CALLS 336

 UniBasic Reference Guide

CALL 40
SYNOPSIS: Initialize access to User Message Files.

CALL 40, channel, filename

DESCRIPTION
channel is any num.expr which, after evaluation, is truncated to an integer and used to specify an unused channel
number for temporary use to OPEN the message file. Once opened, the channel is then cleared and free for use by the
program. A channel which is not currently in use should be selected or it will be closed automatically.

filename is any str.expr specifying a filename or pathname to a user error message file to which you have read-
permission. User error-message files conform to the structure defined in Error Message File.

CALL 40 works in conjunction with the ERM function to read user messages from a disk file. The CALL selects the
file to be used for all further ERM functions. By issuing secondary CALL 40 statements, one may use different
message files for different application packages or even within the same program.

The error message file is a text file with each message beginning with the desired message number (must have a
message 0 defined as "No such Message Number), a colon, and the text (up to 80-characters).

EXAMPLES
CALL 40,3,"0/AR.MESSAGES"
PRINT ERM(12) ! Print Message 12

ERRORS
Not enough parameters passed to CALL
String Expression not allowed here
String Expression must be used here

See also: CALL, Error Message File, ERM

 User CALLS 337

 UniBasic Reference Guide

CALL 43
SYNOPSIS: Convert to Upper/Lower Case

CALL 43, mode, string {, position }}

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an integer and used to select one of the following
operations:

 Mode Operation Performed

 1 = Convert all letters to upper case.

 2 = Convert first letter only to upper case.

 3 = Convert first letter of each word to upper case.

 4 = Convert all letters to lower case.

 5 = Convert first letter and any single ‘I’ to upper case.

 6 = Convert all letters to lower case, and any single ‘I’ to upper case.

string is any str.var to be converted. The conversion takes place within the specified string.

The optional position is any num.expr which, after evaluation, is truncated to an integer and used to specify the
starting character position in string.

EXAMPLES
CALL 43,1,A$,5

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
String Expression must be used here

See also: CALL, CALL 60, CALL $STRING

 User CALLS 338

 UniBasic Reference Guide

CALL 44
SYNOPSIS: Miscellaneous String Functions & ECHO.

CALL 44, mode, { target, string, position, {step} }

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an integer to select one of the following modes of
operation:

 Mode Operation Performed

 0 Compare target to string.

 1 Search string for first occurrence of target.

 2 Search string for first non-occurrence of target.

 3 Swap target. Reverses position of all bytes.

 4 Disable terminal echo.

 5 Enable terminal echo.

target is any str.var used in modes 0 thru 2 as the 'search for' string. In mode 3, target is the string to be swapped.

string is any str.var in modes 0 thru 2 to be searched for the target string.

position is any num.var which, after evaluation, is truncated to an integer to select the starting character position for
search (mode 1 and 2). Returns position of target string, or zero if not found. Mode 0 causes position to return
comparison status as follows:

 -2 = string logically less than target
 -1 = string shorter than target
 0 = target and string exactly equal
 1 = target shorter than string
 2 = target logically less than string

The optional step is any num.expr which, after evaluation, is truncated to an integer and used as a counter for search
(modes 1 and 2). Causes comparison to be performed every step bytes in search string. Default = 1.

CALL 44 is be used for string searching, comparison, and swap. A step counter is optional and provides for
searching a string at 2, 3, or whatever byte intervals. Search or comparison is full eight-bit and terminates on null
byte.

In addition, CALL 44 may be used to enable or disable terminal echoing of input characters.

EXAMPLES
CALL 44, A$, B$, P
CALL 44,4 !Disable Echo

ERRORS

 User CALLS 339

 UniBasic Reference Guide

Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL, CALL $ECHO, IO Mnemonics, SYSTEM, CALL $ECHO, CALL 56, SEARCH

 User CALLS 340

 UniBasic Reference Guide

CALL 45/46
SYNOPSIS: Pack/Unpack Numeric Strings.

CALL 45, {flag,} source, dest {,status}
CALL 46, source, dest

DESCRIPTION
flag is any num.expr which, after evaluation is truncated to an integer and used to select an optional mode for CALL
45. A zero (or omitted) invokes a packing operation. A value of 1 provides for unpacking operations within CALL
45.

source is any str.var which is to be operated upon (pack or unpack).

dest is any str.var to contain the resulting operation (pack or unpack).

The optional status is any num.var used to return an exception status from CALL 45. Zero is returned for a
successful operation, 1 indicates an error. If status is not supplied, a normal BASIC error is generated if a conversion
error occurs.

CALL 45 and CALL 46 permit strings containing only numeric digits (0 thru 9) to be packed or unpacked into four-
bit nibbles (two digits per byte). The packed string is then half the length of the original string. Generally, this call is
used to reduce file size when numeric-only keys are used.

In addition to digits, the characters “,-./” and space are valid for packing. The following table depicts each digit’s
packed representation:

 CHAR PACKED CHAR PACKED

 Space 0001 2 1000
 , 0010 3 1001
 - 0011 4 1010
 . 0100 5 1011
 / 0101 6 1100
 0 0110 7 1101
 1 0111 8 1110
 9 1111

EXAMPLES
CALL 45,0,A$,B$,F \ IF F STOP !PACK
CALL 45,1,B$,A$,F \ IF F STOP !UNPACK
CALL 46,B$,A$!UNPACK

ERRORS
Error detected in/by user CALL routine

See also: CALL, CALL 20/21, CALL 15

 User CALLS 341

 UniBasic Reference Guide

CALL 47
SYNOPSIS: Perform Miscellaneous Functions.

CALL 47, mode, return

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an integer to select the operation for CALL 47.

return is any num.var used to return information, or any num.expr used to pass information to CALL 47.

 Mode Operation Performed

 0 Pop top of GOSUB stack, place return statement number in return. Returns zero if no GOSUB
pending. Same as MSC(3) and SPC(14) functions.

 1 Push statement number in return onto GOSUB stack. Similar to GOSUB statement, without
branching.

 2 not supported. results in error.

 3 Return current TERM type in return. Same as MSC(32) and SPC(13) functions.

 4 Disable terminal echo.

 5 Enable terminal echo.

EXAMPLES
CALL 47,1,2300 !Push onto GOSUB stack

ERRORS
Error detected in/by user CALL routine
GOSUBS Nested too deep
No such statement number

See also: CALL, IO Mnemonics, SYSTEM, CALL $ECHO, SPC, MSC, GOSUB, RETURN

 User CALLS 342

 UniBasic Reference Guide

CALL 48/49
SYNOPSIS: Pack/Unpack Radix 50 Characters.

CALL 48, ascii , packed
CALL 49, packed , ascii

DESCRIPTION
The ascii is any str.var containing ASCII characters to be packed into Radix 50. Packing permits 3 characters to be
stored into 2-byte positions reducing a strings length by 33%.

The packed is any str.var DIMensioned at least 66% of the size of the ascii and contains packed Radix 50 characters.

Radix 50 packing allows 3 bytes of string information to be packed into 2 physical bytes of storage using the formula:

 (C1*40+C2)*40+C3 where C is a character’s pack value..

A 40-character (508) subset is utilized for this type of packing. Lower case letters will be converted to upper case
automatically. The resulting packed string is 66% the length of the ascii string..

The following table depicts each valid radix 50 character and it’s packed representation:

 CHAR/PACK CHAR/PACK CHAR/PACK CHAR/PACK

 , 01 7 11 H 21 R 31
 - 02 8 12 I 22 S 32
 . 03 9 13 J 23 T 33
 0 04 A 14 K 24 U 34
 1 05 B 15 L 25 V 35
 2 06 C 16 M 26 W 36
 3 07 D 17 N 27 X 37
 4 08 E 18 O 28 Y 38
 5 09 F 19 P 29 Z 39
 6 10 G 20 Q 30 SPACE 00

EXAMPLES
CALL 48,A$,B$! PACK
CALL 49,A$,B$! UNPACK

ERRORS
Not enough parameters passed to CALL
String Expression must be used here

See also: CALL, CALL 18/19

 User CALLS 343

 UniBasic Reference Guide

CALL 53
SYNOPSIS: ASCII/EBCDIC Conversion.

CALL 53, string, {flag}

DESCRIPTION
string is any str.var to be converted to/from ASCII and EBCDIC.

The optional conversion flag is any num.expr which, after evaluation, is truncated to an integer. If omitted or zero,
string is converted from EBCDIC to ASCII. If one, then string is converted from ASCII to EBCDIC.

The entire ASCII character set is convertible back and forth from ASCII to EBCDIC. There are many EBCDIC
characters, however, which have no ASCII counterpart. These characters will be converted to nulls if encountered.

EXAMPLES
CALL 53,A$! CONVERT TO ASCII
CALL 53,A$,1 ! CONVERT TO EBCDIC

ERRORS
Data of wrong type (numeric/string)

See also: CALL, CALL $ETOA, CALL $ATOE

 User CALLS 344

 UniBasic Reference Guide

CALL 56
SYNOPSIS: External Subroutine to Provide String Searching

CALL 56, {flag,} string {,start}, target, position {,occur {,searchstep {,targetstep }}}

DESCRIPTION
The optional ignore-null flag is any num.expr which, after evaluation is truncated to an integer. If omitted or zero, the
search terminates at a null in the search string. 1 = search past null to dimensioned length.

string is any str.var to be searched.

The optional start is any num.expr which, after evaluation is truncated to an integer and used to specify the starting
character position in string. ABS(start) indicates the position. If start is negative, a backwards search is performed.

target is any str.expr specifying the substring to locate in string.

position is any num.var used to returns the character position of target within string. If not found, position returns -1.

The optional occur is any num.expr which, after evaluation is truncated to an integer and used to specify a search
count. If occur is positive, string is searched for the occur occurrence of target . If negative, string is searched for
the ABS(occur) non-occurrence of target .

The optional searchstep and targetstep are any num.expr which, after evaluation are truncated to integers and used to
specify a 'step size'. If either option is used, CALL 56 steps through the appropriate string by the specified number of
characters. For example, if searchstep is set to 5, then CALL 56 looks for a match at every fifth character of the
string, starting at the offset specified in start. If start = 1, then the offsets used for a match would be string[1], [6],
[11], etc. Note that in order to use searchstep, occur must be specified. Similarly, in order to use targetstep, both
occur and searchstep must be specified.

EXAMPLES
CALL 56,1,A$,I+1,T$,P,3 !3rd occurrence at I+1

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
User CALL parameters out of order

See also: CALL, SEARCH, CALL 44, CALL 43

 User CALLS 345

 UniBasic Reference Guide

CALL 59
SYNOPSIS: Numeric BIT Manipulation.

CALL 59, mode, arg1, arg2 (,flag}

DESCRIPTION
mode is any num.expr which, after evaluation, is truncated to an integer to specify one of the following operations:

 Mode Operation Selected

 0 Reset (zero) bit number arg1 in variable arg2 . flag returns bit arg1 before reset.

 1 Set bit number arg1 in variable arg2 to one. flag returns bit arg1 before set.

 2 Test bit number arg1 in variable arg2 . flag returns zero if the bit is zero or 215-arg1 if the bit is one.

 3 AND variable arg1 to variable arg2 and store result in arg2 . A logical AND produces a one in each
bit position set in both arg1 and arg2 .

 4 OR variable arg1 to variable arg2 and store result in arg2 . A logical OR produces a one in each bit
position set in either arg1 or arg2 or both.

 5 XOR variable arg1 to variable arg2 and store result in arg2 . A logical XOR (exclusive OR) produces
a one in each bit position set in either arg1 or arg2 but not in both.

 6 Complement (NOT) variable arg1 and store result in variable arg2 . Each one bit is set to zero and
vice-versa.

arg1 is any num.var used to select one binary argument to the CALL.
arg2 is any num.var used to select a second binary argument to the CALL.

The optional flag is any num.var used to return information from the CALL.

CALL 59 provides bit manipulation on integer variables in the range 0 thru 65535 (1777778). One-word arithmetic
and logical operations are also provided.

 The following table illustrates the effect of the logical operations:

 X Y X AND Y X OR Y X XOR Y NOT Y

 0 0 0 0 0 1
 0 1 0 1 1 0
 1 0 0 1 1
 1 1 1 1 0

EXAMPLES
CALL 59,M,A,B,F

ERRORS
Not enough parameters passed to CALL
Data of wrong type (numeric/string)
Illegal Parameter or Syntax for Command
Function Argument or Statement Mode out of range

See also: CALL, CALL $LOGIC

 User CALLS 346

 UniBasic Reference Guide

CALL 60
SYNOPSIS: Miscellaneous String Functions.

CALL 60, {mode,} string ...

DESCRIPTION
mode is any num.var which, after evaluation, specifies an optional mode of operation for the CALL. If omitted, zero
is assumed.

 Mode Operation Performed

 0 Perform upper case conversion on all lower case letters.

 1 Null the entire string (as in CALL 57).

 2 Set the high-order bit of each data byte to one, excluding nulls. This is generally used when data is
read from other operating systems. UniBasic internally stores all ASCII characters with their top bit
zero to force them in the range 0008 to 1778.

 3 Toggle all high-order bits of each character except for zero bytes and nulls (0008 and 2008). This
mode is used when data is brought to UniBasic from IRIS, BITS or other high-bit string operating
systems.

string is any str.var to be operated upon.

Multiple strings are permitted by CALL 60. Also, the occurrence of a numeric value resets the mode of operation for
the following strings until another numeric value is specified.

EXAMPLES
CALL 60,1,A$,B$,C$!NULL THE STRINGS
CALL 60,A$,B$!UPPER CASE
CALL 60,1,A$,2,B$,3,C$

ERRORS
Error detected in/by user CALL routine
User CALL parameters out of order

See also: CALL, CALL $STRING, CALL 29, CALL 30, CALL 43, CALL 44, CALL 56

 User CALLS 347

 UniBasic Reference Guide

CALL 65
SYNOPSIS: Sort Keys in a String.

CALL 65, status, number, length, sort, work

DESCRIPTION
status is any num.var to receive a return status from the sort operation:

 Status Description
 0 Successful sort operation.
 1 Parameter Error.
 2 number or length was passed as zero.
 3 sort string is too small; less than number * length.
 4 work string is too small; less than length + 8.

number is any num.var which, after evaluation, is truncated to an integer to specify the number of strings to be sorted.

length is any num.var which, after evaluation, is truncated to an integer to specify the length of each string.

sort is any str.var containing keys to be sorted.

work is any temporary work string DIMensioned to a minimum of length + 8.

The sort string may contain any number of fixed-length binary fields to be sorted. Sorting is based upon the supplied
length of each item, up to number of items.

The resulting sorted string is returned in the str.var sort.

EXAMPLES
CALL 65,E,100,10,A$,W$

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL

 User CALLS 348

 UniBasic Reference Guide

CALL 72/73
SYNOPSIS: Gather / Scatter Variables.

CALL (72 | 73) , string, var.list

DESCRIPTION
string is any str.var from which to gather or scatter data. Its size must be large enough to load from or store to all of
the variables in the var.list.

var.list is any list of str.vars, num.vars, array.vars, or mat.vars to be gathered from or scattered to. Only single
elements of an array.var or mat.var may be specified. An entire matrix or array is not copied by supplying its
variable name.

CALL 72 is used to gather a group of variables in the var.list and copy their contents (binary) into string.

CALL 73 scatters data from string into each variable in the var.list using a binary copy.

CALL 72/73 may be used with mixed class data (BCD/Base 10000), but numeric data in string must be of Base
10000. When numeric variables are gathered, BCD variables are automatically converted to their Base 10000
equivalent. During scatter, variables are then stored into the type of the variable in the var.list.

CALL 72/73 are typically used by applications designed prior to COM and CHAIN READ/CHAIN WRITE. Data
would be gathered and written to a temporary file. Following a CHAIN, the data would be read and scattered into the
appropriate variables in the new program.

EXAMPLES
CALL 72,2,A$[31,34],P !CONVERT 2%

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL

See also: CALL

 User CALLS 349

 UniBasic Reference Guide

CALL 126
SYNOPSIS: Convert Decimal to Octal.

CALL 126, value, (string | number)

DESCRIPTION
value is any num.expr which, after evaluation, is truncated to an integer to specify a decimal value to be converted.
value must be in the range 0 to 231-1.

string is any str.var to receive the octal equivalent in ASCII form, right-justified. The string variable should be
DIMensioned at least 12 to hold the result. The first position receives the sign, which are: space for positive, and “-”
for negative. The remaining 11 positions receive the right-justified octal value with leading spaces.

If number is specified, it must be any num.var to receive the numeric value of octal equivalent.

EXAMPLES
CALL 126,a,a$
CALL 126,B,B

ERRORS
Not enough parameters passed to CALL
Data of wrong type (numeric/string)

See also: CALL

 User CALLS 350

 UniBasic Reference Guide

CALL 127
SYNOPSIS: Convert Directory Information.

CALL 127, directory, array, filename { , mode , information }

DESCRIPTION
directory is any str.var, DIMensioned at least 14 bytes, containing a BITS directory entry (used only for mode 0 BITS
Conversion Package).

array is any num.array variable DIMensioned for at least 25 entries at 2% or larger, used to return unpacked
information about a file. Information returned is accessed by the element:

 [0] Account group (0-255).
 [1] Account user (0-255).
 [2] Attribute word as a numeric value Mode 0 only.
 [3] File type (0-9), represents “O$BACTSI”.
 [4] First disk address.
 [5] Record length in bytes. For non-UniBasic files, A[3]=0, returns 512 for text files and 65534 for non-

text file.
 [6] File size in blocks (represents both halves of an indexed file).
 [7] Creation date in the form MMDDYY.
 [8] Last access date in the form MMDDYY.
 [9] Relative sector offset; Mode 0 only.
 [10] Size of record map in sectors (INDX files Mode 0 only).
 [11] Number of indices (Index files only).
 [12] System time at last access in hours.
 [13] Secondary attribute word as a numeric value; Mode 0 only.
 [14] Logical unit number, as currently installed; Mode 0 only.
 [15] DIRECTORY sector number; Mode 0 only.
 [16] Word displacement into DIRECTORY sector; Mode 0 only.
 [17] Unix Protection bits; Mode 1 only.
 [18] Number of items per record; Mode 1 only.
 [19] Revision of UniBasic at time file was created; Mode 1 only.
 [20] First Real Data Record as built; Mode 1 only.
 [21] Byte offset to Record 0; size of header; Mode 1 only.
 [22] Returns the files creation time in hours-since-BASEDATE.

Record length in element A[5] is 512 bytes for a non-UniBasic text file and 65534 for a non-UniBasic file of type
A[3]=0. The first block of the file is examined and is only considered text if all bytes are <0x80.

 User CALLS 351

 UniBasic Reference Guide

filename is any str.var specifying a file in mode 1, or to return an unpacked name for mode 0. The filename should be
DIMensioned at least 31 characters (64 characters recommended). Returned in filename is the actual 14-character
name. Supplemental attributes are returned in bytes 15-29; <PRWdsEOxFQUgabKY>. Lower-case letters refer to
BITS attributes which are only returned when Mode 0 is used on a BITS directory unpack.

mode is any num.expr which, after evaluation is truncated to an integer and used to specify the operational mode for
the CALL. If omitted or 0, then a BITS DIRECTORY entry in directory is unpacked. Mode 1 is used to locate and
return information about the file contained in filename. Mode 1 is used exclusively for QUERY and SCAN files.
Mode 0 is used by the BITS Conversion Package.

information is any optional array.var used to return information about an Indexed or Formatted Item File. It must be
DIMensioned as information[128,1].

If the file is Indexed, information returns the following information:

 information[0,0] Record length in bytes for file.
 information[0,1] Current actual active record count.
 information[X,0] Key length for Directory X.
 information[X,1] Active Keys in Directory X **.

** Most systems do not maintain the current key counts in Indexed files to increase performance of insertion and
deletion operations, so this value is returned as zero. The information[] array is valid from 1 to the number of Indices
returned in array[11].

If the file is a Formatted Item file, information returns the following information:

 information[X,0] Item Type
 information[X,1] Item length in bytes.

EXAMPLES
A$="DATAFILE"
CALL 127,D$,A,A$,1,T

ERRORS
Error detected in/by user CALL routine
Not enough parameters passed to CALL
File does not exist

See also: CALL, CALL $FINDF, CALL $RDFHD

 Supplied Utilities 352

 UniBasic Reference Guide

Supplied Utilities
Your installation media includes a set of system utilities to assist the developer in application debugging, file
maintenance, and system status.

The supplied utilities are documented as one of the following types:

System BASIC utilities, documented using upper-case names, are written in BASIC and may be viewed in source form.
Most are supplied to simulate the familiar IRIS and BITS system processors. Utilities written in BASIC are only
available during a UniBasic session.

Compiled 'C' OBJECT programs, documented using lower-case names, are written in 'C' and compiled to native binary
on each platform supported by Dynamic Concepts. These utilities, as with UniBasic itself, are not generally portable
between machines.

Utilities are launched in either command mode or directly within the Unix shell. Utilities written in BASIC are restricted
to command mode and are identified in the synopsis and examples by the prompt # SCOPEPROMPT. C-Language
Object utilities are identified in the synopsis and examples by the Unix shell prompt $.

When operating within the environment BASICMODE=BITS, certain utilities must be prefixed with a ! to prevent
misinterpretation by the BITS-style combined command mode and program mode command line interpreter.

For example:

#KILL filename !Launch file delete utility from IRIS mode
*/KILL filename !Launch file delete utility from BITS mode
*KILL "filename" !BITS KILL statement in immediate mode
*!kill process !Force Unix process KILL command in BITS mode
#!kill process !Force Unix process KILL command in IRIS mode

 Supplied Utilities 353

 UniBasic Reference Guide

BATCH
SYNOPSIS: Logon and execute commands on a different port.

#BATCH { /H | {port {command | ^commandfile }}}

DESCRIPTION
The BATCH command allows a user to attach an interactive or phantom port and transmit commands to that port.

The /H option displays instructions for using BATCH.

port is an optional UniBasic port number. If port is not supplied on the command line, prompt mode is selected (see
below). The port must be a valid UniBasic port number. If an interactive UniBasic session is currently running on
the selected port, it is terminated to command mode. If not, a background process is created assuming the identity of
the specified port number.

command is any optional UniBasic command, such as the name of a program or command. The form ^commandfile
instructs BATCH to read and transmit all of the commands in the text file to the selected port. If command or
commandfile is not supplied, prompt mode is selected (see below).

BATCH is designed to operate in one of two modes - immediate and prompt. Immediate mode is assumed whenever
both a port and command or commandfile is specified on the command line. This mode is useful when a single
specific command is to be performed in background which requires no additional input. Starting a DIR or LIBR
command in background is an example when this mode is used.

Prompt mode is assumed when any required parameter is not supplied and BATCH enters a dialogue mode with the
user. A port is requested if one was not supplied as part of the command line. Once the port is attached BATCH
repeatedly prompts for entry of a command. Multiple commands, such as starting a program followed by the entry of
required prompts is permitted. After successful transmission of each command, you are prompted for another.
Pressing [ESC] terminates entry of commands and requests a new port number for another prompt-mode session.
Pressing [ESC] a second time terminates BATCH.

When running in the environment BASICMODE=IRIS, the initial attachment of the port is in command mode (#).

EXAMPLES
#BATCH 1 ^COMMANDFILE
#BATCH 87 LIBR [OUTPUT] ^
#BATCH

ERRORS

Illegal Port Number
Cannot attach Port

See also: PORT, CALL 98, Port Numbering and Phantom Ports

 Supplied Utilities 354

 UniBasic Reference Guide

BUILDXF
SYNOPSIS: Build a new IRIS Indexed File.

#BUILDXF

DESCRIPTION
BUILDXF is the standard IRIS Indexed File creation utility. It is used whenever a standard Indexed Data File (not a
Polyfile) is to be created. The first real data record is always set to one (1) when building a file with this utility.

When creating a new file, simply enter one (1) for the number of data and indexed records since Indexed files
typically expand dynamically. The Environment Variable: PREALLOCATE may be used to limit the number of
records allowed during expansion, automatic pre-allocation and other special Indexed File features, controls and
restrictions.

The filename must be given in the form filename! if an existing file is being replaced.

BUILDXF supports up to 62 directories, 122-byte keys and an unlimited number of records.

Prompt Information to be Entered

Desired Filename The desired pack, logical unit, or directory name and filename. An "!" must
be appended to replace an existing file.

Number of Data Records Total number of data records to be contained in the file when created. You
must specify 1 record to create the file for, or the prompt for the record
length is omitted. The Environment Variable PREALLOCATE may be
used to limit the number of records allowed during expansion, automatic
pre-allocation and other special Indexed File features, controls and
restrictions.

Data Record Length (# words) The maximum size, in words, of the data records to be used.

Number of Indexed Records This value will be added to the Number of Data Records entry above. For
normal use, press return.

Number of Directories Total number of directories to be contained in the file. A maximum value
of 62 may be entered.

KEY Length for each directory The maximum length in words for each KEY for each directory. If more
than one directory is defined, you will be prompted to enter the size of each
directory's key length. A maximum value of 61 may be entered.

 Supplied Utilities 355

 UniBasic Reference Guide

EXAMPLES
#buildxf

PROGRAM TO CREATE AN INDEXED DATA FILE

DESIRED FILENAME? datafile
NUMBER OF DATA RECORDS? 1
DATA RECORD LENGTH (#WORDS)? 512
NUMBER OF INDEXED RECORDS? [return]
NUMBER OF DIRECTORIES? 2

ENTER KEY LENGTH (#WORDS) FOR EACH DIRECTORY:
#1 ? 4
#2 ? 12

PLEASE WAIT . . .

FILE HAS 1 DATA RECORDS

ERRORS

File already exists, use "!" to replace
Value out of range

See also: MAKEIN, Indexed Data Files, PREALLOCATE

 Supplied Utilities 356

 UniBasic Reference Guide

CHANGE
SYNOPSIS: Change attributes and/or filename.

#CHANGE {switches} filename IRIS
*/CHANGE {switches} filename BITS

DESCRIPTION
switches represent the optional entry of either /H or ?. Either will display instructions.

filename is any file in the form of lu/filename, or dir/filename only. Full Unix pathnames are not allowed.

CHANGE operates in a dialogue mode, displaying the current and requesting new information. Press [RETURN] to
move to the next prompt without changing the displayed information. To change an item, enter the new information
and press [RETURN] Press [ESC] to terminate the command.

When prompted for Protection, enter IRIS style 2-digit values or enclose within <> BITS, Supplemental, or Unix 3-
digit permissions.

The prompt for NEW COST is printed only for IRIS compatibility and has no affect.

CHANGE utilizes the MODIFY statement to perform the operations.

Note: When operating within the BASICMODE=BITS environment, CHANGE invokes the internal
command with the same name (See CHANGE Command). To invoke this utility, the command must
be entered in the form: /CHANGE

EXAMPLES
#CHANGE TEST

TEST IS A UNIX DATA FILE
IF NO CHANGE, PRESS RETURN - [CHANGE ? FOR HELP]
FILENAME = TEST
NEW NAME ? [RETURN]
COST = $0.00
NEW COST ?

PROTECTION: 60
NEW PROTECTION ? <666>

ERRORS

File does not exist
File is Read Protected
File is Write Protected

See also: Filenames and Pathnames, File Attributes, Protection and Permissions, Using IRIS Protections, Using
Unix Permissions, BITS Attributes, Supplemental Protection Attributes

 Supplied Utilities 357

 UniBasic Reference Guide

COPY
SYNOPSIS: Make an identical copy of any file.

#COPY {<attr>} destination = source,{source1}

DESCRIPTION
<attr> are any optional protections or permissions for the new file. These may be specified in IRIS, BITS or Unix
format.

destination is the name of a new file to create. It may be in the form lu/filename, pack:filename, or it may be any
Unix full pathname. If destination begins with $, no file is created. Instead, the destination is opened and data is
copied a line at a time from the source. If the destination is executable, a pipe is opened to the destination.
Otherwise, data from the source overwrites the destination.

source is the name of an existing file to which you have read-permission. If more than one source filename is given,
data is merged into the destination.

If destination filename is to replace an existing filename, then destination must be given in the form of filename!.

COPY creates the destination using the supplied attr or, if no attr are supplied, using the default permissions 666.
These are affected by the current value of umask.

If the source is the name of a UniBasic Indexed Data File, and dest is not a named pipe, both the data portion, and the
ISAM portion file is copied.

COPY utilizes the DUPLICATE statement to perform the operation.

EXAMPLES
#COPY /usr/ub/1/payrollbackup = /usr/ub/1/payroll
#COPY <644> programsave=program
#COPY $lpt=data2
#COPY $/usr/bin/pg=textfile

ERRORS

Filename does not exist
Illegal Pathname specified

See also: Filenames and Pathnames, File Attributes, Protections and Permissions, DUPLICATE, Pipes

 Supplied Utilities 358

 UniBasic Reference Guide

DIR
SYNOPSIS: Produce an expanded listing of files in a directory.

#DIR {switches}

DESCRIPTION
switches are optional, and used to limit, select and control the list of filenames printed from a {specified} directory. If
no switches are entered, all public files in the current working directory are displayed. The following switches may be
entered in any order, separated by spaces:

 /H Print instructions for using DIR. An abbreviated list of commands and their formats is
displayed.

switches controlling re-direction & output:

 /L Output to printer, $LPT. All output is paginated and directed to the executable script lpt.

 /L=$filename Output to device 'filename'. Select any executable pipe to direct the output. All output is
paginated and directed through the pipe.

 /L=filename Create and output to a text file 'filename'.

 /S Abbreviate the information displayed using two columns. Only the filename, account, and
size is displayed.

switches controlling location and owner of files to display:

 path: Specify the Unix full pathname, or a pathname within the Environment Variable LUST from
which to create the directory listing. pathname must be terminated by a colon.

 [GRP-USR] List public files on the Unix group id (GRP) and user id (USR). Public files are those which
you have read or write permission. Up to 10 different [GRP-USR] selections may be entered.

 [GRP-*] List all public files for one group, any user.

 [*-USR] List all public files for one user, any group.

 [*-*] or @ List all public files on any account.

switches controlling alphabetization of output:

 /A Alphabetize by filename. All selected files are sorted by filename.

 /AA Alphabetize by user account numbers. Files are sorted first by [GRP-USR], followed by
filename.

switches restricting type & age:

 T=type Restrict listing to specific file types. These types are:

 T Tree-Structured Data Files.

 $ Executable device drivers, shell scripts or 'C' programs.

 C Contiguous Data Files.

 I Indexed Data Files; all, whether poly or normal.

 B BASIC Saved Program files.

 S System BASIC Saved Program Files.

 Supplied Utilities 359

 UniBasic Reference Guide

 >X List only those files not accessed within X hours.

 <X List only those files accessed within X hours.

 <<X List only those files created within X hours.

 >>X List only those files older than X hours.

switches restricting filenames :

 (abc*) Restrict listing to files beginning with 'abc', such as "abc", "abcdata".

 (*xyz) Restrict listing to files ending with 'xyz', such as "xyz" and "dataxyz".

 (ab*z) Restrict listing to files beginning with 'ab' and ending with 'z'.

 (*ijk*) Restrict listing to files containing 'ijk'.

 Up to 20 selections, separated by commas may be included within ().

EXAMPLES
#DIR /L=TEXTFILE @T=I (A.*, *.DAT)
#DIR /usr/ub/1: @ /A

ERRORS

No such file or directory

See also: LIBR, MAKECMND

 Supplied Utilities 360

 UniBasic Reference Guide

FORMAT
SYNOPSIS: Create a Formatted Data File.

#FORMAT {/H | {<attr> { [X:Y] Filename } } IRIS
*/FORMAT {/H | {<attr> { [X:Y] Filename } } BITS

DESCRIPTION

The FORMAT utility creates and defines fixed record Formatted Data Files. Options may be entered directly on the
command line. Required parameters not entered on the command line will be requested as input.

If a single Filename is specified on the command line, FORMAT attempts to build it. If multiple Filenames are
entered, they are not built until the record has been defined.

The utility requests all format information required to build the file. Enter ESC at any time to abort the file. For each
field to be defined, the following information is requested:

 /H Display instructions for using FORMAT.

 <attr> Specify the file's optional attributes. Attributes may be specified as 2-digit IRIS protections,
BITS attributes, Supplemental attributes or 3-digit Unix permissions enclosed with < >.

 {[X:Y]} When specified on the command line, FORMAT creates a Contiguous data file with X
records of record length Y words.

 Filename Optional name(s) of the file or files to be created. A filename must be specified on the
command line when a Contiguous data file is being created.

When the command line does not specify creation of a Contiguous file, FORMAT enters a conversational mode.
Information not supplied on the command line is requested, including:

 Request Information to be Entered

 Filename Enter the filename to create. To replace an existing file, append "!" to the end of the
filename.

 Attributes Enter the desired attributes for the file being created. Attributes may be specified as 2-digit
IRIS protections, BITS attributes, Supplemental attributes or 3-digit Unix permissions
enclosed with < >.

See also File Attributes and Permissions.

 ITEM# Enter the various types of fields and their lengths to be defined within the file. Valid types
are:

 Sn String data where n is the length of the field. Valid lengths are greater than zero and less
than 65535. For example, S20 will create a 20-byte string field.

 Dn Numeric data where n is the precision to be specified. Valid precisions are 1 through 4.
See also, Numeric Variable Precision. For example, N2 will create a 4-byte numeric field.

 Supplied Utilities 361

 UniBasic Reference Guide

 Bn Binary strings or matrix data, where n is the length of the field in words. Valid lengths
are greater than zero and less than 32768. For example, B20 will create a 40-byte binary
field.

 [Return] End definition, create file. FORMAT continues to step to the next field until only
[RETURN] is entered for ITEM, or until the field number exceeds 127.

EXAMPLES
#FORMAT <P> [10:10] FMTFILE
#FORMAT /H
#FORMAT FILENAME

ERRORS

Filename already exists; use "!" to replace
Invalid parameter or syntax for command
File 'filename' syntax error
Invalid! Precision must be 1 thru 4
Invalid! String item must be >0 and less than 65535
Invalid! Binary item must be >0 and less than 32768

See also: MAKEITEM Utility, Numeric Variable Precisions, Creating Formatted ITEM files

 Supplied Utilities 362

 UniBasic Reference Guide

KEYMAINT
SYNOPSIS: Analyze/Maintain Indexed Data Files.

#KEYMAINT {filename}

DESCRIPTION
filename is the name of an existing UniBasic Indexed data file. filename may be in the form lu/filename,
pack:filename, or any Unix full pathname. If a filename is not entered on the command line, KEYMAINT prompts
for its entry.

The following commands are available:

Cmd Name Description
A Add Key Insert keys into the index currently selected.
 Enter Key to add:
 Enter the key to insert.
 Enter Record # for (key):
 Enter the record # to be associated with (KEY).

C List Count Displays the number of keys that where listed last using

the last L option.

D Delete Key Delete keys from the selected index.
 Enter the key you wish to delete:
 Enter the key to delete.
 (KEY) deleted, return record # (rec) to free list?
 Enter N if you do not want the record returned; any other response will return the record to

the free list. The (KEY) field will display the KEY you deleted and the (rec) field displays
the record number used by the KEY.

F New File Change from one file to another.
 Enter Filename:
 Enter a new filename in the form:
 filename <RETURN>
 -or -
 filename-index number <RETURN>
 The filename may include a packname, logical unit or directory name.

G Get Key Scan the selected index (from a specified starting point) to locate a key to delete.
 Enter beginning key to delete:
 Enter the key that you wish to start the scan from. The key and associated record number

are displayed.
 (D)elete, (S)can, (E)xit:
 Enter E to return to the command prompt.
 Enter S to scan up to the next key.
 Enter D to delete the key.

H Help Displays the help information.

 Supplied Utilities 363

 UniBasic Reference Guide

Cmd Name Description

I Info Recall file information for display.
 on File

L List Displays keys in the selected index.
 Index Enter Key to start at:
 Enter the key from which you wish to start the display. The display shows 14 keys, then

responds:
 Press 'Return' to see more:
 Press Return to see the next 14 keys.
 Press ESCape to return to the command prompt.

N New Change the selected index.
 Index Enter index number:
 Enter the index (directory) number you wish to browse.

O Output Output up to 512 bytes of a data record as a string.
 Data All non-printable characters are displayed as ^.
 Record Enter Record # for (O)utput:
 String Enter the Record number you want to output.

R Read Read a data record one item at a time.
 Data Enter key to read:
 Enter the key for the record you want to read. If you press <Return>, the response is:
 Enter the Record # to read:
 Enter a physical record number.
 Enter type (1-6=Numeric, S###=String):
 Enter a number from 1 to 6 to specify numeric precision.
 Enter S and the length for a string. String length can be up to 512 bytes.
 Enter Displacement:
 Enter the byte displacement in the data record for the item you want to read. You will then

see the record number, displacement, the type, and the data item.

W Write Write a data record one item at a time.
 Data Enter Key to write:
 Enter the key of the record you want to write. If you press <Return>, the response is:
 Enter the Record # to write:
 Enter a physical record number.
 Enter type (1-6=Numeric, S###=String):
 Enter a number from 1 to 6 to specify numeric precision.
 Enter S and the length for a string. String length can be up to 512 bytes.
 Enter Displacement:
 Enter the byte displacement in the data record for the item you want to write.
 Enter data to write:
 Enter the data you want to write. You will then see the record number, displacement, the

type, and the data item.

X Exit Allows you to exit KEYMAINT
 Program

 Supplied Utilities 364

 UniBasic Reference Guide

Cmd Name Description

Z Get or Get or release records.
 Release (G)et or (R)elease Record
 Record Enter G to get a record form the free list.
 Enter R to release a record to the free list.
 If you enter G, the display is:
 Record number (rec) is now yours!
 Where (rec) is the record number removed from the free list.
 If you enter R, the display is:
 Enter Record number to release:
 Enter the record number that you want to release back to the free list.

General Guidelines:

Press ESCape to return to the previous prompt. You will move back one prompt each time you press ESCape.

The /L option can be used with any command to print the output as a log:

/L Sends the output to the system printer 'sys/lpt'.
/L=$file Sends the output to a secondary printer named file.
/L=file Sends the output to a text file named file.

EXAMPLES
KEYMAINT /H
KEYMAINT

ERRORS

Filename does not exist
File is Write-protected
Selected data record is locked
Index file structure error or svar dim length < Key count
Illegal record number (past end of file)
Key not found

See also: Indexed Files

 Supplied Utilities 365

 UniBasic Reference Guide

KILL
SYNOPSIS: Delete a single file or a list of files.

#KILL filename {, filename} . . .

DESCRIPTION

filename is the name of any file to which you have write permission and wish to remove from the system. It may also
include a logical unit, packname or directory specifier.

If a single filename is supplied, and it was deleted, the message, "DELETED", is displayed. When a list of filenames
is specified and all files were deleted, the message, " ALL DELETED", is displayed.

If any filename in the list is invalid, KILL reports an error and attempts to delete the remaining files in the list. If any
filename is delete protected, or you do not have write permission to the file, you are prompted with the error
description and asked whether to delete the file. An answer of Y attempts to change the attributes and delete the file.
Pressing [RETURN] or N skips the file and proceeds with the remainder of the filenames in the list.

When KILL is issued to an open in-use file, the filename entry is removed from the system directory immediately to
prevent further access, but it remains open where in-use. The file is ultimately removed when the last user closes the
file. This Unix behavior more closely resembles IRIS behavior. BITS systems did not permit the deletion of any file
which was opened and in use.

KILL utilizes the KILL statement after parsing individual filenames from the command line. If attributes are to be
changed on a prompted deletion, the MODIFY statement is used.

When operating in the environment BASICMODE=BITS, KILL must be preceded by a / (RUN command).
Otherwise, UniBasic assumes the entry, and attempts execution of a KILL statement in immediate mode.

EXAMPLES
KILL ABC
KILL /usr/genled,/usr/PAYROLL

/KILL filename
filename is Delete Protected. Delete (Y/N) Y

ERRORS

File is write-protected
Filename does not exist

See also: KILL statement, MFDEL Utility

 Supplied Utilities 366

 UniBasic Reference Guide

LIBR
SYNOPSIS: Generate an expanded listing of files in a directory.

#LIBR {switches}

DESCRIPTION

LIBR is supplied for IRIS programmers to generate a directory listing. LIBR uses the Unix 'ls' command to generate
its output. LIBR only operates properly if BASICMODE=IRIS is enabled.

switches are optional, and used to limit, select and control the list of filenames printed from a {specified} directory. If
no switches are entered, all public files in the current working directory are displayed. The following switches may be
entered in any order, separated by spaces:

@ List all accessible files for all accounts. An accessible file is any file with read permission set for the user

issuing the command.

@g List all accessible files belonging only to accounts in group g, where g is a decimal number

@g,u List all accessible files belonging only to the account group g, and user u.

*type Restrict listing to specific file types. Valid types are:

T Text Files.
$ Executable device drivers, shell scripts or 'C' programs.
C Contiguous Data Files.
I Indexed Data Files; all, whether poly or normal.
B BASIC Saved Program files.
S System BASIC Saved Program Files.
F Formatted Data File

abc List all only files whose names begin with the characters given. For example: abc, abcc, abcd, abcz, etc.

^ Alphabetize listing by filename. All selected files are sorted by filename. Without the up-arrow option,

files are listed in order of occurrence in directory.

>X List only those files not accessed within X hours.

<X List only those files accessed within X hours.

dir/ List files in directory dir. Only directories within the LUST environment variable will be searched.

_ Abbreviate the information displayed using only the File Type and Filename columns.

[dest] Output the listing to either a pipe ($lpt) or a textfile.

EXAMPLES
LIBR SYS/ @ *B
LIBR 1/ >20 <40 *I ^

ERRORS

Logical unit not active

 Supplied Utilities 367

 UniBasic Reference Guide

Filename in use and no "!" supplied

See also: DIR utility, File Attributes

 Supplied Utilities 368

 UniBasic Reference Guide

loadlu
SYNOPSIS: IRIS/BITS Logical Unit to Unix Transfer Utility.

$ loadlu device dest type

DESCRIPTION

Load a BITS or IRIS logical unit image from tape. A list of three arguments must follow the command. They are
defined as:

 device Selects the source containing an IRIS or BITS backup tape. Normally, device specifies the Unix no-
rewind tape device name. Many systems prepend an "n" to the device name as the no-rewind device,
such as "/dev/nrtp" or "/dev/nrct0"

 dest Select the destination filename to store the BITS or IRIS tape image, i.e. /usr/ub/tapefile.

 type Select the type or format from which the original backup was performed. Available options are:

 iris IRIS media.

 bits BITS media.

 starcopy PCBITS media.

 dump Other foreign tapes.

If more than one logical unit resides on a single tape, loadlu will stop at the first filemark. To append subsequent
logical units, re-issue the command using the no-rewind device

EXAMPLES
$ loadlu /dev/nrtp lu1 iris
$ loadlu /dev/nrStp1 pgms bits

ERRORS

INDEX header not found within first 99 blocks
Data does not appear to be in proper format
Read returns -1, tape appears to be in wrong format
Cannot find packname on disk
Cannot reopen /dev/xxx for reading
Cannot reopen /dev/

 Supplied Utilities 369

 UniBasic Reference Guide

lptfilter
SYNOPSIS: Filter ASCII data through a pipe.

lptfilter [-ffilename] [-gn] [input_byte replacement_string]

DESCRIPTION

 -f filename: Specify a filename which contains multiple input_byte replacement_string pairs.
input_byte replacement_string pairs must be separated by white space (tab, newline,
or space). When identical input_byte replacement_string pair are specified in both
the filename and the command line, the pair specified on the command line takes
precedence.

 -gn Define the mode to translate extended graphical characters. 'n' represents one of the
following translation methods:

 0: (default) No translation is performed on graphic mnemonics. Characters
 that fall into the range of graphic mnemonics will be translated normally.

 1: Conditional translation of graphic mnemonics. Graphic mnemonics are
 translated once lptfilter detects a 'BG' (\0236\) mnemonic in the data stream.
 Graphic mnemonic translation is suspended once lptfilter detects an 'EG'
 (\0237) mnemonic. All characters between sent between 'BG' and 'EG' and
 within the range of \0306\ and \0341\ are translated as graphic characters.

 2: Unconditional translation of graphic mnemonics. lptfilter will
 translate graphic mnemonics without regard to the presence of
 BG' or 'EG' mnemonics.

 input_byte = Input byte to be translated as one of the following:

 1. Two-letter UniBasic mnemonic. For example: 'BX', 'BG', 'G1','BU', etc.

 2. Single ASCII character such as A, X, G

 3. One-byte octal, decimal, or hexadecimal value

 Care should be exercised in the representation of input bytes. A single byte, (e.g.
\306\), can have two identities - graphic and non-graphic. DCI recommends
representing input bytes with the UniBasic mnemonics to avoid confusion.

 replacement_string = Replace every occurrence of input_byte with this replacement string. The
replacement_string may be a series of ASCII characters or octal, decimal, or
hexadecimal values.

lptfilter is generally used to translate certain mnemonics for printers. The utility filters ASCII data, but does not
conform directly to IRIS mnemonic values.

All octal, decimal, and hexadecimal values are represented by a backslash (\) followed by a value which determines
base. For example:

Octal values are preceded by a "\0": \020
Decimal values are preceded by a "\": \16
Hexadecimal values are preceded by a "\0x": \0x10

 Supplied Utilities 370

 UniBasic Reference Guide

EXAMPLES
lptfilter BX \010
lptfilter \0x8D \0x0A
lptfilter -g1 -fptr1

ERRORS

lptfilter not found

See also: Configuring Printer Drivers, Installing & Configuring UniBasic, CRT mnemonics

 Supplied Utilities 371

 UniBasic Reference Guide

MAKE
SYNOPSIS: Create multiple data files with the same attributes.

#MAKE {<attr>} filename {,filename ,. . .}

DESCRIPTION

attr are any optional attributes for the file. The attributes must include the specification of a record count and the
record length in the form: count:length may be included. The file structure selection must also be given. The structure
is indicated with a "T" for tree structure, or "C" for contiguous structure. This indicator is used for the file type. The
following other attributes can be included:

 P Public. A public file can be accessed by any account. If P is not selected, only the creator, or a user
with a higher privilege access it.

 R Read protect. This attribute makes it impossible for any other accounts to read the file.

 W Write protect. No other account can write data to the file.

EXAMPLE
MAKE <100:512CP> ABC D17 DISK1 FILE-17

ERRORS

Filename already exist; use "!" to replace

See also: File Attributes, Protections and Permissions

 Supplied Utilities 372

 UniBasic Reference Guide

MAKECMND
SYNOPSIS: Generate a command file for BATCH or EXEC.

#MAKECMND { switches file USING DIRfile} {/H}

DESCRIPTION
switches accepts the /H help option only.

file selects the filename to create and hold a series of commands. file is built as a standard Unix text file.

USING DIRfile selects the filename of a DIR /l=file utility output previously executed.

MAKECMND generates a command file for use by BATCH or EXEC commands. A command file generally
consists of a set of commands repeated for a number of filenames read from a DIR listing.

If no options are present on the command line, the user is prompted for the file to create, DIRfile.

The user is prompted to enter a series of commands to apply to each of the filenames in the DIRfile. Up to 20
command lines may be entered. Command lines are normally duplicated to the command file, with the following
replacement options:

Characters Replaced with (from DIR listing)

 ? A filename.

 ? (X,Y) Characters X through Y of a filename.

 @ The account [GRP-USR]

 <?> The file's attributes.

 <?+Y-Z> Add or subtract individual letters from the file's attributes.

 (SAV) The appropriate save command for the BASIC program (SAVE or PSAVE). DIR listing must be /V
type.

Negative subscripts can be used with the "?" character to specify a displacement from the end of the filename, for
example:

 ? "FILENAME"
 ?(,1,) "FILENAM"
 ?(-3) "NAME"

EXAMPLES
#MAKECMND cfile USING dirlist
Create Command File
Press [RETURN] to exit

Line #1: GET ? [RETURN]
Line #2: DUMP TEMP! [RETURN]
Line #3: GET TEMP [RETURN]

 Supplied Utilities 373

 UniBasic Reference Guide

Line #4: CHANGE ? <> [RETURN]
Line #5: (SAV) <?> ?! [RETURN]
Line #6: [RETURN]

This command file could be used to dump each file to ASCII type, then reload and save it with the original attributes.

ERRORS

Filename already exists; use "!" to replace

See Also: BATCH, DIR

 Supplied Utilities 374

 UniBasic Reference Guide

MAKEHUGE
SYNOPSIS: Convert a Universal file into a Huge Universal file.

$ MAKEHUGE filename

DESCRIPTION
MAKEHUGE converts an existing Universal file into a Huge Universal file that supports file sizes larger than 2
gigabytes. The MAKEHUGE utility does not change the index node size (ISAMSECT) of an Indexed file. The
ubcompress utility can be used before or after converting a file to change the index node size. Huge files are not
supported on some older operating systems..

EXAMPLES
$ MAKEHUGE CUSTHISTORY

ERRORS

Command format error
Not a Universal file
Cannot open file
Cannot write to file

See Also: File Attributes

 Supplied Utilities 375

 UniBasic Reference Guide

MAKEIN
SYNOPSIS: Build a new UniBasic Index File.

#MAKEIN

DESCRIPTION

MAKEIN is the standard BITS Indexed File Creation Utility. It is used whenever a standard Indexed File is to be
created. The first real data record may be set to zero or 1.

When creating a new file, you may press return for the number of records to allocate, since the files are dynamic.

MAKEIN supports up to 62 indices, 122-byte keys and an unlimited number of records.

The user is prompted to enter the following information:

Prompt Information to be Entered

Filename for indexed file The desired filename, including any logical unit, packname or directory pathname.

Append "!" to replace an existing file.

File attributes Protections and controls, if any, that are to be applied to the file. The choices are:

PRW. Default is to use the user's current protections. See BITS Attributes section
for a complete description.

Number of Data Records Total number of data records to be contained in the file when created. You may

either specify an exact number of records or press return allowing a file to expand
dynamically. The Environment Variable PREALLOCATE is used to limit the
number of records during expansion, automatic pre-allocation and other special
Indexed File features, controls and restrictions.

Record length in bytes The maximum size, in bytes, of the data record. It must be an even number, an odd-

sized record is rounded up automatically.

Number of Indices Total number of indices to be contained in the file. A maximum value of 62 may be

entered.

KEY Length (2-122 bytes) The maximum number of bytes in each KEY for each index. If more than one index

is defined, you will be prompted to enter the length of each index's key. It must be
an even number, an odd-sized key-length is rounded up automatically.

Preallocate data portion Specify whether to allocate the number of records specified during creation. Default

is to not pre-allocate the records.

Allocate record zero Specify whether you wish to use record number zero as the first real data record.

Default is to set zero as the first real data record.

 Supplied Utilities 376

 UniBasic Reference Guide

EXAMPLES
#MAKEIN
Index File creation package.

Filename for indexed File ICFILE
File attributes P
Number of user data records [return] Dynamic
Record length in Bytes 512
Number of Indices 2
 #1: KEY Length (2-122 bytes) 10
 #2: Key Length (2-122 bytes) 24
Pre-allocate the data portion of the file (Y-N/N) [RETURN]
Allocate record zero (Y-N/N) [RETURN]
Creating and structuring the file, Hold on;

Index File "icfile" has been created.

ERRORS

File already exists, use "!" to replace
Value out of range

See Also: BUILDXF, Indexed Data Files, PREALLOCATE

 Supplied Utilities 377

 UniBasic Reference Guide

makeosn
SYNOPSIS: Create an OSN activate runtime or listing of psaved programs.

$ makeosn {switches}

DESCRIPTION
makeosn, which comes with the Passport product, is used in conjunction with a DCI supplied Product Description
Number (PDN) to create multiple OSN (OEM Security Numbers). An OSN enables the runtime and/or listing of
programs encrypted by PSAVE , as well as operation of the PSAVE command itself.

The -m switch provides for the creation of both a master and user OSN.

EXAMPLES
$ makeosn
$ makeosn -m

ERRORS

Makeosn not running as root
No company/product description entered
Invalid PDN encryption

See Also: PSAVE, OEM

 Supplied Utilities 378

 UniBasic Reference Guide

makesp
SYNOPSIS: Create a system BASIC program.

$ makesp filename {filename . . .}

DESCRIPTION
filename is the name of any saved BASIC program which is to become a system command.

makesp converts saved BASIC programs into system programs by changing their type from SAVE to SYST. System
BASIC programs are treated as commands instead of programs when specified in a CHAIN statement. UniBasic
closes all channels and exits to command mode copying the entire CHAIN command into the input buffer for
execution as a command.

This feature is used to create system commands and utilities from BASIC programs. The LIBR, COPY, KILL,
PORT, and TERM utilities included with UniBasic are a few example system programs written in BASIC.

Setting the <O> overlay attribute in system programs preserves the current program running in memory when entered
directly from command mode.

EXAMPLES
$ makesp program1
$ makesp program1 program2 program3

ERRORS

Cannot open
No such file or directory

See Also: CHAIN, File Attributes

 Supplied Utilities 379

 UniBasic Reference Guide

MFDEL
SYNOPSIS: Delete a list of files simultaneously.

#MFDEL command list

DESCRIPTION

command list consists of a series of filenames to be deleted. Special options are permitted as follows:

 Convention Explanation

 @dirname@ Specify a default directory to apply to all subsequent filenames with the exception of
filenames in the form dirname:filename.

 ^Dirfile Extract the filenames to be deleted from DIRfile. Any @dirname@ selection is overridden
for the files within the DIRfile.

EXAMPLES
MFDEL MINE @progs@ DONM THAT file files:ZZZ

ERRORS
File not found
Command format error

See Also : KILL utility, KILL statement

 Supplied Utilities 380

 UniBasic Reference Guide

PORT
SYNOPSIS: Query or Change a Port's Status.

#PORT {port-range} {EVICT} {MONITOR | M | ACTIVITY}

DESCRIPTION

port-range Specifies the range of port numbers to operate upon. Valid range is 0 thru 1023. The port-range may
be a single port number, x-y to select ports x through y inclusive and @ or ALL for all valid port
numbers.

EVICT Evict - sign off all port numbers selected by port-range.

MONITOR Monitor the activity of all port numbers selected by port-range. The letter M or the word ACTIVITY

may replace the word MONITOR. Monitor mode displays the following information:

Port The UniBasic port number.
Group The Group Number a particular user is assigned to.
User The User Number a particular user is assigned to.
Processor The Unix Process running, UniBasic.
Program The program running under UniBasic. If a port is at command mode or at SCOPE, the

display is empty for that port's program.

EXAMPLES
#PORT ALL MONITOR
#PORT 20 EVICT
#PORT 132 ACTIVITY

ERRORS

Illegal Port; range allowed: (0-1023)
Illegal command

See Also: TERM Utility

 Supplied Utilities 381

 UniBasic Reference Guide

QUERY
SYNOPSIS: Obtain detailed information about a file.

#QUERY {/switches} {Filename}

DESCRIPTION

The optional switches may be used to as follows:

 Switch Meaning

 ? Print instructions for using QUERY. Instructions are also printed when no options are entered on the
command line.

 @ Output the available disk space. Performs the Unix "df -t"

 FILE Scan the file and print historical information.

 -L If FILE is an Indexed File, compute and display the number of keys in each directory. This option
may take several minutes to complete.

filename selects any filename, lu/filename, pack:filename, or full Unix pathname to be queried.

EXAMPLES
#QUERY ICFILE
#QUERY -L ICFILE
#QUERY @
#query ar.customers
AR.CUSTOMERS is a UniBasic INDEXED file with 500 records of 335 words each

Size of UniBasic header: 512 bytes.
There are: 2 indices, 340 active records of 670 bytes each

INDEX KEY LEN WORDS KEY LEN BYTES ACTIVE KEYS
 1 3 6 Issue QUERY -L FILE
 2 9 18 Issue QUERY -L FILE

Created on UniBasic Level: 5.1
Full path and filename: /usr/dci/files/ar.customers

Priv: none, Account Group: 102, User: 204
Protection: <60> Unix: <660> Additional Attr: <P>, Size: 701 Blocks
Creation: 12-07-93
Accessed: 12-07-93 (0) hours ago

ERRORS

Command format error
Filename does not exist
Protected filesystem or directory
File is Read-protected

See Also: SCAN Utility, Files

 Supplied Utilities 382

 UniBasic Reference Guide

SCAN
SYNOPSIS: Obtain detailed information about a file.

#SCAN {switches} { directory } {filename | DIRfile } . . .

DESCRIPTION

If no switches or filenames are entered on the command line, the user is prompted for filename to be interrogated.
Press [RETURN] to terminate this method of operation.

switches and options may be used to affect the operation as follows:

 Option Meaning

 /H Output instructions for using SCAN.

 /L=$name Re-direct all output to the named pipe$name.

 /L=filename Re-direct all output to filename as a text file.

 packname Specify the packname (directory) to be searched for all subsequent filenames. This option
may be used to simplify command input when a number of filenames on the same pathname
are to be scanned.

 filename A specific filename to obtain detailed information for.

 ^DIRfile A list of filenames, created by the DIR utility to obtain detailed information for. Each
filename within the DIR output file is scanned.

EXAMPLES
#SCAN ICFILE
#SCAN 1/data1
#SCAN /H

ERRORS
Command format error
Filename does not exist
Protected filesystem or directory
File is Read-protected

See Also: QUERY Utility, Files

 Supplied Utilities 383

 UniBasic Reference Guide

TERM
SYNOPSIS: Query or change a port's status.

#TERM {port-range} COMMAND {parameters}

DESCRIPTION

port-range Specifies the range of port numbers to operate upon. Valid range is 0 thru 1023. The port-range may
be a single port number, x-y to select ports x through y inclusive and @ or ALL for all valid port
numbers.

EVICT Evict - sign off all port numbers selected by port-range. The letter E may replace the word EVICT.

MONITOR Monitor the activity of all port numbers selected by port-range. The letter M may replace the word

MONITOR. Monitor mode displays the following information:
 UniBasic Port number
 tty name or number
 Default pathname
 User account number
 Operational mode
 Channel in use
 Program and files currently in use

 The following two optional parameters may used in conjunction with the M COMMAND.

'F' Output all channels and files currently opened for each UniBasic port.

'C' Causes continuous monitoring, repeating every 10 seconds.

A port can be shown to be in one of three operating modes:

 Mode Description

 Cmnd Prompt mode, waiting for a command or statement

 Run BASIC program execution

 List BASIC program being listed

EXAMPLES
TERM ALL EVICT
TERM @ E
TERM 20 M
TERM @MF

ERRORS

Illegal command, "TERM /H" for list of commands

See also: PORT Utility

 Supplied Utilities 384

 UniBasic Reference Guide

ubcompress
SYNOPSIS: Compress UniBasic Indexed Files.

$ ubcompress [-t tempdir] [-v] filenames

DESCRIPTION

ubcompress reduces the size occupied by the index portion of a UniBasic index file. If any errors occur during
compression, the original file is unaffected.

There must be sufficient disk space for the original and a temporary index portion at the same time. It may be useful
to list the files in order of smallest-to-largest to avoid running out of disk space when processing the larger files.

-t tempdir specifies the directory for temporary files.
-v displays the file size and prompts user before replacing.

If your hard disk is separated into several file systems, you may need to specify the directory in which to build the
temporary file, using either the environment variable TMPDIR, or the command line option "-t". File types other than
UniBasic indexed files are ignored. The default temporary directory is /usr/tmp.

This utility should be run periodically on files subjected to substantial insertion and deletion of keys. Files which
insert and delete relatively sequential keys, such as order files, temp files etc. will benefit most from ubcompress.

EXAMPLES
ubcompress /usr/ub/1
ubcompress -t /u/tmp -v /u/ub/files
ubcompress /usr/*

ERRORS

Cannot generate temporary filename
Cannot open filename: c-tree error
Cannot create index file
Cannot initialize additional index number X
Cannot reopen index file
Cannot add key to index
Cannot close temporary file
Cannot close original file
Cannot replace original file
Cannot set original file mode
Cannot set original file ownership

See also: Indexed Files and Universal Files.

 Supplied Utilities 385

 UniBasic Reference Guide

ubconvertfiles
SYNOPSIS: Convert UniBasic file(s) to Universal file(s).

$ ubconvertfiles { -h | -i x | -n | -o dir | -t x | -v n | -C h | -F | -V} filenames

DESCRIPTION

ubconvertfiles converts non-Universal UniBasic Indexed, Contiguous, and Formatted file(s) to Universal file(s). The
source file(s) must be UniBasic BCD file(s) and must be converted on the native platform. The Indices must not
contain IRIS style keys (PREALLOCATE option 64) unless the “-i k” option is set and the keys consist only of
printable characters. Binary data (e.g. packed data) should be avoided for maximum platform independence.

The converted file(s) may be read on a different hardware platform using UniBasic and dL4. The converted file(s)
may also be read on a Microsoft Windows system using version 3.0 and higher of dL4 for Windows.

It is recommended that you have a current backup of the file(s) to be converted before processing. Also, verify that the
file(s) to be converted are currently not in use by someone else. In other words, no one should have the file(s) open.

 Note: You may use the ubrebuild utility to verify the integrity of an Indexed file's deleted record list before
running this program.

filenames is a space separated list of files to convert to UniBasic Universal data files. Wildcards characters are
accepted in filenames.

The command line options are:

 -h print help.

 -i x where 'x' is case insensitive and specifies the option(s) for Indexed Contiguous files. Options c, e, f,
and p are mutually exclusive, but may be combined with d to produce the desired results.

 c converted file will have no deleted record list.
e abort on corrupted deleted record flag; file is not converted.
f ignore any deleted record flag error; convert file with a possibly corrupt deleted
 record list.
k convert IRIS style keys (“k” attribute). The keys must not contain non-printable characters.
p on deleted record flag error, stop building the deleted record list and retain the portion of the list
 already processed. (default)

 d disable "records-in-use" count for dL4 files (non-default). Disabling the count will increase file
 performance when deleting or adding records. It will also, however, cause SEARCH statement
 mode 1, index 0 to report an incorrect result for STATUS=1 (number of available records) and
 STATUS=7 (number of records in use). In both cases the result will assume that there are no
 deleted records in the file. Disabling the count does not prevent the reuse of deleted records; it
 only effects the SEARCH functions that return record counts. Note that the "number of records
 available" is, in fact, always inaccurate because Universal files are dynamically expandable up to
 the amount of disk space available. The QUERY utility uses the SEARCH statement and will
 display an incorrect active record count for any file with the "records-in-use" count disabled.

 Supplied Utilities 386

 UniBasic Reference Guide

 -n report information about the file(s) without performing a conversion. May be used to test file(s) and/or
gather information on file(s). The information reported is the file name, file type, file format,
UniBasic release level, workspace, convertible status, and summary of file(s) processed. For example:

cust.master
 Type: INDEXED
 Format: BCD
 Created on UniBasic Level: 5.5
 Work space needed: 2936
 Convertible

 1 file(s) processed
 All file(s) are convertible

 The listing of filenames as generated by the ls command may be redirected to a file, the file inspected
and edited as needed, then used as input to the ubconvertfiles utility. For example:

 ls * >files

 Creates the file 'files' which contains the name of all the files in the present working directory. This
file may be inspect and/or edited, then used as the source of filenames to the ubconvertfiles utility as
follows:

 cat files | xargs ubconvertfiles -v9

 -o dir build the Universal file(s) in directory 'dir' and keep the original file(s) unchanged.

 -t x where 'x' is case insensitive and specifies the file type to convert. Multiple options may be specified.
i for Indexed
c for Contiguous
f for Formatted

 -v n verbose mode 'n' where 'n' may be 0, 1, 2, 3, 4, 5, or 9. Each verbose mode outputs its own statistics
plus those of the lower modes. Examples may be found in the Statistical Reports section of the
ubconvert User's Guide.

 -C h specify dL4 Character set 'h'.

 -F force conversion of non-BCD file(s).

 -V print version number of this utility.

EXAMPLES
ubconvertfiles -h
ubconvertfiles -o /tmp /usr/ub/files/ar1
ubconvertfiles -t c /usr/ub/data/sales2

ERRORS
Error processing file 'filename': detected non-convertible file type: Unix
Error processing file 'filename': is a BITS file
Error processing file 'filename': file contains IRIS style keys

See also: Contiguous Files, Formatted Files, Indexed Files, and Universal Files in the UniBasic Reference
Guide.

 Supplied Utilities 387

 UniBasic Reference Guide

ubrebuild
SYNOPSIS: Rebuild a UniBasic Indexed File deleted record list.

$ ubrebuild {-c } {-r } {-s } {-f } { -v } filenames

DESCRIPTION

ubrebuild rebuilds the deleted record list within a non-Universal Indexed file. When the deleted record list is
damaged, your UniBasic application may receive a c-tree error 31.

A scan of the free record chain is performed and the file is rebuilt based on the actual deleted record marks within the
file, thus ignoring the existing pointers in the free chain.

Several options are available in determining how to rebuild a file. The command line options are:

 -v verbose mode, displays data during operation.

 -c unconditionally clear the delete list. The next record allocated will extend (add) a new record to the
file. Deleted records are orphaned.

 -r unconditionally clear the delete list. Scan all records in the file rebuilding the delete list

 -s scan delete list for errors. Report any errors and proceed to clear or rebuild only if errors were found
and -r or -c is specified.

 -f force use of a temp file (instead of memory) for -s option.

File types other than UniBasic indexed files are ignored by ubrebuild.

EXAMPLES
ubrebuild -c /usr/ub/files
ubrebuild -s /usr/ub/files/ar1
ubrebuild *

ERRORS

Cannot gain exclusive access to filename
No record length
Unable to create temporary file

See also: Indexed Files, Universal Files, SEARCH Statement, C-tree errors

 Supplied Utilities 388

 UniBasic Reference Guide

ubterm
SYNOPSIS: Create UniBasic Terminal Definition File.

$ ubterm {terminal ...}

DESCRIPTION

terminal is the name of a terminal having a corresponding Unix Terminfo driver. An error is printed if the
TERMINFO name is undefined, if the sys directory cannot be found in any path within LUST, or permission to
create a file in the sys directory is denied.

To create a UniBasic term file from a Unix Terminfo driver, a minimum set of functions (cursor addressing & clear
screen) must be contained in the Terminfo definition. A list of UniBasic mnemonics not currently defined in the
Terminfo driver is displayed. Specifically, the mnemonic CU (clear unprotect) is not defined by Terminfo and should
be added manually.

UniBasic term files are maintained using a standard editor, like "vi".

EXAMPLE
$ ubterm tvi925 wyse60

ERRORS

Cannot locate the TERMINFO driver
No sys/ directory found in "LUST" environment variable
Cannot open output file sys/term.xxx

See also: Installing UniBasic, CRT $TERM files

 Supplied Utilities 389

 UniBasic Reference Guide

ubtestlock
SYNOPSIS: Diagnostic Program to Test Record Locking.

$ ubtestlock filename byte-offset length { ... }

DESCRIPTION

ubtestlock is a test diagnostic program to test record locking in a network environment. It may be executed from the
Unix command prompt. It performs the following five operations, any of which may report a system error:

1. open the file
2. seek to the byte-offset
3. read the length number of bytes
4. read-lock (without wait)
5. write-lock (without wait)

If the system is configured correctly for record locking no messages are returned from the program and the system
prompt ($) is displayed. Any failures must be analyzed to determine if the read-lock or write-lock operation was the
actual cause of the failure. The following is a typical message that indicates record locking is not available:

Read lock error: No locks available

filename is any absolute or relative path and name of a file that exist on the file system for which the user has read and
write access permissions.

byte-offset is a numeric value specifying the starting location in filename at which to seek and perform the read, read-
lock, and write-lock operations.

length is a numeric value specifying the number of bytes to read. A warning is reported if length specifies bytes
beyond the end-of-file (EOF). For example, if test1 is a 40 byte file and the following command is issued:

$ ubtestlock test1 5 40

The following message is reported:

Warning: read request 40, actual read 36 in file test1

EXAMPLE
$ ubtestlock testfile 0 10
$ ubtestlock testa 0 10 testb 20 10

ERRORS
Unable to open file 'testfile': No such file or directory
Unable to open file 'testfile': Permission denied
Read lock error: Link has been severed

See also:

 Supplied Utilities 390

 UniBasic Reference Guide

WHO
SYNOPSIS: Displays information about your UniBasic process.

#WHO

DESCRIPTION
WHO displays the following information about your UniBasic process:

 Port The UniBasic port number

 CPU Secs (not used)

 Connect The UniBasic session time in hours and minutes

 Time System date and time

 Disk (not used)

 User User and Group Number

 Default The current working directory name

 Total Used (not used)

 Limit (not used)

 Left (not used)

EXAMPLE
*WHO : Port 7 CPU Secs: 0.0 Connect: 10:17 Time: 15 April 1993 16:20:47 Disk: User [101-
101] Default: /usr/ub/sys Total Used: -1, Limit: -1, Left: -1

ERRORS

None

See also: TERM Utility, PORT Utility

 Appendix A - ASCII CODES 391

 UniBasic Reference Guide

Appendix A - ASCII CODES
ASCII, an acronym for American Standard Code for Information Interchange, is a 7-bit representation for data
transmission. ASCII characters stored internally conform to 7-bit ASCII industry standard. 8-bit ASCII characters are
reserved for graphics, and crt mnemonics.

As discussed in Internal Representation of ASCII Characters(f), characters are toggled from the familiar IRIS/BITS 8-bit
to the internal 7-bit form.

In the following table, INT refers to the internal storage of the character, EXT the external (program) format. ASCII
codes are shown in both octal and decimal. CT is used to indicate a CONTROL character. All codes shown are for the
printable character set. INT codes greater than 128 (200 octal) or EXT codes less than 128 (200 octal) represent CRT
mnemonics.

INT/EXT
OCTAL DECIMAL Key Char Comments

000/200 000/128 CT-@ NUL Null, tape feed.
001/201 001/129 CT-A SOH Start heading.
002/202 002/130 CT-B STX Start text.
003/203 003/131 CT-C ETX End text/message; EOM.
004/204 004/132 CT-D EOT End of transmission.
005/205 005/133 CT-E ENQ Enquiry.
006/206 006/134 CT-F ACK Acknowledge.
007/207 007/135 CT-G BEL Ring bell.
010/210 008/136 CT-H BS Backspace.
011/211 009/137 CT-I HT Horizontal tab.
012/212 010/138 CT-J LF Line feed.
013/213 011/139 CT-K VT Vertical tab.
014/214 012/140 CT-L FF Form feed.
015/215 013/141 CT-M CR Carriage return.
016/216 014/142 CT-N SO Shift out.
017/217 015/143 CT-O SI Shift in.
020/220 016/144 CT-P DLE Data link escape.
021/221 017/145 CT-Q DC1 XON.
022/222 018/146 CT-R DC2 AUX ON.
023/223 019/147 CT-S DC3 XOFF.
024/224 020/148 CT-T DC4 AUX OFF.
025/225 021/149 CT-U NAK Negative ack.
026/226 022/150 CT-V SYN Synchronous idle.
027/227 023/151 CT-W ETB End block/ medium;LEM.
030/230 024/152 CT-X CAN Cancel.
031/231 025/153 CT-Y EM End of medium.
032/232 026/154 CT-Z SUB Substitute.
033/233 027/155 CT-[ESC Escape.
034/234 028/156 CT-\ FS File separator.
035/235 029/157 CT-] GS Group separator.
036/236 030/158 CT-^ RS Record separator.
037/237 031/159 CT-_ US Unit separator.

 Appendix A - ASCII CODES 392

 UniBasic Reference Guide

INT/EXT
OCTAL DECIMAL Key Char Comments

040/240 032/160 space SP Space
041/241 033/161 ! Exclamation point
042/242 034/162 " Quotation mark
043/243 035/163 # Pound sign
044/244 036/164 $ Dollar sign
045/245 037/165 % Per cent symbol
046/246 038/166 & Ampersand
047/247 039/167 ‘ Accent acute or '
050/250 040/168 (Left parenthesis
051/251 041/169) Right parenthesis
052/252 042/170 * Asterisk
053/253 043/171 + Plus sign
054/254 044/172 , Comma
055/255 045/173 - Minus sign or hyphen
056/256 046/174 . Period
057/257 047/175 / Forward slash
060/260 048/176 0 Numeral zero
061/261 049/177 1 Numeral one
062/262 050/178 2 Numeral two
063/263 051/179 3 Numeral Three
064/264 052/180 4 Numeral four
065/265 053/181 5 Numeral five
066/266 054/182 6 Numeral six
067/267 055/183 7 Numeral seven
070/270 056/184 8 Numeral eight
071/271 057/185 9 Numeral nine
072/272 058/186 : Colon
073/273 059/187 ; Semi-colon
074/274 060/188 < Less than symbol
075/275 061/189 = Equals sign
076/276 062/190 > Greater than symbol
077/277 063/191 ? Question mark
100/300 064/192 @ At sign
101/301 065/193 A Uppercase letter A
102/302 066/194 B Uppercase letter B
103/303 067/195 C Uppercase letter C
104/304 068/196 D Uppercase letter D
105/305 069/197 E Uppercase letter E
106/306 070/198 F Uppercase letter F
107/307 071/199 G Uppercase letter G
110/310 072/200 H Uppercase letter H
111/311 073/201 I Uppercase letter I
112/312 074/202 J Uppercase letter J
113/313 075/203 K Uppercase letter K
114/314 076/204 L Uppercase letter L
115/315 077/205 M Uppercase letter M
116/316 078/206 N Uppercase letter N
117/317 079/207 O Uppercase letter O
120/320 080/208 P Uppercase letter P

 Appendix A - ASCII CODES 393

 UniBasic Reference Guide

INT/EXT
OCTAL DECIMAL Key Char Comments

121/321 081/209 Q Uppercase letter Q
122/322 082/210 R Uppercase letter R
123/323 083/211 S Uppercase letter S
124/324 084/212 T Uppercase letter T
125/325 085/213 U Uppercase letter U
126/326 086/214 V Uppercase letter V
127/327 087/215 W Uppercase letter W
130/330 088/216 X Uppercase letter X
131/331 089/217 Y Uppercase letter Y
132/332 090/218 Z Uppercase letter Z
133/333 091/219 [Left bracket.
134/334 092/220 \ Backslash.
135/335 093/221] Right bracket.
136/336 094/222 ^ Up arrow, caret.
137/337 095/223 _ Underscore.
140/340 096/224 ‘ Accent grave.
141/341 097/225 a Lowercase letter A
142/342 098/226 b Lowercase letter B
143/343 099/227 c Lowercase letter C
144/344 100/228 d Lowercase letter D
145/345 101/229 e Lowercase letter E
146/346 102/230 f Lowercase letter F
147/347 103/231 g Lowercase letter G
150/350 104/232 h Lowercase letter H
151/351 105/233 i Lowercase letter I
152/352 106/234 j Lowercase letter J
153/353 107/235 k Lowercase letter K
154/354 108/236 l Lowercase letter L
155/355 109/237 m Lowercase letter M
156/356 110/238 n Lowercase letter N
157/357 111/239 o Lowercase letter O
160/360 112/240 p Lowercase letter P
161/361 113/241 q Lowercase letter Q
162/362 114/242 r Lowercase letter R
163/363 115/243 s Lowercase letter S
164/364 116/244 t Lowercase letter T
165/365 117/245 u Lowercase letter U
166/366 118/246 v Lowercase letter V
167/367 119/247 w Lowercase letter W
170/370 120/248 x Lowercase letter X
171/371 121/249 y Lowercase letter Y
172/372 122/250 z Lowercase letter Z
173/373 123/251 { Left brace
174/374 124/252 | Vertical bar
175/375 125/253 } Right brace
176/376 126/254 ~ Alt mode, Tilde
177/377 127/255 RUB DEL Delete, rubout

 Appendix B - CRT Mnemonics 394

 UniBasic Reference Guide

Appendix B - CRT Mnemonics
The following table shows the mnemonic code, \xxx\ octal format used within an application as an equivalent to the
Code, the Internal value transmitted to file or device for the mnemonic, and a brief description of mnemonic. For a
complete description of the mnemonics, refer to CRT Expressions and Mnemonics.

Code \xxx\ Internal Description

ET 003 203 ETX Code.
RB 007 207 Ring Terminal Bell.
ML 010 210 Move Cursor Left.
TF 011 211 Tab Forward to next tab stop (BITS)
LF 012 212 Line Feed.
VT 013 213 Vertical Tab
FF 014 214 Form Feed
CR 015 215 Carriage Return.
MH 017 217 Move Cursor Home.
CS 020 220 Clear Screen.
S1 021 221 Special user code 1.
S2 022 222 Special user code 2.
S3 023 223 Special user code 3.
S4 024 224 Special user code 4.
ES 025 225 End Status Line definition.
SO 026 226 Status On.
SF 027 227 Status Off
WS 030 230 Write Status Line.
K0 031 231 Cursor Off.
K1 032 232 Cursor Blinking Block.
K2 033 233 Cursor Steady Block.
K3 034 234 Cursor Blinking Underline.
K4 035 235 Cursor Steady Underline
BG 036 236 Begin Graphics (Extended Graphics).
EG 037 237 End Graphics.
MR 040 240 Move Cursor Right one position.
RD 041 241 Read Current Cursor position.
EF 042 242 End Function Key definition.
CU 043 243 Clear Screen Unprotected.
CL 044 244 Clear to End-of-Line (unprotected).
CE 045 245 Clear to end-of-screen (unprotected).
P1 046 246 Program Function Key 1.
P2 047 247 Program Function Key 2.
P3 050 250 Program Function Key 3.
P4 051 251 Program Function Key 4.
MD 052 252 Move Cursor Down 1 line.
MU 053 253 Move Cursor Up 1 line.
P5 054 254 Program Function Key 5.
P6 055 255 Program Function Key 6.
P7 056 256 Program Function Key 7.
Code \xxx\ Internal Description

 Appendix B - CRT Mnemonics 395

 UniBasic Reference Guide

P8 057 257 Program Function Key 8.
BB 060 260 Begin Blink mode.
EB 061 261 End Blink mode.
BR 062 262 Begin Reverse Video mode.
ER 063 263 End Reverse Video mode.
BD 064 264 Begin Dimmed Intensity mode.
ED 065 265 End Dimmed Intensity mode.
BP 066 266 Begin Protected Field mode.
EP 067 267 End Protected Field mode.
BU 070 270 Begin Underline mode.
EU 071 271 End Underline mode.
BX 072 272 Begin Expanded Print mode.
EX 073 273 End Expanded Print mode.
FM 074 274 Enter Format mode.
FX 075 275 Exit Format mode.
LK 076 276 Lock Keyboard.
UK 077 277 Unlock Keyboard.
BT 100 300 Begin Transmission from CRT memory.
MP 101 301 Use Memory Pointer instead of cursor for next positioning command.
IL 102 302 Insert Line at current position.
DL 103 303 Delete Line at current position.
IC 104 304 Insert Character at current position.
DC 105 305 Delete Character at current position.
CT 106 306 Clear Tabs {all}.
ST 107 307 Set Tab at current position.
AE 110 310 Auxiliary Port Enable.
AD 111 311 Auxiliary Port Disable.
SL 112 312 Send Line {all}.
LU 113 313 Send Line {unprotected}.
SP 114 314 Send Page {all}.
GR 115 315 Set Color Green.
TB 116 316 Tab Backward to last tab stop.
PI 117 317 Position Indicator Character.
RE 120 320 Set Color Red.
PU 121 321 Send Page {unprotected}.
YE 122 322 Set Color Yellow.
BL 123 323 Set Color Blue.
MA 124 324 Set Color Magenta.
CY 125 325 Set Color Cyan.
WH 126 326 Set Color White.
XX 127 327 Initialize Terminal defaults.
SA 130 330 User-defined code A.
SB 131 331 User-defined code B.
SC 132 332 User-defined code C.
SD 133 333 User-defined code D.
BV 134 334 Box Vertical; Vertical line character.
BH 135 335 Box Horizontal; Horizontal line character.
 136-141 Reserved for future use.
WD 142 342 Set 80-column mode.
Code \xxx\ Internal Description

NR 143 343 Set 132-column mode.
RF 144 344 Reset Function Keys to defaults.

 Appendix B - CRT Mnemonics 396

 UniBasic Reference Guide

TL 145 345 Transmit line {unprotected}.
TP 146 346 Transmit line {protected} or Toggle Page.
TR 147 347 Transmit screen {unprotected}.
TS 150 350 Transmit screen {protected}.
PS 151 351 Print contents of Screen.
RS 152 352 Reset Terminal to defaults.
BA 153 353 Begin Transparent Print.
EA 154 354 End Transparent Print.
RV 155 355 Display Reverse Video as light on dark.
NV 156 356 Display Reverse Video as dark on light.
BO 157 357 Begin non-transparent Print.
EO 160 360 End non-transparent Print.
BK 161 361 Perform return without line-feed, Or Set Color Black.
IO 162 362 IOxx mnemonic prefix code.
BPW 173 373 Begin Protect Window Display replaces use of BD dimmed intensity.
EPW 174 374 End Protect Window Display.
PC1 175 375 PC1 Cursor secondary (coordinate separator).
PC2 176 376 PC2 Cursor tertiary (sequence terminator).
PC 177 377 '@' Start of Cursor Address Sequence.

Only the preceding mnemonics and Extended Graphics Mnemonics on the following pages may be defined within a term
file. The user cannot define custom mnemonic names.

Combination IO mnemonics are represented by the IO mnemonic byte followed by an additional byte for 4-letter
mnemonics, and two bytes for six letter mnemonics. They have no definition within the term file, but are shown here
when it may be desirable to use octal form instead of the mnemonic:

Code \xxx\ Internal Description

IOBE 001 201 Begin Input Echo mode.
IOEE 002 202 End Input Echo mode.
IOBI 003 203 Begin Transparent Input.
IOEI 004 204 End Transparent Input.
IOBO 005 205 Begin Transparent Output.
IOBD 031 231 Enable Destructive Backspace.
IOED 032 232 Disable Destructive Backspace.
IOB\ 033 233 Begin Echoing \ on Escape.
IOE\ 034 234 End Echoing \ on Escape.
IOCI 035 235 Clear Type-ahead Buffer.
IOBC 036 236 Begin Activate on Control Character.
IOEC 037 237 End Active on Control Character.
IOBX 041 241 Begin XON/XOFF protocol.
IOEX 042 242 End XON/XOFF protocol.
IORS 043 243 Reset IOxx parameters.
IOIH 044 244 Set Input Handler to next byte./

 Appendix B - CRT Mnemonics 397

 UniBasic Reference Guide

The following mnemonics are accepted, but perform no-operation:

Code \xxx\ Internal Description

IOIHIR 001 201 Standard Input Handling
IOIHSM 002 202 SM Basic Input Statement.
IOIHSR 003 203 SM Basic Read Style Input.
IOISSI 004 204 Simple Input; CTRL+S/Q.

Three additional Debugging mnemonics are supported; HX, OC, and AS. They affect the output of the next string
variable presenting the entire string (including zero-bytes) in either Hex, Octal or ASCII respectively. They are not
definable as output replacement strings within the term file.

For a complete list of terminal mnemonics, see CRT Mnemonics and Expressions.

 Appendix C - Error Numbers 398

 UniBasic Reference Guide

Appendix C - Error Numbers
When an error is detected during program execution, and error branching using IF ERR(s), ERRSET(s), or
ERRSTM(s) is not enabled, the program is terminated to debug mode (files open) and the following message is
displayed:

 Error in stn stn;sub-stn / text

where stn is the statement number, sub-stn the sub-statement number at which the error occurred, and text is a message
describing the error.

The following table represents the internal UniBasic error returned by the ERR(0)(e) function. BASIC Error numbers
are positive in the range 1 to 255. Negative error numbers are used to return special Unix errno errors which do not
map directly to a BASIC error. The corresponding IRIS SPC(8)(e) numbers and System Errors may be found on
subsequent pages.

The numbering of errors divides them into six groups to aid in program error branching.

Group 1--Encoding Syntax and Command Errors
Error
Number Text Description

1 Unrecognizable word
2 Format error
3 Incorrect parenthesis closure
4 Incorrect subscript closure
5 Line (stn) number is missing or invalid
7 IFs without 'ENDIF' \
8 'ELSE' without 'IF') Only issued by RUN or SAVE
9 'ENDIF' without 'IF' /
10 Too many variables defined, limit is 348
11 Statement not executable in keyboard mode
12 No program in partition
13 Non-existent lines referenced which overlap renumbered lines
15 Invalid character
16 Invalid speed, or invalid command from your port
17 ENTER statement is illegal if not in a subprogram
18 The ENTER statement can only be executed once in a subprogram
19 Program has been corrupted - cannot execute

Group 2--Syntax and Program Structure Errors
Error
Number Text Description

20 Syntax error
21 Syntax error in DEFined function
22 No such line (stn) number
23 Variable not specified
24 User function not defined
25 Illegal function usage
26 'COM' statement out of order
27 'FOR' without a matching 'NEXT'

 Appendix C - Error Numbers 399

 UniBasic Reference Guide

28 'NEXT' without a matching 'FOR'
29 'RETURN' without a prior 'GOSUB'
30 Number/types of arguments do not match parameter list
31 'Function argument' or 'Statement Mode' out of range
32 String expression not allowed here
33 Syntax error in 'DATA' statement or CRT control string
34 Formatted output overflows output string
35 Variable in CHAIN READ not passed by CHAIN WRITE
36 Variable from CHAIN WRITE not in this program
37 String expression must be used here
38 Variable in CHAIN READ already contains data
39 Variable in CHAIN WRITE contains no data

Group 3--Complexity and Limit Errors
Error
Number Text Description

40 'FOR' statements nested too deep
41 'GOSUB' statement nested too deep
42 User DEFined functions nested too deep
43 Expression too complex for evaluation
45 Arithmetic error - (X/zero, overflow, LOG(0), or SQR -X)
46 User partition space exhausted
47 Execution prohibited from this account
48 Format string is invalid or too complex for evaluation

Group 4--Array and String Errors
Error
Number Text Description

50 Variable precision cannot be changed
51 Attempt to DIMension an existing simple variable
52 Variable name not DIMensioned
53 Array size exceeds initial DIMension
54 Subscript exceeds DIMension
55 Illegal subscript specified
56 Strings can have only one (1) DIMension
57 Parameter variable in ENTER statement has already been allocated
58 String or array variable has not been DIMensioned
59 A string may not be re-DIMensioned

Group 5--Matrix Errors
Error
Number Text Description

60 Same matrix on both sides of 'MAT' is illegal here
61 Matrices have different DIMensions
62 Matrix has zero DIMension; Argument is not a matrix
63 Matrix DIMensions are not compatible for this operation
64 Matrix is not square
65 Matrix cannot be INVerted - has zero DETerminant

Group 6--File and I/O Errors
Error
Number Text Description

70 Filename does not exist

 Appendix C - Error Numbers 400

 UniBasic Reference Guide

71 Filename already exists; use '!' to replace
72 File in use; cannot CREATE, DELETE, EOPEN or MODIFY
74 File is in use and locked
75 File is delete protected
76 Out of DATA
77 Extra INPUT numeric items; warning only
78 INPUT of wrong type or insufficient
79 DATA of wrong type (numeric/string)
80 Illegal pathname or filename
81 Illegal channel number specified (or ISAMFILES value too small)
82 Protected Directory or file system, access not granted
85 System is out of channels - notify Manager
86 Not a loadable program file - wrong revision, protected or corrupted
87 Selected channel is not open
88 Illegal record number (past end of file)
89 Assigned channel limit exceeded; too many OPEN files
90 File size is too large for system; cannot expand
91 File is Read-protected
92 File is Write-protected
93 Invalid parameter or syntax for command
95 No such logical unit/pack
96 Program is Re-SAVE/COPY protected
98 File system has no available disk space
100 Selected data record is locked
101 File is not Indexed or Mapped
102 Invalid or non-existent Index number selected
104 Invalid or un-implemented user CALL ID number
105 Parameter list overflow
106 Error detected in/by user CALL routine
107 Not enough parameters passed to user CALL
108 User call parameters out of order
110 C-Tree Index File error; print ERR(8) for details, or var DIM < key len
112 CRT X,Y coordinate out of range
114 CRT Type not selected for your port
120 No communication file '/tmp/comm.listx.y'
121 Communication buffer is full
122 Illegal port number selected
131 Program Channel not OPEN; cannot resave until SAVE/PSAVE issued
132 Channel is already OPEN and in-use
133 Illegal item number selected
134 Data does not match item specification and cannot be converted
136 File is being built or deleted
138 Item number is not sequential
139 Subprogram file not found
140 Subprogram file is read protected
141 Subprogram file is not a BASIC program
142 Not a data file (can't OPEN or replace)
144 Cannot cross ISAM record boundary
150 WINDOWS environment variable not defined or count exceeded
151 No open windows
152 Window tracking not enabled
156 Record Not Written to Formatted Item File
157 Data Read error
158 Input timed out

 Appendix C - Error Numbers 401

 UniBasic Reference Guide

254 ESCape has been pressed and no ESCape branching enabled
255 Security Failure - Grace or Demonstration period has expired

IRIS Error Numbers

When an error is detected during program execution, and error branching using IF ERR(s), ERRSET(s), or
ERRSTM(s) is not enabled, the program is terminated to debug mode (files open) and the following message is
displayed:

 Error in stn stn;sub-stn / text

where stn is the statement number, sub-stn the sub-statement number at which the error occurred, and text is a message
describing the error.

The following table represents the error returned by the SPC(8)(e) function. In some cases, several UniBasic errors map
to the same SPC(8)(e) value. BASIC Error numbers are positive in the range 1 to 255. Negative error numbers are used
to return special Unix errno errors which do not map directly to a BASIC error.

Error
Number Text Description

1 Syntax error
2 Illegal string operation
3 User partition space exhausted
4 Format error
5 Invalid character
6 No such line (stn) number
8 Too many variables defined, limit is 348
9 Unrecognizable word
14 Out of DATA
15 Arithmetic error - (X/zero, overflow, LOG(0), or SQR -X)
15 Matrix cannot be INVerted - has zero DETerminant
16 'GOSUB' statement nested too deep
17 'RETURN' without a prior 'GOSUB'
18 'FOR' statements nested too deep
19 'FOR' without a matching 'NEXT'
20 'NEXT' without a matching 'FOR'
21 Expression too complex for evaluation
23 Array size exceeds initial DIMension
23 Variable precision cannot be changed
23 Attempt to DIMension an existing simple variable
24 Strings can have only one (1) DIMension
25 String variable has not been DIMensioned
27 Syntax error in DEFined function
28 'Function argument' or 'Statement Mode' out of range
28 Assigned channel limit exceeded; too many OPEN files
28 Illegal subscript specified
28 Parameter list overflow
28 Subscript exceeds DIMension
29 Illegal function usage
30 User function not defined

 Appendix C - Error Numbers 402

 UniBasic Reference Guide

31 User DEFined functions nested too deep
32 Matrices have different DIMensions
33 Matrix has zero DIMension; Argument is not a matrix
33 Variable name not DIMensioned
34 Matrix DIMensions are not compatible for this operation
34 Same matrix on both sides of 'MAT' is illegal here
35 Matrix is not square
36 Invalid or un-implemented user CALL ID number
38 Error detected in/by user CALL routine
38 Not enough parameters passed to user CALL
38 User call parameters out of order
39 Formatted output overflows output string
40 Channel is already OPEN and in-use
41 Illegal pathname or filename
42 Filename does not exist
43 Invalid parameter or syntax for command
44 Not a data file (can't OPEN or replace)
45 File is Read-protected
46 File is delete-protected
49 Selected channel is not open
51 Illegal record number (past end of file)
52 Record Not Written to Formatted Item File
53 Illegal item number selected
53 Item number is not sequential
54 Data does not match item specification and cannot be converted
55 Statement not executable in keyboard mode
56 No program in partition
57 A string may not be re-DIMensioned
58 Format string is invalid or too complex for evaluation
62 Communication buffer is full
62 Illegal port number selected
67 Filename already exists; use '!' to replace
70 DATA of wrong type (numeric/string)
70 Data Read error
76 File is in use and locked
79 Invalid speed, or invalid command from you port
89 Execution prohibited from this account
91 Variable in CHAIN READ not passed by CHAIN WRITE
92 Variable from CHAIN WRITE not in this program
93 Variable in CHAIN READ already contains data
94 Variable in CHAIN WRITE contains no data
95 Input timed out
98 INPUT of wrong type or insufficient
99 ESCape has been pressed and no ESCape branching enabled
100 Illegal channel number specified (or ISAMFILES value too small)
123 Selected data record is locked
150 Program has been corrupted - cannot execute
151 'COM' statement out of order
152 System is out of channels - notify Manager
153 Not a loadable program file - wrong revision, protected or corrupted
154 No communication file '/tmp/comm.listx.y'
155 Program Channel not OPEN; cannot resave until SAVE/PSAVE issued
156 Cannot cross ISAM record boundary
157 C-Tree Index File error; print ERR(8) for details, or var DIM < key len

 Appendix C - Error Numbers 403

 UniBasic Reference Guide

158 File size is too large for system; cannot expand
159 WINDOWS environment variable not defined or count exceeded
160 No open windows
161 Window tracking not enabled
162 File is not Indexed or Mapped
163 Invalid or non-existent Index number selected
164 CRT X,Y coordinate out of range
165 CRT Type not selected for your port
201 IFs without 'ENDIF'
202 'ELSE' without 'IF'
203 'ENDIF' without 'IF'
206 Subprogram file not found
208 Number/types of arguments do not match parameter list
209 ENTER statement is illegal if not in a subprogram
212 Subprogram file is read protected
213 Subprogram file is not a BASIC program
216 Parameter variable in ENTER statement has already been allocated
217 The ENTER statement can only be executed once in a subprogram

System Error Numbers
When an error is detected during program execution, and error branching using IF ERR(s), ERRSET(s), or
ERRSTM(s) is not enabled, the program is terminated to debug mode (files open) and the following message is
displayed:

 Error in stn stn;sub-stn / text

where stn is the statement number, sub-stn the sub-statement number at which the error occurred, and text is a message
describing the error.

All system errors are returned as negative numbers. Each error represents the Unix errno value returned from a system
call or function. If possible, errno is converted into a standard BASIC error. If no error matches the condition, errno is
negated and returned for either ERR(0) and SPC(8). For further information, refer to your system documentation.

 Appendix D - Port as Device 404

 UniBasic Reference Guide

Appendix D - Port as Device
The IRIS Port as a Device Driver (PDn), has been implemented as a user call under UniBasic. All five functions, Open,
Close, Read, Write and Print are available. These functions are used to Read or Write to another serial port.

The PDn routine uses a circular buffer to capture data from the port. The default size for this circular buffer is the same
as the controlling port's INPUTSIZE environment variable. The circular buffer size can be changed explicitly by
setting a new environment variable, PDNBUFSIZE, to a value different than INPUTSIZE.

The UniBasic PDn driver works with both interactive and non-interactive ports. However, it is the user's responsibility
to assure the port being used is disabled and the port is not in use by a non-PDn process prior to accessing, such as uucp
or cu.

CALL $DEVOPEN

The PDn port must be opened prior to any other operations. The syntax for opening a port is:

 CALL $DEVOPEN, chan.num, "$PDn"

chan.num is a pseudo device channel number. This channel number is different from the UniBasic file channel number
in that UniBasic statements that affect channels, such as CLOSE, will not affect this channel. The pseudo channel
number must be between 0 and 99 inclusive.

$PDn has the same syntax as IRIS. For example, $PD2 will open $PD2 and $PD3 will open $PD3. An equivalent
environment variable without the leading dollar sign ($) must define the associated UNIX port. This environment
variable should be set in user's .profile file. An example of PDn port configuration follows:

 PD4=/dev/tty004; export PD4

Failure to set the appropriate environment variable results in a UniBasic error.

The PDn open routine creates a LCK..ttyxxx file to indicate a busy port. This lock file is created in /tmp directory.
Users can change the default /tmp directory by setting LOCKDIR environment variable. The user's process ID is
written in the lockfile.

CALL $DEVCLOSE

Unlike UniBasic, the user must explicitly call the close routine. The syntax to close a pseudo channel is:

 CALL $DEVCLOSE,{chan.num}

chan.num is an optional pseudo device channel number used during OPEN. All pseudo channels are closed if channel
number is omitted.

The PDn close routine removes the lock file in addition to closing the port. If the CALL $DEVCLOSE is not issued,
the lock files will not be removed when UniBasic is terminated or a UniBasic process is killed, including "kill -15 PID".

 Appendix D - Port as Device 405

 UniBasic Reference Guide

CALL $DEVREAD

The syntax to read a port is:

 CALL $DEVREAD, chan.num, rec #, offset #, time-out, str.var

chan.num pseudo device channel number
rec # record number, must be set to -1
offset # byte offset number, must be set to -1
time-out time-out value, must be set to -1
str.var string variable to store the contents of data coming from chn.num

rec #, offset #, and time-out must all be set to negative one (-1), as the CALL does not allow these
parameters to be defined.

CALL $DEVREAD supports the various modes that may be set using CALL $DEVPRINT, such as: echo on (IOBE),
echo off (IOEE), binary input (IOBI), activate on control characters (IOBC), input len and input time out. Only string
variables are allowed since numeric variables are not supported for PDn driver under IRIS.

Like IRIS, a Basic error 95 is returned if a read request cannot be satisfied in the allocated time.

Input character translations, similar to UniBasic Input handling, are also done during a READ. However, Cursor
tracking and hot-key swapping are not available. A hot-key swap character is disregarded in the event it is read.

CALL $DEVPRINT

The syntax to print to a port is:

 CALL $DEVPRINT, chan.num, rec #, offset #, time-out, str.var

chan.num pseudo device channel number
rec # record number, must be set to -1
offset # byte offset, set to either -1 or 225
time-out time out, must be set to -1
str.var any string variable to be sent to specified chan.num

rec #, offset # and time-out are usually set to negative one (-1), as IRIS does not allow these parameters to
be defined. An exception to this rule for PDn under UniBasic is while printing a terminal mnemonic. The offset #
should be set to 225 to indicate CRT mnemonics. For example,

 CALL $DEVPRINT,1,-1,225,-1,'IOCI'

CALL $DEVPRINT does not allow PRINT USING or TABS. Only string variables are allowed, although IRIS
allowed numeric data to be printed.

CALL $DEVWRITE

The $DEVWRITE call has two separate modes of operation. One for actual writing to a port, and another for setting
various parameters on a port.

 Appendix D - Port as Device 406

 UniBasic Reference Guide

The syntax to write to a port is:

 CALL $DEVWRITE, chn.num, rec#, offset#, time-out, str.var

chan.num pseudo device channel number
rec # Must always be set to -1
offset # Must always be set to -1
time-out Time-out must always be set to -1
str.var Any string variable to be sent to specified chan.num

Record number, byte offset and time-out must all be set to negative one (-1) while writing a string variable, as the
CALL does not allow these parameters to be defined.

A numeric variable cannot be written to a port.

The syntax to change different modes of a port are as follows:

CALL $DEVWRITE, chn.num, rec#, mode, time-out, num.var

chan.num Pseudo device channel number
rec # Must be set to 0 when setting various port characteristics
mode Acceptable modes are 0 thru 7 inclusive, as described below
time-out Must always be set to -1 when setting various port characteristics
num.var Value to set based on mode

The following are the various modes acceptable for use with CALL $DEVWRITE:

MODE 0: Set input time-out value in tenths of a second (in this case 1 second). Example:

 CALL $DEVWRITE,1,0,0,-1,10 ! set input time-out to 1 second

MODE 1 : Set a specific input length. Example:

 CALL $DEVWRITE,1,0,1,-1,2 ! set input length to 2 bytes

MODE 2 : IRIS allows polling mode, but is not implemented for UniBasic.

 CALL $DEVWRITE,1,0,2,-1,xx ! not supported

MODE 3 : Set port baud rate. Example:

 CALL $DEVWRITE,1,0,3,-1,9600 ! set port to 9600 baud

MODE 4 : Set port word length. Example

 CALL $DEVWRITE,1,0,4,-1,8 ! set word length of port to 8

MODE 5 : Set no parity, odd parity or even parity. A zero equals no parity, a one equals odd parity, and a 2 equals

even parity. Example:

 CALL $DEVWRITE,1,0,5,-1,2 ! set parity bit to even

 Appendix D - Port as Device 407

 UniBasic Reference Guide

MODE 6 : Set to one or two stop bits. A one will set it to one stop bit, anything else will set it to 2 stop bits.
Example:

 CALL $DEVWRITE,1,0,6,-1,1 ! set port to 1 stop bits

MODE 7 : Set modem control for a port. A non-zero sets modem control, i.e. clear CLOCAL and set HUPCL. A

zero sets CLOCAL and clears HUPCL. Example:

 CALL $DEVWRITE,1,0,7,-1,1 ! set modem control hupcl

 Index 408

 UniBasic Reference Guide

Index

$
$LPT Driver Configuration, 33
$TERM Files, 92, 98

%
% precisions, 39

(
(stn), 42

/
/ Command - Run a program, 125
/dev/tty Numbering, 21
/etc/DCI directory, 7
/etc/inittab, 31
/etc/license file, 7
/etc/osn file, 7
/etc/passport file, 6
/etc/passport.cmd file, 7
/etc/passport.log file, 7
/etc/ssn file, 7

[
[EOL](f), 42
[INTR], 226

<
<, 55
<=, 55
<>, 55

=
=, 55

>
>, 55
>=, 55

7
7-Bit Characters, 65

8
8-Bit Characters, 65

A
ABS Function, 50
Account Number, 52
Account Numbers, 21, 24
Addition, 55
ALTCALL See CALL(s)., 17
AND, 55, 57, 312
Application Startup, 27
ArcTangent Function, 50
array.var, 46
Arrays, 45
ASC Function, 50, 65
ASCII

Character Function ASC, 50
Character Function CHR, 51
Representation, 65
Toggling High Bit, 65

ASCII To EBCDIC, 300
ATN Function, 50
Attaching a Port, 256, 323
Attributes(See File), 67
AUTO Command - Automatic entry of statements, 126
Auto-Dimensioning, 46
Automatic Startup in to uniBasic, 13
Automatic Startup of an Application, 13, 27
Automatic Startup of Terminals at Startup, 31
AVAILREC, 17

B
Background Programs, 255
Base 10000 Representations, 39
BASEYEAR, 17
BASIC Command, 127
BASIC error

statement where last occurred, 54
BASIC error number

last, 54
BASIC Program Mode, 27, 38
BASICMODE, 17
BATCH Utility - Launch background process, 353
BAUD

Command, 128
BCDVARS, 17
Binary Data Conversion, 189
Binary Input, 110
Binary Input Mode, 289

 Index 409

 UniBasic Reference Guide

Binary Output, 110
Binary Output Mode, 289
BITS 8-bit strings, 65
BITSPROMPT, 17
bold type, 2
braces {}, 2
Breakpoints, 176, 289
BS, 114
BUILD Statement, 178
BUILDXF Utility - Build an Indexed file, 354
BUILDXF, B-Tree Insertion Algorithm, 85
BYE Command - Terminate uniBasic session, 129
byte displacement, 71

C
CALL $ATOE - Convert ASCII to EBCDIC, 300
CALL $AVPORT - Locate an Available Port, 301
CALL $CALLSTAT – Get name of CALLing program, 302
CALL $CKSUM - Compute Checksum on a File, 303
CALL $CLU - Change current logical unit, 304
CALL $DATE - Verify and reformat a date, 305
CALL $ECHO, 110
CALL $ECHO - Set, Clear, Toggle Terminal ECHO, 306
CALL $ENV - Change the value of an Environement

Variable, 307
CALL $ETOA - Convert EBCDIC To ASCII, 308
CALL $FINDF - Locate a File on the system, 309
CALL $INPBUF - Append data to Type-ahead buffer, 310
CALL $LOCK - Place a Lock on an entire file, 311
CALL $LOGIC - Perform Logical Operations, 312
CALL $NCRC32 – Calculate 32-Bit CRC Checksum, 314
CALL $RDFHD - Read File Header Information, 315
CALL $RENAME - Rename a File, 318
CALL $STRING, 65
CALL $STRING - Perform Miscellaneous String Functions,

319
CALL $SWAPF - Define HOT-KEY Swapping, 321
CALL $TIME - Get current Date and Time, 322
CALL $TRXCO - Transmit Command to Phantom Port, 323
CALL $VOLLINK - Link Polyfile Volume, 325
CALL 126 - Convert Decimal to Octal for display, 349
CALL 127 - Read Directory Information about a File, 350
CALL 15 - Pack/Unpack Numeric Strings, 326
CALL 18 - Pack Radix 50 Characters, 327
CALL 19 - Unpack Radix 50 Characters, 327
CALL 20 - Pack Numeric Strings, 328
CALL 21 - Unpack Numeric Strings, 328
CALL 22 - Check for numeric digits only, 329
CALL 23 - Check for Arithmetic field only, 329
CALL 24 - Verify Date, 330
CALL 25 - Convert to Julian Date, 331
CALL 27 - Convert Julian to printable date, 332
CALL 28 - Convert to Printable Date, 333
CALL 29 - Edit numeric to String field, 334
CALL 40 - Initialize User Error Message File, 336
CALL 40(s), 52
CALL 43 - Convert string to Upper/Lower case, 337

CALL 44 - Miscellaneous String Functions & Echo Control,
338

CALL 45 - Pack unpack Numeric Strings, 340
CALL 46 - Unpack Numeric Strings, 340
CALL 47 - Miscellaneous operations ECHO, GOSUB

control, 341
CALL 48 - Pack Radix 50 Characters, 342
CALL 49 - Unpack Radix 50 Characters, 342
CALL 53 - ASCII/EBCDIC Conversions, 343
CALL 56 - String Searching, 344
CALL 59 - Numeric BIT Manipulation, 345
CALL 60 - Miscellaneous String Functions, 346
CALL 65 - Sort Keys in a String, 347
CALL 72/73 - Gather / Scatter Variables, 348
CALL 76 - Convert EBCDIC To ASCII, 308
CALL 77 - Convert ASCII to EBCDIC, 300
CALL 78 - Set, Clear, Toggle Terminal ECHO, 306
CALL 82 - Perform Miscellaneous String Functions, 319
CALL 88 - Perform Logical Operations, 312
CALL 91 - Link Polyfile Volume, 325
CALL 96 - Locate a File on the system, 309
CALL 97 - Read File Header Information, 315
CALL 98 - Transmit Command to Phantom Port, 323
CALL 99 - Get current Date and Time, 322
CALL Statement, 179
CALL Subprograms

Debugging, 175
CANCEL, 114
CD Command - Change working directory, 130
CHAIN "SAVE" Command - SAVE with variables, 131
CHAIN READ Statement, 183
CHAIN Statement, 181
CHAIN WRITE Statement, 184
CHANGE Command - Change filename/attributes, 132
CHANGE Utility, 356
Changing an Environment Variable, 307
Changing your current logical unit, 304
channel, 71
channel expression, 71
channel number, 66
channel, accessing a, 70
Character Representation, 65
CHECK Command, 133
Checksum an entire file, 303
CHF Function, 51, 70
child process, 69
Child Process, 286
chn expr, 71
CHN Function, 70
CHR Function, 51
CLEAR Statement, 185
CLI, 27
Clock Speed, 25
CLOSE Statement, 186
CLOSE, file header changes, 85
CLU Command - Change working directory (IRIS), 134
Column Counter, 55
COM Statement, 187
COM(s), 46, 48

 Index 410

 UniBasic Reference Guide

Command
! - Execute Unix Command, 124
/ - Run a program, 125
AUTO - Automatic entry of program statements, 126
BASIC, 127
BYE - Terminate uniBasic session, 129
BYE from a program, 288
CD - Change working directory, 130
CHAIN "SAVE" - SAVE with variables, 131
CHANGE - Change filename/attributes, 132
Changing BAUD rate from a program, 288
CLU - Change working directory (IRIS), 134
CONTINUE - Resume a suspended program, 135
DEL - Delete a file (BITS), 136
DELETE - Delete statements (IRIS), 137
DUMP, 138
EDIT, 139
ERASE, 140
EXEC, 141
EXIT, 142
FILE, 143
filename, 144
FIND, 145
GET, 146
GO, 147
HALT, 148
HELP, 149
LEVEL, 150
LIST, 151
LOAD, 152
MERGE, 153
MSG, 154
NEW, 155
NEW from a Program, 288
OEM, 156
PACK, 157
PROTECT, 158
PSAVE, 159
RENUMB, 161
RSAVE, 163
RUN, 164
SAVE, 165
SHOW, 166
Status, 168
TIME, 169
UNASSIGN, 170
USERS, 171
VARIABLE, 172
VSAVE, 174

COmmand
SIZE, 167

Command Line Interpreter, 27
command mode, 121
Command Mode, 27

Processing, 122
Conditional GOSUB, 252
Conditional GOTO, 252
Connect Time, 54, 55
CONTINUE Command - Resume a suspended program, 135

CONV Statement, 189
COPY Utility, 357
cpio command, 8
CPU Time, 55
CPU Time, 54
CREATE Statement, 191
CRT

Number of Columns, 52
Number of Rows, 52
Type id, 52

CRT - See Terminal, 92, 98
crt expr, 41
CRT Mnemonics, 41, 103
CRT Translation File $TERM Files, 92
CRT type, 54
crt_flags

Format Mode, 118
IL/DL mnemonics, 118
MD mnemonic, 118
MR mnemonic, 118
Special Translations/Protected Fields, 99

CTRL+C Branching, 225
CURRENCY, 17
Current library logical unit number, 54
Current Logical Unit number, 54
Current statement, 54
Current Working Directory, 53
Cursor Tracking, 115

D
Data, 38
DATA Statement, 192
Date

Current, 55
Current month, 55
Day of Month, 55
Day of week, 55
Day of Year, 55

Date and Time, 53
DATESEP, 18
DBS, 114
Debugging, 175
DEF Statement, 193
DEL, 114
DEL Command - Delete a file (BITS), 136
Delete a specified program or data file, 365
DELETE Command - Delete Statements (IRIS), 137
Deleting Files, 228
DET Function, 51
Device, 66
device name, 88
Devices

$LPT Printer Drivers, 96
Block, 88
Character, 88
Mail Drivers, 97

DIM Statement, 194
DIM(s), 46, 48

 Index 411

 UniBasic Reference Guide

DIMensioning String Variables, 48
Dimensioning String Variables Automatically, 48
DIR Utility, 358
Directory

/usr/bin, 11
Division, 55
DUMP Command, 138
DUPLICATE Statement, 196
DXTDSIZ, 18

E
e, 52
EBCDIC To ASCII, 308
ECHO, 114
Echo Control, 288
ECHO Set, Clear, and Toggle, 306
EDIT Command, 139
EDIT Statement, 197
EGC Extended Graphic Mnemonics, 112
END Statement, 198
ENDIF Statement (See IF Statement), 215
End-of-file branching, 200
E-Notation, 39
ENTER Statement, 199
Enviornment Variable LUST(f), 358
Environment Variable

ALTCALL, 17, 180
AVAILREC, 17, 83
AVAILREC, 219
AVAILREC, 275
BASEYEAR, 17, 54, 55
BASICMODE, 13, 17, 27, 125
BASICMODE, 74
BASICMODE, 121
BASICMODE, 155
BASICMODE, 352
BCDVARS, 17, 40
BCDVARS, 89
BCDVARS, 90
BITSPROMPT, 17, 27
CURRENCY, 13, 17
CURRENCY, 59
CURRENCY, 60
DATESEP, 13, 18, 332, 333
DXTDSIZ, 18, 80
EURINPUT, 18
EURINPUT, 59
EURINPUT, 60
EUROPEAN, 13, 18, 330, 332, 333
EUROUTPUT, 18
EUROUTPUT, 59
EUROUTPUT, 60
FORNEXTNEST, 18
FORNEXTNEST, 212
GOSUBNEST, 18
GOSUBNEST, 213
HOME, 25
HOME, 31

HZ, 25
IBITSFLAG, 18
INPUTSIZE, 18, 181, 192, 256
INPUTSIZE, 52
IQDD, 14
ISAMBUFS, 18, 86
ISAMFILES, 18, 81, 86
ISAMOFFSET, 18, 80
ISAMSECT, 86
IXTDSIZ, 80
IXTDSIZ, 19
LOCKRETRY, 19, 71, 72
LOGNAME, 31
LONGVARS, 19
LONGVARS, 43
LONGVARS, 44
LONGVARS, 44
LUST, 19
LUST, 122
MAXACCSLEEP, 20
MAXPORT, 20
MAXPORT, 148
MAXPORT, 154
MAXPORT, 283
MAXVARS, 20, 44
MSC7, 21
MSC7, 52
MSC7, 52
PATH, 25
PFCHAR, 21
PORT, 21
PORT, 31
PORT, 93
PORTS, 21
PORTS, 31
PORTS, 93
PREALLOCATE, 22, 69, 74, 77, 80, 83, 88, 221, 277
PREALLOCATE, 78
PREALLOCATE, 88
PREALLOCATE, 90
PREALLOCATE, 354
Retrieving Values, 289
SCOPEPROMPT, 24, 27
SPC&, 24
SPC5, 13, 24
SPC5, 54
SPC7, 54
STRING, 24
TABFIELD, 24, 241
TABSIZE, 259
TERM, 25, 92, 98
TERM, 92
TERM, 98
ulimit, 26
umask, 26
WINDOWS, 13, 25
WINDOWS, 116
WINDOWS, 293

Environment Variables, 17

 Index 412

 UniBasic Reference Guide

EOBC, 25, 114
EOFCLR Statement, 200
EOFSET Statement, 201
EOL, 114
EOPEN Statement, 202
ERASE Command, 140
ERM Function, 52
ERR Function, 51
errmessage file, 91
Error

Last, 51
Messages, 91
Statement, 51
sub-stmt, 51
Text description, 53

Error Function for BITS, 51
ERRSET Statement, 204
ERRSTM Statement, 205
ESC, 114

Statement Number, 51
ESCAPE, 25
ESCCLR Statement, 206
ESCDIS Statement, 208
ESCSET Statement, 207
ESCSTM Statement, 209
EURINPUT, 18
EUROPEAN, 18
EUROUTPUT, 18
EXEC Command - Execute contents of a text file, 141
EXECUTE Statement, 210
Execute-Only Program, 69
EXIT Command, 142
EXP Function, 52
Exponential Function, 52
Exponentiation, 55
expr list, 71
Expressions, 49

Numeric, 61
String, 61

F
File, 66

Access, 70
Attribute

E Force Execute-Only Program, 69
K Force 8-Bit Keys, 69
O Force Program Overlay, 69
Q Force BCD File, 69
U Force Universal File, 69

Attributes, 67
Attributes

IRIS, 68
Attributes

Unix, 68
Attributes

BITS, 68
Permissions, 67
Protection, 67

Record Locking, 72
Record Locking

Deadly Embrace, 72
Record Locking

Time-out, 72
Record Locking

Unlock a Locked Record, 72
FILE Command - Display program & open files, 143
File Lookup, 309
filename, 144
Filename, 51

Changing names and protections, 250
filename Command - Load and RUN program file, 144
Files

Contiguous
Accessing, 75
Creation, 75
Defined, 74
Expansion Control, 22
Expansion Restriction, 22
Pre-allocation, 22

Creation, 178, 191
Devices

Serial Printers, 35
Terminal Drivers, 36

Formatted Item
Accessing, 77
Creation, 77
Defined, 76
Expansion Control, 22
Record Not Written, 22

IMS BCD
Force Creation of, 23

Index
Structuring with Mode 0, 81

Indexed
B-Tree Balancing,Performance & Space, 80
B-Tree Insertion with Mode 8, 85
Buffers, 18, 81
Creation, 80
Data Expansion, 80
Defined, 78
Deleted Record Maintenance, 80
Deleting a Key with Mode 5, 84
Dynamic Expansion of Data Portion - DXTDSIZ, 18
Dynamic Expansion of Indexed Portion - IXTDSIZ, 19
Expansion Restriction, 23
First Real Data Record IRIS, 82
Force 8-bit Keys, 23
Index Expansion, 80
Insert a Key with Mode 4, 84
ISAM Portion, 78
Limitations Number Opened, 18
Miscellaneous Information with Mode 1, 82
Offset for Deleted Record Flag, 18
Record Deletion Control, 23
Recovery & Rebuilding, 86
Search Exact with Mode 2, 83
Search Next with Mode 3, 84

 Index 413

 UniBasic Reference Guide

Search Previous with Mode 6, 84
Special C-TREE Errors - ERR(8) Function, 86
Writing Over A Deleted Record, 23
Writing Past ISAM Record Boundary, 23

IRIS BCD
Defined, 88
Force Creation of, 22

IRIS BCD
Creation, 88

IRIS BCD
Accessing, 89

Logical Unit Search Control - LUST, 19
Non-uniBasic, 88
Pipes

$LPT Printer Drivers, 96
Mail Drivers, 97

Program SAVED BASIC
Defined, 74

Record Lock Retry, 19
Size Restrictions - ulimit, 26
Special

Error Messages, 91
Terminal Translations, 92, 98

Text
Accessing, 73
Creation, 73
Creation, 178
Defined, 73

Tree-structured
Accessing, 76
Creation, 76

Tree-Structured
Defined, 75

Universal, 24
Defined, 90

Universal
Creation, 90

Universal
Accessing, 91

Filtering ASCII Data, 369
FIND Command - Selective LIST, 145
FOR Statement, 211
FOR/NEXT Nesting Limits, 18
fork, 69
FORMAT Utility, 360
FORNEXTNEST, 18
FRA Function, 52
Fractional Function, 52
Function

ABS, 50
ASC, 50
ATN, 50
CHF, 51
CHR BITS, 51
CHR IRIS, 51
DET, 51
ERM, 52
ERR, 51
EXP, 52

FRA, 52
INT, 52
IXR, 52
LEN, 52
LOG, 52
MAN, 52
MEM, 52
MSC, 52
MSF, 53
RND, 53
SGN, 53
SPC, 53
TAB, 55
TAN, 55
TIM, 55
VAL, 55

Functions, 50
Functions - User Defined, 193

G
GET Command - Load a text or saved program, 146
getty, 31
GO Command - Remume execution, 147
GOSUB

last statement number, 54
Pop Stack, 52
statement number of last, 54

GOSUB Nesting Limits, 18
GOSUB Statement, 213
GOSUBNEST, 18
GOTO (Computed), 227
GOTO Statement, 214
Graphics, 112
group, 6

H
HAGEN String Processing, 24
HALT Command - Terminate uniBasic process, 148
HELP Command - Print text DESCRIPTI0N of error, 149
HOME, 25
Home Directory, 25
HOT_KEY Swapping, 321
Hot-key, 115
HZ, 25

I
IBITS Considerations, 18
IBITSFLAG, 18
IF ERR Statement, 217
Immediate Mode, 38, 175
IMS BCD Representations, 39
INDEX Statement, 218

Mode 0 - Initial Definition & Creation, 81
Mode 1 - Miscellaneous Functions, 82
Mode 2 - Search for Exact Key, 83
Mode 3 - Search for Next Highest Key, 84

 Index 414

 UniBasic Reference Guide

Mode 4 - Insert a New Key, 84
Mode 5 - Delete an Existing Key, 84
Mode 6 - Search for Previous Lower Key, 84
Mode 7 - Unused, 85
Mode 8 - Specify B-Tree Insertion Algorithm, 85
Status Modes, 221, 277
Table of Modes, 219, 275

INDEX Statement:, 81
Indexed File

Maintenance, 362
inodes

Maximum Open, 4
INPUT Buffer Size, 18
Input Character Processing, 113
INPUT Statement, 222
INPUT TIM timer control, 20
INPUTSIZE, 18

length of, 54
Installation

Creating customized media, 36
Installing

uniBasic, 11
UniBasic, 9
UniBasic Development, 10

Installing your applications, 36
INT Function, 52
INTCLR Statement, 225
Integer function, 52
Integers Stored in Floating-Point Variables, 41
Interrupt

Statement Number, 51
Interrupts, 226
INTR, 114
INTSET Statement, 226
IO mnemonics, 66
IRIS 8-bit strings, 65, 88
IRIS BCD Representations, 39
ISAMBUFS, 18
ISAMFILES, 18
ISAMFILES value too small, 18
ISAMOFFSET, 18
italic type, 2
item number, 77
IXR Function, 52

J
JUMP Statement, 227

K
KEYMAINT Utility, 362
KILL Statement, 228
KILL utility, 365

L
label:, 42
Last BASIC error number, 54

LEN Function, 52
Length of INPUTSIZE, 54
LET Statement, 229
Level Command - Print uniBasic revision data, 150
LIB Statement, 231
LIBR utility, 366
license file, 7
License Number, 7
Licensing

Hardware, 6
new installations, 29
Passport, 8
Replacements & Upgrades, 29
Software, 6, 7

LIST Command - Decode BASIC statements, 151
List public files, 358
LOAD Command - Load a BASIC program from text, 152
Loading UniBasic From The Installation File, 8
loadlu utility, 368
Locked Records, 72
LOCKRETRY, 19
LOG Function, 52
Logarithmetic Function, 52
Logical Unit

Setting Default, 26
Logical Unit number

current, 54
for current program, 54

Logical Unit Search Control, 19
login name, 6
LONGVARS, 19
lptfilter Utility, 65, 369
LUST, 19

M
MAKE Utility, 371
MAKECMND Utility, 372
MAKEHUGE utility, 374
MAKEIN Utility, 375
MAKEIN, B-Tree Insertion Algorithm, 85
makeosn utility, 377
makesp Utility, 378
MAN Function, 52
MAT * Statement, 234
MAT + Statement, 233
MAT = Statement, 232
MAT CON Statement, 235
MAT IDN Statement, 236
MAT INPUT, 240
MAT INV Statement, 237
MAT PRINT Statement, 241
MAT RDLOCK Statement, 242
MAT READ Statement, 243, 244
MAT TRN Statement, 238
MAT WRITE Statement, 246
MAT WRLOCK Statement, 248
MAT ZER Statement, 239
MAT(s), 46

 Index 415

 UniBasic Reference Guide

mat.var, 46
Matrices, 45
Matrix Addition, 233
Matrix Constant, 235
Matrix Copy, 232
Matrix Determinant Function, 51
Matrix Identity, 236
Matrix Input, 240
Matrix Inversion, 237
Matrix Multiplication, 234
Matrix Transpose, 238
Matrix Zero, 239
MAXACCSLEEP, 20
MAXPORT, 20
MAXVARS, 20
MEM Function, 52
Memory

Access, 52
Memory location

T_chan structure, 51
MERGE Command - Merge statements from text file, 153
Message Files, 52, 91
Message Function, 52
Message Queues

Configuring, 4
Creation & Assignment, 93
Phantom Ports, 94

MFDEL Utility, 379
Miscellaneous Functions, 52
Mnemonics, 41
Mnemonics applied to the cursor position, 106
Mnemonics for Extended Graphics, 112
Mnemonics for Keyboard and Auxport, 104
Mnemonics for Miscellaneous CRT operations, 109
Mnemonics for special I/O Control, 110
Mnemonics Not Supported, 111
Mnemonics to Clear/Reset the Terminal, 105
Mnemonics to control attributes, 107
Mnemonics to Control Color, 108
Mnemonics to transmit data, 108
Mod, 55
MODIFY Statement, 250
mono-spaced type, 2
MSC Function, 52
MSC7, 21
MSF Function, 53
MSG Command - Transmit message to other user, 154
Multiplication, 55
Multi-statement lines, 43

N
NEW Command, 155
NEXT Statement, 251
NOT, 312
num.var, 46
Numeric

Characteristic, 51
Formatting Output, 57

Integer Radix Function, 52
Mantissa Function, 52
Memory Space for variables, 40
Precision, 39

Numeric Data, 39
Numeric expressions, 61
Numeric Formats, 17
Numeric Formatting, 197
Numeric Functions, 50

O
OEM Command - Display list of authorized software, 156
ON Statement, 252
OPEN Statement, 253
OPEN, file header changes, 85
Opening a file, 253, 272
Operator precedence, 56
Operator Precedence, 49
Operator Precedence, Table of, 49
Operators

Concatenation, Boolean, String, 55
Operators

Unary, Arithmetic, Relational, 55
Operators

Unary + -, 56
Operators

Arithmetic ^ * / % + -, 56
Operators

String Concatenation, 56
Operators

Relational = <> > >= < <=, 56
Operators

Boolean AND OR, 57
Operators

USING, 57
Operators

TO, 61
Operators and Expressions

.i.Operators
Unary, Arithmetic, Relational, 55

OR, 55, 57, 312
OSN, 159
osn file, 7
Overlay Program, 69

P
PACK Command - Change working directory, 157
Parent Process, 286
passport.cmd file, 7
passport.log file, 7
Passport™, 8
Passport™ device, 6
PATH, 25
PAUSE Statement, 254
PAUSE timer control, 20
PDN, 159
Permissions(See File), 67

 Index 416

 UniBasic Reference Guide

PFCHAR, 21
Phantom Port

Locate Available, 301
Phantom Ports, 94, 255, 323
Phantom Ports (See Terminal), 93
PI, 52
Pipes, 94
platform, 7
Polyfiles, 325
PORT, 21

Controlling your PORT Number, 21
Port Number, 52, 54
PORT Numbering, 21
Port Numbering (See Terminal Ports), 93
PORT Statement, 255
PORT Utility, 380
PORTS

Defining PORT Numbers, 21
PREALLOCATE, 88
Precision, 39

Defaults, 39
PRINT Statement, 259
Printer Drivers, 33
Problems

CALL $INPBUF fails to return type-ahead from SWAP, 4
Cannot initiate process by SWAP, SPAWN, CALL 98 or

PORT, 3, 6
Cannot lock a record or ctree lock errors, 4
Cannot open any more files, 4
Communication Buffer is full, 4
Licensing/SSN - See Licensing, 7
No more processes, 3
PORT ALL MONITOR fails to return info, 6
Protection vs. Permissions - See umask, 26

Processes
Maximum allowed, 3

Program
Suspend Operation, 254

Program Interrupts, 225
Program Loops, 251
program mode, 121
Program mode, 175
Programming Mode, 175
Prompts

Changing BITS *, 17
Changing IRIS/BITS, 17
Changing SCOPE, 24

PROTECT Command - Hide individual program statements,
158

Protection(See File), 67
Protections

umask override, 26
PSAVE Command, 159
public files

list, 358

Q
QUERY Utility, 381

R
Random Number Generator, 53, 261
RANDOM Statement, 261
RDLOCK Statement, 262
RDREL Statement, 263
Read a record and Lock, 262
READ Statement, 264
record, 71
Record, 66
Record Length, 51, 66
Record Lock Retry Configuration, 19
Record Locking, 72
Record Number, 66
RECV Statement, 267
Re-DIMensioning, 47
REM Statement, 268
RENUMB Command, 161
RESTOR Statement, 269
RETURN Statement, 270
Revision Level, 52, 54
REWIND Statement, 271
RND Function, 53
ROPEN Statement, 272
RSAVE Command - Resave a BITS program, 163
RUN Command - Execute current program, 164
Run Mode, 175

S
SAVE Command - Save current program, 165
SCAN Utility, 382
SCOPEPROMPT, 24
SEARCH Statement, 274
SEARCH Statement, 273

Mode 0 - Initial Definition & Creation, 81
Mode 1 - Miscellaneous Functions, 82
Mode 2 - Search for Exact Key, 83
Mode 3 - Search for Next Highest Key, 84
Mode 4 - Insert a New Key, 84
Mode 5 - Delete an Existing Key, 84
Mode 6 - Search for Previous Lower Key, 84
Mode 7 - Unused, 85
Mode 8 - Specify B-Tree Insertion Algorithm, 85

SEARCH Statement:, 81
SEND Statement, 278
Serial Printer Drivers, 35
SETFP Statement, 279
SGN Function, 53
shell, 15
Shell Command directory look up, 25
SHOW Command - Display usage of variable names, 166
SIGNAL, 114
SIGNAL 3 timer control.i.Record Locking

timeout accuracy, 20
SIGNAL Statement, 280
Signum Function, 53
Single-Step Execution, 175

 Index 417

 UniBasic Reference Guide

SIZE Command - Display memory usage for active program,
167

SPAWN Statement, 283
SPC 3 control, 25
SPC Function, 53
SPC5, 24
SPC7, 24
ssn, 7
SSN, 159

Entry, 29
ssn file, 7
Starting an Application, 13, 27
statement, 42

where last BASIC error occurred, 54
Statement

ERRCLR, 203
INDEX, 81
READ, 265
RETURN, 271
SEARCH, 81
UNLOCK, 292
WRITE, 295
WRREL, 298

Statement number
last GOSUB, 54

Statement Numbering, 42
Statement Numbers

Interpreting Starting & Ending IRIS & BITS, 121
Statements, 175

Changing, 43
Deletion, 43
Immediate Mode, 42
Insertion, 43
Labels, 42
Multiple on a single line, 43
Numbering, 42
Program, 42

Status Command - Print name of current program, 168
stn, 42
STOP Statement, 284
str.lit, 41
str.var, 47
String

Arrays, 48
Assignment, 63
Comparisons, 57
Conversion to Numeric, 55
Data, 41
Functions, 53
Functions, 50
Length Function, 52
literals, 41
Processing, 62
Searching, 61
Subscripts, 48
TO, 61

String Expressions, 61
stty Command, 25
stty parameter restrictions, 25

subprograms, 179
Subscript, 46
Subscripts, 45
sub-statement, 43
sub-stn, 43
Subtraction, 55
SUSPEND Statement, 285
SWAP Statement, 286
SYSTEM, 66
System base year, 54
SYSTEM Statement, 288

T
T_chan structure, 51
TAB Column, 52
TAB Function, 55
TABFIELD, 24
Table

CALL Names, 180
CALL Numbers, 180
Logical Unit/Packname Organization, 16
Numeric Variable Precision, 39
Terminal Flags, 99

TAN Function, 55
Tangent Function, 55
TERM, 25
Term file creation, 36
term files, 91
TERM Mnemonics, 103

Defining, 102
TERM Utility, 383
term.xxxx, 92, 98
Terminal, 99

! Reset Command, 92, 98
ANSI PC Monitors, 116
CRT Flags, 98
Cursor Addressing, 98
Extended Graphic Mnemonics, 112
Flag

XY_direc Cursor Addressing Setup, 99
Flag

xy_order Cursor Addressing Setup, 99
Flag

xy_ascii Cursor Addressing Setup, 99
Flag

base_x Cursor Addressing Setup, 99
Flag

max_x Define Columns, 99
Flag

max_y Define Rows, 99
Flag

pc_leadin Cursor Addressing Setup, 99
Flag

crt_type, 99
Input Character Processing, 113
Output Processing to Terminals & Channels, 102
Phantom Ports, 93
Port Numbering, 93

 Index 418

 UniBasic Reference Guide

Protected Fields on PC Monitors, 116
Special Flags Table, 99
Translation File, 92, 98
Window

Protected Fields, 117
Tracking, 116
Tracking Map, 116
Zero, 116

Window Tracking Mode, 92, 98
Windows, 116

Mnemonics Supported, 118
Terminal Control, 25
Terminating a uniBasic process, 28
TIM Function, 55
Time

Current Hour, 55
Current hour of the day, 55
Current Minute, 55
Current Second, 55

TIME Command - Display current date and time, 169
Time Functions, 55
time-out, 71
TO, 55
TO Operator, 61
Trace Mode, 176, 289
TRACE Statement, 290
Type Ahead Buffer, 310

U
ubcompress Utility, 81, 384
ubconvertfiles Utility, 387
ubrebuild Utility, 387
ubterm Utility, 388
ubtestlock Utility, 389
ulimit command, 66
ulimit Command, 26
umask, 26
umask command, 68
UNASSIGN Command - erase all variables, 170
uniBasic Automatic Startup, 28
unibasic Command, 27
unibasic group, 11
uniBasic License Number, 54
unibasic login id, 11
UNIT Statement, 291
user id, 6
USERS Command - Display number of users, 171
USING, 55, 57
USING Field Descriptors, 58
Utilities

Written in BASIC, 352
Written in C, 352

V
VAL Function, 55
Variable

Assignment, 229
De-allocation, 288

Variable Allocation, 194
VARIABLE Command - Control/Display Variables, 172
Variable Names

Long, 19
Maximum, 20

Variable Naming, 44
VARIABLE(c) Command, 44
Variables

Array, 46
Matrix, 46
Naming, 44
Numeric, 46
Removing, 45
String, 47

vars, 44
VDT - See Terminal, 92, 98
Verify and reformatting dates, 305
VERIFY Command - Check program & display checksum

and type, 173
VSAVE Command - BITS SAVE with variables, 174

W
WHO Utility, 390
Window, 116
WINDOW Statement, 293
Window Tracking mode defined, 98
WINDOWS, 25
Windows - See Terminal, 116
Write Errors, 26
WRLOCK Statement, 297

X
XOR, 312

Y
Year

Four Digits, 55

