

Language
Reference Guide

Revision 6.2

Information in this document is subject to change without notice and does not represent a commitment on
the part of Dynamic Concepts, Inc. (DCI). Every attempt was made to present this document in a complete
and accurate form. DCI shall not be responsible for any damages (including, but not limited to
consequential) caused by the use of or reliance upon the product(s) described herein.

The software described in this document is furnished under a license agreement or nondisclosure
agreement. The purchaser can use and/or copy the software only in accordance with the terms of the
agreement. No part of this guide can be reproduced in any way, shape or form, for any purpose, without the
express written consent of DCI.

© Copyright 2006 Dynamic Concepts, Inc. (DCI). All rights reserved

Dynamic Concepts Inc.

18-B Journey

Aliso Viejo, CA 92656

www.dynamic.com

UniBasic, BITS and Dynamic Windows are trademarks of Dynamic Concepts Inc.

IRIS is a trademark of Point 4 Data Corporation.

c-tree is a trademark of Faircom.
Microsoft, MS, MS-DOS, Microsoft Access, and FoxPro are registered trademarks, and ODBC, Windows
and Windows NT are trademarks of Microsoft Corporation in the USA and other countries.

 Table of Contents i

dL4 Language Reference Guide©

CHAPTER 1 - INTRODUCTION ...1
TYPOGRAPHICAL CONVENTIONS ..1
SYNTAX NOTATIONS ..1

CHAPTER 2 - DATA TYPES ..3
INTRODUCTION...3
NUMERIC DATA..3

Numeric Precision ...3
CHARACTER STRING DATA...4
DATES ..5
BINARY ..5

CHAPTER 3 - VARIABLES ..6
INTRODUCTION...6
VARIABLE NAMES ..6
SUBSCRIPTED VARIABLES (ARRAYS) ...6
AUTOMATIC DIMENSIONING...7
RE-DIMENSIONING VARIABLES ..7
STRUCTURES ..8
STRUCTURE (.) VARIABLES...8

CHAPTER 4 - INTRINSIC FUNCTIONS..10
INTRODUCTION...10
INTRINSIC FUNCTIONS ..10

CHAPTER 5 - EXPRESSIONS..15
INTRODUCTION...15
OPERATOR PRECEDENCE ..15
OPERATORS ..16

Unary Operators + -..16
Arithmetic Operators ^ * / % + - ...16
Concatenation Operators + ,...16
Assignment Operator: Colon Equal ..17
Relational Operators = <> > >= < <=..17
Boolean Operators AND OR NOT ..17
String Operator USING...18
String Operator TO ...20
Boolean Operators ..20

BOOLEAN EXPRESSION ...20
CHANNEL EXPRESSIONS ...21
RULES GOVERNING STRING PROCESSING ...21
STRING ASSIGNMENT ...22

CHAPTER 6 - MNEMONICS..23
INTRODUCTION...23
MNEMONICS ...23
MNEMONIC VALUES ...25

Mnemonics for Keyboard and Auxiliary Port..25
Mnemonics to Clear and Reset the Terminal...26
Mnemonics Applied to the Cursor Position...27
Mnemonics to Control Attributes...28
Mnemonics to Control Color ...29
Mnemonics to Transmit Data ..30
Mnemonics for Drawing ..31
Mnemonics to Define the Coordinate Grid..32
Miscellaneous Mnemonics...32

 Table of Contents ii

dL4 Language Reference Guide©

Special Mnemonics for I/O Control...33
Mnemonics for Graphic User Interfaces ...35
Table of Extended Graphics Codes ...43
Table of Mnemonic Codes ...43

CHAPTER 7 - STATEMENTS ..54
INTRODUCTION...54
STATEMENT STRUCTURE ..54
STATEMENT DOCUMENTATION FORMAT ..55
STATEMENT ...55
STATEMENTS, LINE NUMBERS AND LABELS ...56
LINE IDENTIFICATION ...56
MULTIPLE-STATEMENT LINES ..56
ADD ..57
ADD INDEX ...58
ADD RECORD..59
BOX...60
BUILD...61
CALL (BASIC PROGRAM)...63
CALL (PROCEDURE) ..64
CASE...65
CHAIN ..66
CHAIN READ...67
CHAIN READ IF...68
CHAIN WRITE ...69
CHANNEL ..70
CHDIR...71
CLEAR ..72
CLOSE...73
COM ..74
CONV..75
DATA ..77
DECLARE...78
DEF FN..79
DEFINE RECORD ..80
DEF STRUCT..81
DELETE INDEX...84
DELETE RECORD ...85
DIM ...86
DO ...88
DO UNTIL...89
DO WHILE..90
DUPLICATE...91
EDIT ..92
ELSE..93
END...94
END DEF...95
END FUNCTION..96
END IF...97
END SELECT..98
END SUB ..99
END TRY ..100
ENTER ..101
EOFCLR..103
EOFSET...104
EOPEN ..105
ERASE...106

 Table of Contents iii

dL4 Language Reference Guide©

ERRCLR..107
ERROR..108
ERRSET ..109
ERRSTM ...110
ESCCLR ..111
ESCDIS ...112
ESCSET...113
ESCSTM..114
EXIT DO ...115
EXIT FOR..116
EXIT FUNCTION ...117
EXIT SUB..118
EXTERNAL FUNCTION ...119
EXTERNAL LIB...121
EXTERNAL SUB..122
FOR ...124
FREE ...126
FUNCTION...127
GET ...129
GOSUB..130
GOTO ..131
IF..132
IF ERR 0 | 1 ..134
INPUT ...135
INTCLR...138
INTSET ...139
JUMP...140
KILL ..141
LET..142
LIB...144
LINE ..145
LOOP...146
MAP ..147
MAP RECORD..148
MAT = ...149
MAT + ...150
MAT * ...151
MAT CON ...152
MAT IDN ..153
MAT INPUT..154
MAT INV ..155
MAT PRINT..156
MAT RDLOCK ...157
MAT READ...158
MAT TRN..159
MAT WRITE...160
MAT WRLOCK ..161
MAT ZER..162
MEMBER..163
MODIFY ...165
MOVE ...166
NEXT ..167
ON ...168
OPEN...169
OPTION ..171
PAUSE ..174
PORT...175

 Table of Contents iv

dL4 Language Reference Guide©

PRINT..180
RANDOM ...182
RDLOCK...183
READ ..184
READ RECORD ...186
RECV...187
REM...188
RESTOR..189
RETRY ..190
RETURN ...191
REWIND ...192
ROPEN ..193
SEARCH (STRING) ..194
SEARCH (TRADITIONAL) ..195
SEARCH (MODERN)..198
SELECT CASE..200
SEND...202
SET ..203
SETFP..204
SIGNAL 1 | 2 ...205
SIGNAL 3..207
SIGNAL 5..208
SIGNAL 6..209
SIZE...210
SPAWN ...211
STOP ...212
SUB ...214
SUSPEND ...215
SWAP ..217
SYSTEM ...219
TRACE ..221
TRY ...222
UNLOCK...223
WEND ...224
WHILE ..225
WINDOW CLEAR..226
WINDOW CLOSE ..227
WINDOW MODIFY ...228
WINDOW OFF ...229
WINDOW ON ...230
WINDOW OPEN ..231
WOPEN...232
WRITE ..233
WRITE RECORD..234
WRLOCK..235

CHAPTER 8 - INTRINSIC CALLS AND FUNCTIONS..236
INTRODUCTION...236
FUNCTION ADDMD5? ...237
CALL ASC2EBCDIC..238
CALL ATOE ...239
CALL AVAILBLKS ...240
CALL AVPORT ..241
FUNCTION BASE64$..242
FUNCTION BASE64? ..243
CALL BITMANIP...244
CALL BITSNUMSTR...245

 Table of Contents v

dL4 Language Reference Guide©

CALL BYTECOPY...246
CALL CALLSTAT..247
FUNCTION CALLSTAT$..248
CALL CHECKDIGITS ...249
CALL CHECKNUMBER ...250
CALL CHSTAT ..251
CALL CKSUM..252
CALL CLEARSTR..253
CALL CLOSEALL..254
CALL CLU..255
CALL CONVERTCASE...256
CALL COPYSTR ..257
FUNCTION CRC16 ..258
FUNCTION CRC32 ..259
CALL CUSTOMCHARACTERSET ..260
CALL DATE ...263
CALL DATETOJULIAN ..264
FUNCTION DATEUSING$...265
CALL DBASE...267
CALL DECTOOCT...268
CALL DEVCLOSE ...269
CALL DEVOPEN ...270
CALL DEVPRINT ..271
CALL DEVREAD...272
CALL DEVWRITE ...273
CALL DRAWIMAGE...274
CALL DUPCHANNEL...275
CALL ECHO ...276
CALL EDITFIELD..277
CALL ENV..279
FUNCTION ERRMSG$..280
CALL ETOA ...281
CALL FILEINFO ..282
FUNCTION FINDCHANNEL..284
CALL FINDF ..285
CALL FLUSHALLCHANNELS ..286
FUNCTION FMTOF...287
CALL FORCEPORTDUMP ...288
CALL FORMATDATE...290
CALL GATHER..291
CALL GETGLOBALS..292
CALL GETREGISTRY...293
CALL IMSMEMCOPY...294
CALL IMSPACK ..295
CALL INITERRMSG..296
CALL INPBUF..297
CALL IRISOS95 ...298
FUNCTION ISSQLNULL ..299
CALL JULIANTODATE ..300
CALL LOCK ...301
CALL LOGIC..302
FUNCTION MD5? ..303
CALL MEMCMP ..304
CALL MEMCOPY..305
CALL MISC47 ..306
CALL MISCSTR...307
CALL NCRC32 ...308

 Table of Contents vi

dL4 Language Reference Guide©

CALL NEXTAVPORT ...309
CALL PKDEC20...310
CALL PKDEC45...311
CALL PKRDX5018 ..312
CALL PKRDX5048 ..313
CALL PKUNPKDEC ..314
CALL PROGRAMCACHE...315
CALL PROGRAMDUMP...317
CALL RDFHD ..319
CALL READREF..321
CALL RMVSPACES ..322
CALL RMVSPACESI ...323
CALL RENAME ...324
FUNCTION REPLACE...325
FUNCTION REPLACECI...326
CALL SCATTER ..327
CALL SETECHO ..328
CALL SETGLOBALS...329
CALL SETREGISTRY ...330
CALL SORTINSTRING ...331
FUNCTION SQLNULL ..332
FUNCTION SQLNULL# ..333
FUNCTION SQLNULL$..334
CALL STRING..335
CALL STRINGSEARCH..336
CALL STRSRCH1 ..337
CALL STRSRCH44 ..338
CALL STRSRCH81 ..339
CALL SWAPF...340
CALL SYSRC ...341
CALL TIME ..342
CALL TRANSLATE...343
FUNCTION TRIM$..344
CALL TRXCO ..345
FUNCTION UBASC...347
FUNCTION UBCHR$..348
FUNCTION UBMEM ...349
CALL UBSTRING ..350
CALL UNPKDEC21 ..351
CALL UNPKDEC46 ...352
CALL UNPKRDX5019...353
CALL UNPKRDX5049...354
CALL VERIFYDATE...355
CALL VOLLINK ..356
CALL WHOLOCK..357

CHAPTER 9 - FILE SPECIFICATION ...358
FILE.SPEC DEFINITION...358

file.spec.str...358
file.spec.items...359

THE STANDARD LIST OF ITEMS...360
Filename Item ..360
Option Item ..361
Protection Item ..361
Specifying Protection During BUILD..361
Protection by Attribute Letters ..361
Protection by Two-Digit Number ..361

 Table of Contents vii

dL4 Language Reference Guide©

Protection by Three-Digit Number ..362
Specifying Protection During OPEN...362
Cost Item..363
Number of Records Item ..363
Record Length Item..363
Example of file.spec ...363

APPENDIX A - GLOSSARY ...364

APPENDIX B - DL4 RESERVED WORDS ...366

APPENDIX C - BASIC ERROR CODES...369

APPENDIX D - DL4 STATEMENTS (QUICK REFERENCE)...377

APPENDIX E - DL4 STATEMENT GROUPS ..380
INTRODUCTION...380
GROUPS ..380
FILE AND DEVICE HANDLING ...381
USER SUBROUTINES AND FUNCTIONS...382
ERROR AND INTERRUPT HANDLING..382
ARRAYS AND MATRICES...383
DATA STRUCTURES ..383
PROGRAM FLOW STATEMENTS ...383
BLOCKS AND LOOPS ...383
COMMUNICATIONS ...384
WINDOWS...385
FORMATTING OUTPUT ..385
MISCELLANEOUS STATEMENTS ..385

APPENDIX F - UNICODE CHARACTER SET..386
INTRODUCTION...386

INDEX ..387

 Introduction 1

dL4 Language Reference Guide©

 Chapter 1 - Introduction
This version (6.2) of the dL4 Language Reference Guide is based on Version 6.2 of the dL4 product and
covers all future releases, except for any new enhancements.

This guide is written for experienced BASIC programmers. It is a reference that describes the dL4
programming language. Information concerning statements, functions, and objects supported by the
language can be found on these pages. This guide is divided into topical sections which describe the
various components of the programming language.

Typographical Conventions
This guide uses the following typographic conventions:

Example of convention Description
GOSUB Capitalized words in bold indicate language-specified reserved words. Refer to

Appendix C.
KILL filename Variables are shown in italic type for clarity and to distinguish them from elements of

the language itself.
LIST Mono-spaced type is used to display screen output and example input commands and

program examples.
<letter> Information inside angle brackets <> must be from specified group, e.g., a single letter.
WHILE | UNTIL A vertical bar indicates that the user must choose one of the items.
[expr] Items inside square brackets are mandatory.
{expr} Items inside braces are optional.
stmt {\ stmt} ... A series of three periods (...) indicates that the item preceding them can be repeated

one or more times.

Syntax Notations
The following notations are used to describe dL4 BASIC syntax:

NOTATION STANDS FOR MEANING
args Arguments Expressions or variables passed to a procedure, a function, or used with an

operator.
bin.expr Binary expression An expression yielding a binary string value.
bool.expr Boolean expression An expression evaluated in a boolean context resulting in TRUE/FALSE.
chan.expr Channel expression An expression that combines a channel number followed by three optional

numeric parameters, commonly indicating a record number, a field position,
and a timeout value. It begins with a # and ends in a semicolon. e.g.
 #9, r, c, d;
 #9,5;

chan.no Channel number An integer value, between 0 and 99 inclusive, preceded by #, that the
program uses for a logical connection between a BASIC program and a file.
Refer to "Channel Expression" in Chapter 5 of this guide.

crt.expr CRT expression An expression used for cursor positioning, e.g. @x,y. Refer to "CRT
Expressions", Chapter 6 of this guide.

expr Expression A valid series of constants, variables, functions, and operators to define a
desired computation. Refer to Chapter 4 of this guide.

filename

Filename A string literal or expression containing a name which is optionally
preceded by a relative or absolute directory pathname. Refer to Introduction
to dL4.

file.spec.items File specification,
items

A file specification expressed as a list of items.

 Introduction 2

dL4 Language Reference Guide©

file.spec.str File specification,
string

A file specification expressed as a string expression.

func.name Function name The valid name of a function.
label : Label A user-defined name identifying a statement line number. Refer to

"Statements, Line Numbers and Labels", Chapter 7 of this guide.
num.const Numeric constant A numeric constant.
num.expr Numeric expression An expression yielding a number.
num.lit Numeric literal A numeric literal value, e.g. 1.23.
parm.list Parameter A list of variables associated with parameters passed, and optionally

followed by three dots (...).
proc.name Procedure name The valid name of a procedure. Refer to Chapter 4 and Chapter 8 of this

guide.
rel.op Relational operator A binary operator that compares its first operand to its second operand to

test the validity of the specified relationship. Refer to "Relational
Operators", Chapter 5 of this guide.

stmt.no Statement number Unique positive integer that identifies a statement line. Refer to "Statements,
Line Numbers and Labels", Chapter 7 of this guide.

stmt Statement A single BASIC instruction along with parameters, e.g. PRINT A
str.expr String expression An expression yielding a string value or a string variable.
str.lit String literal A quoted sequence of characters, e.g. "string".
struct.name Structure Name The name of a pre-defined, fixed grouping of variables defined at compile-

time. Refer to "Structure", Chapter 3 of this guide.
var.list List of variables or

expressions
An arbitrary number of comma separated variables of any dL4 data types.
Refer to "Variables", Chapter 3 of this guide.

var.mat Matrix Variable Any numeric matrix variable name. Refer to "Variables", Chapter 3 of this
guide.

var.name Variable Name A variable name. Refer to "Variables", Chapter 3 of this guide.
bin.var Binary variable A variable of binary data type. Refer to Chapters 2 and 3 of this guide.
num.var Numeric variable A variable of numeric data type. Refer to Chapters 2 and 3 of this guide.
str.var String variable A variable of string data type. Refer to Chapters 2 and 3 of this guide.
struct.var Structure variable A variable of structure data type. Refer to "Structures", Chapter 3 of this

guide.

 Data Types 3

dL4 Language Reference Guide©

Chapter 2 - Data Types

Introduction
In dL4 there are four basic data types and two aggregate data types. Each type has its own rules of
operation. The four basic types are Numeric, Character String, Date and Binary. The two aggregate, or
derived, types are Array and Structure. The four basic data types are first described briefly below, then in
more detail in the following paragraphs. Structures and arrays are described in Chapter 3 of this guide.

• Numeric data is made up of integers and floating-point numbers which can be manipulated by
arithmetic operators.

• Character string data is comprised of Unicode characters. Although string data can contain numeric
characters, there can be no direct arithmetic manipulation of string data without first converting the
characters to numeric data.

• Dates are internal representations of specific points in real-time. Special functions are provided to
manipulate and perform arithmetic-like operations on dates. Dates cannot be thought of as string or
numeric data, but can be converted to or from character strings for input and display operations.

• Binary data is raw information which is not to be interpreted by dL4 as string, numeric, date, or any
other type. It is often useful for the developer to manipulate data within a program while being
guaranteed that the language does not translate.

• Structures aggregate data are programmer-defined sequence of individual named data items of the
same or different data types, grouped together to form a single data item. Such a collection is most
often used to describe a "record" of information, as in a data file.

• Arrays are ordered collections of the same data type where each individual item is referenced by
subscripting. Multi-dimensional arrays are represented as arrays of arrays. The developer can also
define arrays of structures, or structures containing arrays. The DIM statement reallocates arrays to the
exact size specified, preserving only those array elements that remain within the new size of the array.
An array can be enlarged to any size with new elements initialized to zero.

Numeric Data
Numeric data can be stored in a variety of internal formats, including Binary Integer, floating point Binary-
Coded Decimal (BCD), etc. The particular format used for a variable is called its precision. The valid
range for all numeric data is governed by the arithmetic library package used by dL4 and is approximately
10-507 through 10507 with 20-digit precision. All arithmetic calculations are performed to this degree of
accuracy, although results can be truncated depending on the precision of variables used.

Numeric values supplied directly in statements are referred to as numeric constants. Very large or small
constants can be expressed using floating-point E-notation (scientific notation).

Numeric Precision

Many numeric data precisions are supported, each with a different representation, accuracy and portability.
Some precisions are included only for support of existing programs or data files. The following table of

 Data Types 4

dL4 Language Reference Guide©

numeric precisions defines the storage requirements, significance and the approximate range of
representation.

Table of Numeric Precisions

% Parameters Bytes Decimal
Digits

Range of values supported

1 16-bit signed integer 2 4+ -32768 to +32767
2 32-bit signed integer 4 9+ -2,147,483,648 to +2,147,483,647
3 3-word BITS Base 10000 floating1 6 9-122 ±.999999999999 E±63
4 4-word BITS Base 10000 floating 8 16 ±.9999999999999999 E±63
5 2-word BITS Base 10000 floating 4 6 ±.999999 E±63
6 6-word BITS Base 10000 floating 12 17-20 ±.99999999999999999E±63
7 16-bit signed BCD integer 2 4 ±7999
8 2-word IRIS BCD floating 4 6 ±.999999 E±63
9 3-word IRIS BCD floating 6 10 ±.9999999999 E± 63
10 4-word IRIS BCD floating 8 14 ±.99999999999999 E±63
11 5-word IRIS BCD floating 10 18 ±.999999999999999999 E±63
12 32-bit signed BCD integer 4 8 ±79999999
13 2-word IEEE BCD floating 4 6 ±.999999 E±63
14 3-word IEEE BCD floating 6 10 ±.9999999999 E± 63
15 4-word IEEE BCD floating 8 14 ±.99999999999999 E±63
16 5-word IEEE BCD floating 10 18 ±.999999999999999999 E±63
17 2-word IEEE floating scaled X 100 4 73 ≈ ±99999.99
18 3-word IEEE floating scaled X 100 6 11 ≈ ±999999999.99 E±35
19 4-word IEEE floating scaled X 100 8 ‡ ≈ ±999999999999.99 E±35

Programs declare precisions in either the form %n or n%. The former is used to specify an exact precision
from the above table; the latter maps to a precision within a general type of representation.

The mapping of n% to a real precision is based upon the Option Arithmetic declaration within each
program. Unless specified, the default is Decimal (alias IEEE Decimal).

Character String Data
A string is defined as a series of Unicode characters. Unicode is a character-encoding standard using a 16-
bit character encoding scheme. It includes characters from the world's scripts, as well as technical symbols
in common use. The ASCII character set is a sub-set of the UNICODE character set, mirroring the first
128 characters, i.e. ASCII values 0x00 - 0x7F are identical to UNICODE values.

String constants within programs are of two basic kinds: quoted strings (string literals) and mnemonic
strings. String literals are enclosed by the quotation mark character and referred to as string literals. A
zero byte is used internally to denote the logical end of a string. A string literal is governed by the
following rules:

1. Must begin and end with a quotation mark character (").

2. Any character can be expressed by its octal or hexadecimal Unicode value enclosed within
backslashes. For example, carriage return can be given as "\15\" or "\x0f\". Special characters that
perform an action on input (commonly backspace, etc.) must be entered in this fashion to be accepted
as data.

1 Base 10000 representation is supported for older BITS and UniBasic files and is not portable across hardware platforms.
2 The exact number of digits is based upon the decimal point alignment. Each byte-pair (word) holds 4 digits and a decimal point exists only on a word
boundary. Therefore a 6-byte (3-word) value can represent 12 integer and no fractional digits, or respectively 8 and 4, 4 and 8 or 0 and 12. When a value
has both integer and fractional components, and either component is less than 4-digits, you sacrifice the remaining digits in that word.
3 Two fractional decimal digits are guaranteed to be accurate, if the value remains within the range given. Rounding errors may occur beyond two digits
from the binary-decimal conversion.

 Data Types 5

dL4 Language Reference Guide©

3. All printable characters represent themselves except backslash (\) and quotation mark ("). Backslash is
represented as "\\" (or "\134\"); quotation mark is represented by two consecutive apostrophes (single
quotes) (' ').

Character mnemonic strings are helpful for referring to non-printable Unicode characters in a program.
For example, the horizontal tabulation character is 118, or "\11\"; this can be more readably expressed with
a mnemonic string as 'HT'. A mnemonic string is governed by the following rules:

1. Must begin and end with an apostrophe (single quote) character (').

2. Must contain one or more mnemonic codes separated by a space.

3. Each code can be optionally preceded by a list of one or more numeric constants, separated by
commas, to be interpreted as "character parameters". Character parameters are themselves embedded
as special characters preceding the main mnemonic code, and applying to it. The exact effect of any
parameters is outside the scope of the language and determined by the I/O drivers. A single parameter
value is often interpreted as a repetition count, such as '10GH' to output ten forms light horizontal
characters.

The PCHR$ function provides for the runtime construction of character parameters using expressions
rather than constants. In addition, the special notation @X,Y; can be used as an abbreviation for
Pchr$(X,Y)+'MOVETO'.

Dates
Dates serve as a standard storage method for date and time data, allowing date manipulation and culture-
independent input and output of dates. Numerous functions are provided for the manipulation and
conversion of dates. Dates are a distinct type of data different from string or numeric.

Table of Date Precisions

% Description Bytes Minimum value Maximum value
1 Days 2 2 Jan 1900 00:00:00 GMT 6 Jun 2079 00:00:00 GMT
2 Minutes 4 1 Jan 0001 00:01:00 GMT 16 Feb 8167 04:15:00 GMT
3 Milliseconds 6 1 Jan 0001 00:00:00.001 GMT 3 Aug 8920 05:31:50.655 GMT

Date arithmetic is always performed in terms of seconds, which can be fractional if a date variable has
sufficient precision. The precision of date variables is determined exactly like numeric variables, with the
n% or %n specification controlling the currently-selected precision. Unlike numeric precisions however,
there is no mapping from n% to %n controllable by the Option statement; e.g., 1% always means %1, etc.

There is no default value assigned to a newly-allocated date variable. An uninitialized date variable uses a
special value, indicating not a date. An error is generated if an attempt is made to access an uninitialized
date variable. See Appendix B, Error Messages.

Please check the expression section in this manual for legal operations using date variables.

Binary
Binary data behaves the same as string data in some respects, except its contents are not translated. Binary
strings give the developer a way to communicate "raw" data to/from a file or device and ensure that no
translation or processing of any kind is performed.

 Variables 6

dL4 Language Reference Guide©

Chapter 3 - Variables

Introduction
This chapter describes variable-naming conventions, subscripted variables (arrays), automatic
dimensioning, re-dimensioning variables, structures , and structure variables. For a definition and basic
discussion of variables, refer to Introduction to dL4.

Variable Names
A variable name consists of up to 32 characters which can be letters, digits or the underscore (_). The
name cannot begin with a digit. Lower-case letters are equivalent to their upper-case counterparts.

Except for numeric variables, all variable names end with a type identifier character. This suffix is part of
the name and must be specified in each reference to that variable within a program. String variables end
with $; dates end with #; structures with .; and binary variables end with ?. Arrays end with the type of
their base element. Variable names differing only in suffix refer to distinct variables, e.g., MyVar,
MyVar$, and MyVar? are all separate variables.

Some examples of variable names include:
A
A$
payday#
SoundWave?
DATA_VALUE
PHONE_NUMBER$

Up to 4096 different variables can be used within a program. If this limit is exceeded, Error 8 is displayed:
Too many variable names

Subscripted Variables (Arrays)
References to array, character, and binary variables can include the specification of a subscript to identify a
specific, or specific range of, data stored in them. A subscript is given in the form:
 expr{, expr}...

Each expr is any numeric expression which, after evaluation, is truncated to an integer. The subscript(s)
are then evaluated based upon the type of variable to which they are applied:

• When applied to a character string, up to two subscripts are used; these represent starting and ending
character positions inclusive, with positions numbered from 1. If the second subscript is not given, the
end of string is assumed.

• When applied to a binary string, up to two subscripts are used; these represent starting and ending byte
positions inclusive, with positions numbered from 1. If the second subscript is not given, the end of
string is assumed.

 Variables 7

dL4 Language Reference Guide©

• When applied to an array, a single subscript is used; this represents the element number of the array,
with elements numbered from 0. If an array is referenced without a subscript, element zero is assumed
(except for MAT statements, which process entire arrays).

Multiple subscripts can be concatenated; each is evaluated in turn from left to right. This notation can be
used to index into each successive level of a nested aggregate such as an array of strings or an array of
arrays (i.e., multi-dimensional arrays). For example:

Print A[2][3]

prints the 4th element of the third array of A. For historical reasons, multiple subscripts can also be
enclosed together with brackets, as in:

Print A[2,3]

String subscript values of zero are normally illegal and generate errors at runtime. If OPTION STRING
SUBSCRIPTS IRIS is used, then zero subscripts will be normalized such that a starting subscript of 0
becomes 1 and an ending subscript of 0 is treated as if no ending subscript was specified.

Automatic Dimensioning
New local variables are normally allocated by a program using the DIM statement; numeric, date, and
some array variables can be implicitly dimensioned by their initial usage, through a feature called Auto-
Dimensioning. A simple reference to such a variable causes it to be allocated, if not already allocated.
Auto-dimensioning occurs subject to the following rules:

• Auto-dimensioned numeric and date variables take on the current precision (i.e., last precision
specified) of the running program-unit.

• Auto-dimensioned array variables take on a dimension of 10 with the current precision. Only arrays of
numbers, dates, or further arrays of same can be auto-dimensioned. Therefore, even multi-
dimensional arrays can be allocated in this way: M[3][9] = 123.45

• If OPTION AUTO DIM OFF is used, an error 25 (“variable not dimensioned”) will be generated
wherever auto-dimensioning would be required.

Re-Dimensioning Variables
Once a variable is allocated, its precision cannot be changed with one exception: an array variable can be
re-dimensioned to a different size or a different number of dimensions. A re-dimension remains in effect
for the remainder of the program, or until changed again. A change in dimension does not affect the
precision or value of the base array elements.

In addition, whenever a numeric array specified in a MAT statement is followed by subscripts, the
subscript values are interpreted as a new dimension size for the selected array:

Mat X = Zer[32,5]

is identical to:
Dim X[32,5]
Mat X = Zer

 Variables 8

dL4 Language Reference Guide©

Structures
A structure is a dL4 data type that groups several data elements or variables of identical or different data
type. Each individual data element is called a structure member. Each member must be declared in
advance of its use along with its data type.

The group of related members is combined and is collectively identified by a unique name known as the
structure tag name or simply the structure name.

The structure data variable uses the structure name to associate itself with the group of members.

 Structure variables provide numerous benefits to the application designer. For example:

• Defining a data record layout

• Operating on a large amount of organized data by referencing a single name

• Organizing related data into a form which simplifies programming and eliminates errors

Structure (.) Variables
Structure variables are indicated by a "." suffix and must be explicitly defined before use. To define a
structure template, use one of the following general forms:

DEF STRUCT struct.name name {, ... }

DEF STRUCT struct.name
 MEMBER name {, ... }
 ...
END DEF

struct.name is a unique name tagged to this template. The name can be from one to thirty-two characters in
length, and contain letters, digits, and underscores. DEF STRUCT does not actually allocate a structure
using the supplied name; rather, it informs the compiler to define a unique structure template tagged with
this name.

MEMBER name is any legal variable name, or precision declaration in the form: %p or p%. name can be
any type of variable, string, numeric, date, binary or another structure. Any given member can also be an
array. The syntax and function of MEMBER statements are nearly identical to that of DIM.

If the first general form is used, all MEMBER names must be contained on a single program line. The
second general form can be used for readability, or when all of the members cannot be defined on a single
line. The two general forms cannot be mixed within a single struct.name definition.

The END DEF statement defines the end of a structure definition.

Prior to using a structure, you must dimension one or more variables as a specific struct.name. The
following general form is used to dimension a structure:

DIM variable. { [expr {, ... }] } AS struct.name

variable. is an actual variable in the program which is to be referenced as a structure. The variable can
include array subscript dimensions, if the variable. is to be an array of structures.

As struct.name informs the compiler which compiled structure definition is to be used for variable.

A structure definition itself can contain one or more structures, or arrays of structures. To define a
structure which includes a structure, a MEMBER is expressed as follows:

 MEMBER name. { [expr {, ... }] } AS struct.name2

name. is the name within struct.name whose members are defined by the structure definitionstruct.name2.
struct.name2 must be an existing struct.name which has been previously defined.

 Variables 9

dL4 Language Reference Guide©

The names of structure members are distinct from any other names outside the structure. For example,
Data.Q$ is distinct from Q$ which is distinct from Data1.T.Q$.

The members of a structure are physically contiguous in memory, and are ordered in memory as defined by
DEF STRUCT. Individual structure members cannot be re-dimensioned.

For syntactical reasons, a separator is needed between a structure variable and a member name; this is also
represented by a ".". The separator becomes necessary for:

LET B.[3].S$="HELLO"

"B." is the variable name, [3] is the third array element and the second "." is the structure/member
separator. In fact, a simple reference such as "A.Q$" is really "A..Q$" internally, but the second "." is
assumed where it is redundant.

The order in which members of a structure are declared is important because this determines the order in
which values are read from a DATA statement, or transferred to/from a file, etc. For example:

DEF STRUCT TEST=Q$[20],1%,R,S
DIM A. AS TEST
WRITE #1;A. ! This WRITE is exactly
WRITE #1;A.Q$,A.R,A.S ! like this one

Indeed, many older-style statements which operate upon a fixed number of parameters can now be supplied
a structure instead. Supplying the structure is interpreted as if you supplied each member as a single
variable, separated by comma. As discussed later, SEARCH is another statement where the Key, Record
Variable and Status Variable can be passed within a structure.

Structures benefit from all the enhancements to arrays and strings (and follow the same rules), so:
DIM B.[10]
LET B.E=5 ! is equivalent to B.[0].E=5
DEF STRUCT TestInfo
 MEMBER StartTime$[25],StopTime$[25]
 MEMBER 4%,TotalSeconds,Seconds[128]
 MEMBER %1,MasterPort,FileClass
 MEMBER %1,NoOfTests,NoOfPorts,Iteration
 MEMBER %1,MinPorts,MaxPorts
 MEMBER %1,StepValue,SampleSize,1%,date#
 MEMBER %1,Timearray[5,5,5]
END DEF

 Intrinsic Functions 10

dL4 Language Reference Guide©

Chapter 4 - Intrinsic Functions

Introduction
This chapter lists and briefly describes all dL4 intrinsic (pre-defined) functions.

Intrinsic Functions
All intrinsic (predefined) functions are documented below in alphabetical order.

 Intrinsic Functions 11

dL4 Language Reference Guide©

Predefined Functions

Name Parameters of Function
ABS(n) Absolute value.
ASC(s$) Unicode value of first character in string.
ATN(n)4 Arctangent.
BSTR$(n,b) Returns the a string representation of the value n converted to the specified base b. The base must be 2, 8, or

16. Examples: BStr$(15,2) = "1111" ; BStr$(15,8) = "17" ; BStr$(15,16) = "F"
BVAL(n$,b) Returns a numeric value for the string representation n$ of a number to the base b. The base must be 2, 8, or

16. Examples: BVal("1010",2) = 10 ; BVal("12",8) = 10 ; BVal("A",16) = 10
CHF(n) Various numeric parameters of an open channel. The argument must be the channel number (0-99) of an open

channel plus a constant which is a multiple of 100 to select mode. Interpretation of each mode is
driver-dependent.

CHF(000 + c) Driver dependent: typically number of records in the file open on channel c. This count will include any base
record number such as used in Indexed-Contiguous files.

CHF(100 + c) Driver dependent: typically current record number in the file open on channel c.
CHF(200 + c) Driver dependent: typically current item number or offset in the file open on channel c.
CHF(300 + c) Driver dependent: typically record length in words (16 bit) or bytes (if OPTION set) for the file open on

channel c.
CHF(400 + c) Driver dependent: typically file size in bytes for the file open on channel c.
CHF(500 + c) Driver dependent: typically record length in bytes for the file open on channel c.
CHF(600 + c) Driver dependent: typically file header length in bytes for the file open on channel c.
CHF(900 + c) Driver dependent: typically file owner id number, if any, for the file open on channel c.
CHF(1000 + c) Driver dependent: typically file group id number, if any, for the file open on channel c.
CHF(1100 + c) Driver dependent: typically file permissions for the file open on channel c.
CHF(1200 + c) Driver dependent: typically current column number for the file open on channel c.
CHF(1300 + c) Driver dependent: typically current row number for the file open on channel c.
CHF(1400 + c) Driver dependent: typically an operating system defined unique identifier for the file open on channel c.
CHF(1500 + c) Driver dependent: if implemented, returns the number of characters read by the last input operation on the

channel c. This function is normally used when performing binary input on a device or a network socket.
CHF#(n) Various date/time parameters of an open channel. The argument must be the channel number (0-99) of an

open channel plus a constant which is a multiple of 100 to select mode. Interpretation of each mode
driver-dependent.

CHF#(100 + c) Driver dependent: typically creation date/time for the file open on channel c. On systems, such as Unix, that
do not support a creation date/time, the oldest available file date attribute will be returned.

CHF#(200 + c) Driver dependent: typically last access date/time for the file open on channel c.
CHF#(300 + c) Driver dependent: typically last modification date/time for the file open on channel c.
CHF$(n) Various string parameters of an open channel. The argument must be the channel number (0-99) of an open

channel plus a constant which is a multiple of 100 to select mode. Interpretation of each mode is
driver-dependent.

CHF$(100 + c) Open mode (“R”, “W”, “E”, and “L”) for the file open on channel c.
CHF$(600 + c) Driver class name for the driver open on channel c.
CHF$(700 + c) Driver name for the driver open on channel c.
CHF$(800 + c) Filename (including relative or absolute path) or equivalent for the file open on channel c.
CHF$(900 + c) Driver dependent: typically file owner name for the file open on channel c.
CHF$(1000 + c) Driver dependent: typically file group name for the file open on channel c.
CHF$(1100 + c) Driver dependent: typically file permissions for the file open on channel c.
CHF$(1200 + c) Driver dependent: typically last input termination character for the file open on channel c.
CHF$(1300 + c) Absolute path for the file open on channel c.
CHR(n) Returns the decimal characteristic of the argument. This is an integer exponent X such that: 10X-1 <= n < 10X
CHR$(n) Returns the Unicode character whose value is n. Note: when converting BITS programs, CHR() must be

manually converted to CHR$().
CHR?(n) Returns a one character binary string where the first character has the value n.
COS(n)4 Cosine.
DAT#(y,m,d) Combines the given numeric year, month, and day values into a single date/time value.
DAT#(y,m,d,h,m,s) As before but includes hour, minute, and second values.
DET(n) Determinant of the last matrix inverted. See the MAT INV statement.
ERM$(n) Supplies a descriptive text message for error number n..
ERR(n) Various values pertaining to error, ESCAPE and interrupt branching.
ERR(0) Number of last error.
ERR(1) Line number of last error.

4 Angles are interpreted as either radians or degrees depending on setting of the OPTION ANGLE statement.

 Intrinsic Functions 12

dL4 Language Reference Guide©

ERR(2) Line number of last ESCaped statement.
ERR(3) Line number of last interrupted statement.
ERR(4) Statement number on line of last error, ESCAPE, or interrupt.
ERR(5) Statement number on line of last error.
ERR(6) Statement number on line of last ESCaped statement.
ERR(7) Statement number on line of last interrupted statement.
ERR(8) -1
EXP(n) Exponential, the constant e to the power given (en)
FRA(n) Fractional portion. For example: FRA(4.5) yields 0.5.
GMT$(d#)5 Converts the given date/time value to an equivalent character string representation, using Greenwich Mean

Time (i.e., Universal Time Coordinated) as the time zone.
GMT#(d$)5 Converts the given character string to an equivalent date/time value, using Greenwich Mean Time (i.e.,

Universal Time Coordinated) as the time zone.
HEX?(s$) Returns a binary string containing the converted contents of s$, which is assumed to contain a hexadecimal

representation of binary data.
HEX$(b?) Returns a character string containing the hexadecimal representation of b?.
INT(n) Returns the greatest integer less than or equal to n. For example: INT(4.5) yields 4, while INT(-4.5) yields -5.
INT(s$) Returns the Unicode value of the first character in the string. This is functionally identical to the ASC

function.
IXR(n) Decimal radix 10 to the power of n. For example: IXR(3) returns 1000.
LBOUND(a,0) Number of dimensions of array a. Trailing brackets ("[]") must follow array a.
LBOUND(a,n) Lower subscript bound of dimension n of array a. Trailing brackets ("[]") must follow array a.
LCASE$(s$) Converts all upper-case letters to lower-case.
LEN(s$) Length of string in characters.
LOG(n) Logarithm base e of n. Logarithm in any base B can be achieved using the theorem: logBX=logeX/logeB
LTRIM$(s$) Removes leading white-space characters.
MAN(n) Decimal mantissa of n in base 10.
MONTH(d#) Numeric month value from d#; 1 - 12.
MONTH$(n)5 Name of month from n, 1 - 12.
MONTHDAY(d#) Day number of month from d#; 1 - 31.
MSC Miscellaneous numeric functions
MSC(0) Current port number.
MSC(1) Last logical input element accepted.
MSC(2) -1 or the value of the SPC4 runtime parameter.
MSC(3) Line number of last GOSUB executed. Value is returned and removed from the GOSUB stack.
MSC(4) -1
MSC(5) Current column counter on default output channel. When MSC(5) is used in a PRINT statement, the initial

value of the column counter is returned.
MSC(6) Returns current unused variable space as a large integer constant (INT_MAX), typically 231-1.
MSC(7) Current user and/or group ID number.
MSC(8) -1
MSC(9) -1
MSC(10) -1
MSC(11) -1
MSC(12) -1
MSC(13) -1
MSC(14) -1
MSC(15) -1
MSC(16) -1
MSC(17) -1
MSC(18) The constant π (3.141592653589793).
MSC(19) The constant e (2.718281828459045).
MSC(20) Maximum channels per user; returns 100.
MSC(21) -1
MSC(22) -1
MSC(23) -1
MSC(24) -1
MSC(25) -1
MSC(26) -1
MSC(27) -1

5 Exact character representation of date components depends on setting of the OPTION DATE FORMAT statement.

 Intrinsic Functions 13

dL4 Language Reference Guide©

MSC(28) -1
MSC(29) -1
MSC(30) Current line number.
MSC(31) Current statement number on line..
MSC(33) Number of columns on the default I/O channel.
MSC(34) Number of rows on the default I/O channel.
MSC(35) Input buffer size in characters.
MSC(36) -1
MSC(37) Maximum number of ports supported.
MSC(38) Total number of ports currently in-use.
MSC(39) Current OPTION DATE FORMAT setting; 0 = Standard, 1 = Native.
MSC(40) Number of columns for Dynamic Windows display device.
MSC(41) Number of rows for Dynamic Windows display device.
MSC(42) Window nesting level in Dynamic Windows.
MSC(43) Current row counter on default output channel. When MSC(43) is used in a PRINT statement, the initial

value of the row counter is returned.
MSC(44) Dynamic Window system state. One if the window system is active, zero if it is not active.
MSC(45) Element number of the GUI element (‘WCxxxx’) last read by an INPUT or READ statement
MSC(46) Original line number of last error. If an error occurs in a subprogram or procedure and the error is not handled

within that subprogram or procedure, the error will be reported to the caller and ERR(1) and SPC(10) will
report the line number at which the subprogram or procedure was invoked. MSC(46) reports the line number
within the original subprogram or procedure.

MSC$(n) Miscellaneous string functions.
MSC$(-3) dL4 revision string.
MSC$(-2) dL4 revision formatted as RRLLBBSS.
MSC$(-1) “” or the value of the SPC4 runtime parameter formatted as “RRLLBBSS”.
MSC$(0) System date and time in international format: dd mon year hh:mm:ss
MSC$(1) Current working directory path
MSC$(2) Text description of last error.
MSC$(3) System date and time in US format: mon dd, year hh:mm:ss
MSC$(4) Filename of the current program.
MSC$(5) Filename of the parent program, when the current program was invoked by SWAP.
MSC$(6) Return the current LIBSTRING value.
MSC$(7) Return hot-key character used to invoke current swap program or " ".
MSC$(8) Return operating system dependent directory separator string (“/” for Unix and “\” for Windows).
MSC$(9) Absolute path of the directory containing the current program.
MSC$(264) “”
NOT(n) Logical NOT. Returns 1 if n is zero, or zero if n is not zero.
NOT(s$) String NOT. Returns 1 if s$ is null (length 0), or zero if s$ is not null.
PCHR$(n{,...}) Convert numeric or string value(s) to "character parameters", suitable for prefacing certain command

characters.
POS(s$,op t${,s{,o}}) First position in s$ where op t$ is true. s is an optional position step value; o is an optional occurrence value

(default 1). op can be any relational operator < <= > >= = <> or a set operator IS or EXCEPT. The IS
operator searches for the first character in s$ that is in t$. The EXCEPT operator searches for the first
character in s$ that is not in t$. s can be negative to indicate backwards searching from the end of string.

REP$(s$,n) Repeats s$ n times.
RND(n) A pseudo-random number X is generated in the range 0 < X < n.
ROUND(n,d) Rounds n to d decimal places.
RTRIM$(s$) Removes trailing white-space characters.
SGN(n) Signum function. Returns the sign of n; -1 if n < 0, 0 if n = 0, or 1 if n > 0.
SIN(n)4 Sine.
SPC(n) Special numeric functions.
SPC(0) CPU time used in tenth-seconds.
SPC(1) Connect time used in minutes.
SPC(2) Hours since the system base date. This value is computed assuming all months have 31 days.
SPC(3) Current tenth-second of the hour.
SPC(4) -1 or the value of the SPC4 runtime parameter.
SPC(5) Current user and/or group ID number.
SPC(6) Current port number.
SPC(7) User-defined.
SPC(8) Last error number.
SPC(9) Current line number.
SPC(10) Line number of last error.

 Intrinsic Functions 14

dL4 Language Reference Guide©

SPC(11) Current directory name represented as a number, if possible.
SPC(12) Directory of the current program represented as a number, if possible.
SPC(14) Line number of last GOSUB. Value is returned and removed from the stack.
SPC(15) Return and clear the last error number.
SPC(16) Line number of last GOSUB. Value is returned and left on the stack.
SPC(17) Length of last character-limited input.
SPC(18) Constant base year; always returns 1980.
SPC(19) The system license id in the form of a 32-bit unsigned integer.
SPC(20) Current base year.
SPC(21) Input buffer length.
SPC(22) Returns available program space in words: a large integer constant (INT_MAX), typically 2^31-1.
SPC(23) Current library directory from last LIB statement. -1 is returned if no current library or if it cannot be

represented as a number.
SPC(24) Line number of last END, STOP or SUSPEND statement.
SPC(264) -1 or the value of the SPC264 runtime parameter.
SPC(272) -1 or the value of the SPC272 runtime parameter.
SPC(n) Return the numeric value of the environment variable “SPCn”. Environment variables do not override the

standard SPC values and applications should use values of N greater than 99 to avoid possible conflicts.
SQR(n) Square root.
STR$(n) Convert the numeric value n into a character string. Unlike direct assignment, no white-space is included.
TAN(n)4 Tangent.
TIM(n) Returns miscellaneous time-related numeric values.
TIM(0) CPU time used in seconds.
TIM(1) Connect time used in minutes.
TIM(2) Hours since base date.
TIM(3) Current tenth-second of the hour.
TIM(4) Current date in the form: MMDDYY where MM is the month (1-12), DD is the day of the month (01-31) and

YY is the year such as 89.
TIM(5) Current date in the form YYDDD where DDD is the day of the year (1-366).
TIM(6) Number of days since 0 January 1968.
TIM(7) Current day of week (0=Sunday, 6=Saturday).
TIM(8) Current year in the form YY, such as 89.
TIM(9) Current month; 1=January, 12=December.
TIM(10) Current day of the month; 1-31.
TIM(11) Current hour of the day; 0-23.
TIM(12) Current minute of the hour; 0-59.
TIM(13) Current second of the minute; 0-59.9.
TIM(14) Current date in the form: MMDDYYYY where MM is the month (1-12), DD is the day of the month (01-31)

and YYYY is the year, such as 2001.
TIM(15) Current date in the form YYYYDDD where DDD is the day of the year (1-366) and YYYY is the year, such

as 2001.
TIM(16) Current year in the form YYYY, such as 2001.
TIM#(n) Returns miscellaneous date/time values.
TIM#(0) Current real-time.
TIMEZONE(d#) Local time-zone offset from GMT in seconds in effect as of d#.
TRUNCATE(n,d0 Truncates n to d decimal places.
UBOUND(a,0) Number of dimensions of array a. Trailing brackets ("[]") must follow array a.
UBOUND(a,n) Upper subscript bound of dimension n of array a. Trailing brackets ("[]") must follow array a.
UCASE$(s$) Converts all lower-case letters to upper-case.
VAL(s$) Convert the string value s$ to a number.
WEEKDAY(d#) Day of week number from d#; 1 = Sunday, 7 = Saturday.
WEEKDAY$(n)5 Day of week name for day n; 1 = Sunday, 7 = Saturday.
YEAR(d#) Year number from d#.
YEARDAY(d#) Day of year number from d#; 1 - 366.

 Expressions 15

dL4 Language Reference Guide©

Chapter 5 - Expressions

Introduction
This chapter describes dL4 operator precedence, by which dL4 evaluates expressions, and the operators
themselves:
• Unary
• Arithmetic
• Concatenation
• Assignment
• Relational
• Boolean
• String Operator USING
• String Operator TO
In addition, Boolean Expressions, Channel Expressions, and String Assignment are described.

Operator Precedence
The operations within an expression are evaluated according to the precedence shown in the Operator
Precedence Table below. Operators on the same level are evaluated from left to right in the expression.
Parentheses can be used, however, to override this hierarchy. Predefined functions and procedures are
evaluated before any operators are executed.

Operator Precedence Table

Operator(s) Parameters Evaluation Order
+ - Unary + - (negation) Right-to-Left
^ Exponentiation Left-to-Right
* / MOD Multiply, Divide, Modulo Left-to-Right
+ - Add, Subtract Left-to-Right
TO String searching: all characters of target string are significant Left-to-Right
USING Numeric formatting Left-to-Right
, + String concatenation Left-to-Right
< <= > >= <> Comparison Left-to-Right
AND Logical AND Left-to-Right
OR Logical OR Left-to-Right
:= Assignment Right-to-Left

For example:

Expression Evaluates as Result
3+4*5 3+(4*5) 23
(3+4)*5 (3+4)*5 35
14/7*10/2 ((14/7)*10)/2 10
3^2*4 (3^2)*4 36
"3"+"B" "3" concatenate "B" "3B"

 Expressions 16

dL4 Language Reference Guide©

Operators
The dL4 operators are described in the following paragraphs.

Unary Operators + -

The unary operators (+ -) are used to change the sign of an argument. They are evaluated from right-to-left
and have the highest precedence. The + is a non-operation, and the - changes a negative value positive or a
positive value negative.

Arithmetic Operators ^ * / % + -

Arithmetic operators follow unary operators in the precedence of an expression. The highest precedence is
given to (^) invoking exponentiation, which is essentially repeated multiplication. A value yx is read, "take
the value y raised to the power x." In simpler terms, multiply y by itself x times. Exponentiation has the
highest precedence of all of the arithmetic operators and is evaluated Left-to-Right.

Next, (* / MOD) which selects multiplication, division and modulo. The MOD operator returns the
remainder of a division of the two operands. This is calculated as (x - INT(x/y)*y). 10%2 yields 0, 10%3
yields 1, etc. These operators are evaluated from left-to-right after exponentiation.

Finally, (+ -) addition and subtraction are the lowest precedence of the arithmetic operators. These are also
evaluated from Left-to-Right.

Concatenation Operators + ,

Concatenation operators are used to link string expressions together. The result of concatenating two
string expressions is the combination of both expressions into a single string expression. Each
concatenated string is appended to the end of the result of the current expression. The concatenation of
"This" +" That" results in the string: "This That", etc.

The (+) concatenation operator can be used in any expression involving strings; the (,) concatenation
operator is equivalent but can only be used in LET and IF statements.

 Expressions 17

dL4 Language Reference Guide©

Assignment Operator: Colon Equal

The assignment operator, Colon Equal, with ":=" is different from "=" which is compare-for-equality.
Compare-for-equality indicates that dL4 is attempting to determine if the values are equal. The word
"assignment" comes from the way this operator assigns values to the variables. The following two
statements are considered equivalent:

LET A = B
LET A:= B

But the next two statements are not considered equivalent:

LET A:= B:=C:=1
LET A=B=C=1

Regarding ":=", see the LET statement.

Relational Operators = <> > >= < <=

All relational operators are evaluated on an equal precedence and all group left-to-right. Their result is said
to be true (one) if the relation is true, and false (zero) if the relation is false. Relational operators can be
used in IF statements or as part of a boolean expression. The format is:

expression relation expression

where relation can be any of the following:

 = Equal
 <> Not Equal
 > Greater Than
 >= Greater Than or Equal To
 < Less Than
 <= Less Than or Equal To

String data are compared using the Unicode value of each character, one character at a time. If the strings
are not subscripted to control their length, then they are evaluated using the current logical length (from
any optional starting position up to the first zero-byte terminator). Strings are equal only when they are
exactly equal in length and contents. When a shorter string is compared to a longer one, and they are equal
up to the length of the shorter string, the shorter string is said to be less than the longer string. If, during
comparison, two characters do not match, the left string is said to be less than the right string if the
Unicode value of the left character is less than the Unicode value of the right character.

Boolean Operators AND OR NOT

The Boolean operators are described in "Boolean Expressions and Operators", Chapter 5 of this guide.

 Expressions 18

dL4 Language Reference Guide©

String Operator USING

The USING operator groups from left-to-right and results in a formatted string result from a numeric
expression. The format of this operator is:

numeric expression USING string expression.

The numeric expression is evaluated first. Next the string expression is evaluated and used to 'format' the
numeric expression into a string result.

The format string is scanned, and any characters which are not field descriptors are copied to the
destination until a format field is seen. Characters which can begin a format field are $ # + - and *. Other
field descriptors are treated as text and are copied until a starting character is seen. After formatting a
result, the remaining characters in the format string (up to the start of another format field) are copied to
the destination.

Each format field is made up of certain characters describing the formatting to be done. These are called
field descriptors. Numeric items are formatted according to the rules governing each descriptor. If an item
cannot be formatted according to the field given, the field is output filled with asterisks (*). This generally
occurs when a number is too large to be expressed with the number of digits available in the field.

Field Descriptors

Field descriptors for a format field fall into five categories:

1. Leading characters

2. Floating characters

3. Numeric Characters

4. Commas

5. Decimal Points

Leading Characters

A field can begin with one or two leading characters. The available leading characters are:

 LEADING OUTPUT

 $ $ always

 + + if item >= 0; - if item < 0

 - space if item >= 0; - if item < 0

The $ can be combined with either + or - for a two-character leading group. Note that all three leading
characters are also valid as floating characters. A group of two or more identical characters is considered a
floating character designation.

Floating Characters

A field can contain groups of floating characters. This character "floats" and is eventually executed just
before the first digit output. The available floating characters are the same as the leading characters
($, +, -) and are processed the same.

Numeric formatting outputs a sign (+ or -) only if one is specified within the format field. If none is given
in the format, all items are output as positive, regardless of sign.

One extra floating character should be given in the format field in addition to the number given for the
highest digit count desired. One space is required for the execution of the floating character itself. The

 Expressions 19

dL4 Language Reference Guide©

remaining floating characters can be occupied by digits. For example, the format string "$$$$" can
accommodate no number larger than 999, because one space is required for the dollar sign itself.

Numeric Characters

A field can contain groups of numeric characters. The available numeric characters are:

Digit or space if leading zero

& Digit, leading zeroes not suppressed

* Digit or "*" if leading zero

Every numeric character given in a format field can contain a digit. For example:

Format: #### &&&& ***# ***#
 17 0017 **17 **17
 247 0247 *247 *247
 6140 6140 6140 6140
 0 0000 ***0 ***0

Commas

A field can contain one or more commas which are output when significant. For example:

Format: ##,### #,###,### &,&&&,&&&
 768 768 0,000,768
 2,147 2,147 0,002,147
 ****** 1,034,957 1,034,957

The use of commas and decimal points in format masks is controlled by the OPTION USING DECIMAL
and OPTION NUMERIC FORMAT statements.

OPTION USING DECIMAL IS COMMA effectively interchanges the meaning of periods and commas
in format masks, not which character is output.

OPTION NUMERIC FORMAT NATIVE controls the output character.

Decimal Points

A field can contain a period for the fractional portion of an item. The fractional portion then follows and is
truncated to the number of digits specified. Only numeric descriptors (#and*) can follow the period, and
all are processed as a character. For example:

Format: ##.### ##.# ##.&& **.**
 74.000 74.0 74.00 74.00
 16.408 16.4 16.40 16.40

The use of commas and decimal points in format masks is controlled by the OPTION USING DECIMAL
and OPTION NUMERIC FORMAT statements.

OPTION USING DECIMAL IS COMMA effectively interchanges the meaning of periods and commas
in format masks, not which character is output.

OPTION NUMERIC FORMAT NATIVE controls the output character.

 Expressions 20

dL4 Language Reference Guide©

String Operator TO

The TO operator is evaluated from left-to-right and is used to specify part of a string expression. The
general form is:

 string expression TO string expression

The string expression on the left is evaluated first and referred to as the source. Next the right string
expression is evaluated and is referred to as the pattern. The resulting string expression is generated by
copying all characters from the source up to and including the pattern string. If the pattern is not found
within the source, then all characters of the source become the resulting string expression.

For example, if you have a large block of text and wish to copy the first sentence, you might use this
operator to find the result of:
S$ TO ". " ! Locate first period followed by 2 spaces

Boolean Operators

The Boolean operators are AND and OR. Closely associated is the function NOT. They are used to
convert normal expressions into Boolean operations. A Boolean operation yields a True/False condition.

• NOT reverses the condition; True becomes False and False becomes True.

• AND is used to compare the result of two expressions, yielding True only if both expressions are true.

• OR is used to compare the result of two expressions, yielding True if either of the expressions are true.

AND, OR, and NOT are processed left-to-right, and their precedence order is NOT, AND, OR. You may
use parentheses to change precedence order.

The parameters of a boolean operator are evaluated as a boolean expression.

Boolean Expression
A boolean expression, or bool.expr, is a context dependent interpretation of an expression which is used by
boolean operators, or in IF, DO WHILE, DO UNTIL, and WHILE statements. The interpretation of the
expression produces a boolean, i.e. TRUE/FALSE, result according to the following rules:

Data Type TRUE (1) FALSE(0)

Numeric non-zero zero
String non-zero length zero length
Date is a date not a date
Binary Not allowed Not allowed

 Expressions 21

dL4 Language Reference Guide©

The following two sample programs illustrate usage of boolean expressions:
Rem this is a sample program
a = 5
While a + 5
 Print a
 a = a - 1
Wend
Rem end of sample program

Rem this is another sample program
a = 0
While a + 5
 Print a;
 If a > 0
 Print "is a positive value"
 Else If a < 0
 Print "is a negative value"
 Else
 Print "is a zero value"
 Endif
 a = a - 1
Wend
Rem end of sample program

Channel Expressions
Most Input/Output (I/O) statements in dL4 use a channel expression. A channel expression consists of a
channel number followed by three optional numeric parameters. The three optional numeric parameters
commonly indicate a record number, a field position, and a timeout value. However, it is possible for these
parameters to indicate something else as the meaning of these parameters are driver-class dependent.

The generic format and specific examples of the channel expression follow:

 #chan.no, {num.expr1{, num.expr2{, num.expr3 }}} ;

 #9,5,2,1;

 #9;

 #9,record,byte_displ;

A channel expression begins with a #, and ends in a semicolon (;). The channel number follows "#", and
must be in the range 0 to 99. Many statements will also accept channel number -3 or -4 which select the
current standard input or standard output channels rescpectively. The final semicolon (;) indicates the end
of a channel expression.

The parameters must be specified in its proper order. In other words, both the first and second parameters
must also be specified in order to specify the third parameter. A value of negative one is used as a default
parameter value. Thus, an expression requiring only the last parameter can be written as:
 #9, -1, -1, 35;

Rules Governing String Processing
During the use of character strings within a program, the following rules are applied to operations:

• A string can contain any of the Unicode values from 0 to 65534. 65535 is explicitly not a Unicode
character.

 Expressions 22

dL4 Language Reference Guide©

• A zero character is used to terminate any string segment.

• String variables can be subscripted to select a starting and ending character position within a string. A
single subscript selects a starting point only. All strings terminate upon the occurrence of a zero
terminator, the second subscript, or the physical dimension of the string.

• A full string is defined to be any reference to a string variable in which a single or no subscripts are
supplied.

• A sub-string is defined to be any reference to a string variable using 2 subscripts.

String Assignment
When assigning data to a full string, the following rules are applied:

• The source is truncated to the size of the supplied destination.

• A zero terminator is inserted in the destination if the source is shorter than the destination.

• A zero terminator can be placed within a string by specifying a single subscript in the form:
S$[x] = "".

When you are assigning data to a sub-string, behavior of the sub-string is dependent on the setting of the
OPTION STRINGS statement. If OPTION STRINGS STANDARD is set, the following rules apply:

• When the source is shorter than the destination, the remaining characters within the subscripts are
deleted. Characters following the subscripted portion are shifted down to immediately follow the
shorter source.

• When a zero terminator is overlaid in the destination, it is pushed forward to the first character
position following the length of the source copied. This can cause a zero to be placed into the first
character position beyond the second subscript if the source exactly fills or is larger than the
destination.

If OPTION STRINGS RAW is set, the following rules apply:

• When the source is shorter than the destination, the second subscript is ignored. Only the number of
characters supplied in the source are copied to the destination.

• When a zero terminator is overlaid in the destination, it is pushed forward to the first character
position following the length of the source copied if and only if the source string does not completely
fill the destination. No characters outside the supplied subscripts are altered.

Other special string functions are available to the application:

1. A string can be completely filled with a single character (or group of characters) except zero-byte
terminators using the form:

A$=" ",A$! to space fill A$

2. Characters beyond the zero terminator can be operated upon by specifying a starting subscript beyond
the zero. Use the LEN function to determine the length of any string.

3. Numeric data can be converted to string and vice-versa using the LET Statement, or the functions
STR and VAL.

 Mnemonics 23

dL4 Language Reference Guide©

Chapter 6 - Mnemonics

Introduction
This chapter describes dL4 mnemonics, listing:

• CRT mnemonics

• Graphic User Interface (GUI) mnemonics

• ASCII character mnemonic values

• General punctuation mnemonic values

• CJK symbols and punctuation

• Unclassified mnemonics

• Mnemonics for keyboard and auxiliary port

• Mnemonics to clear and reset the terminal

• Mnemonics applied to the cursor position

• Mnemonics to control attributes

• Mnemonics to control color

• Mnemonics to transmit data

• Miscellaneous mnemonics

• Special mnemonics for I/O control

• Table of extended graphics octal codes

Mnemonics
A mnemonic provides a way to specify special character values via a meaningful name instead of the exact
octal or hexadecimal values. They are commonly used to control screen or printer attributes. The usage of
mnemonics provides program portability.

Mnemonics can take one or more parameters as numeric integers preceding the mnemonic name. Most
mnemonics take an optional parameter which signify a repeat count.

Many mnemonics take a 24-bit RGB color value as a parameter. The parameter value is formed as follows:
RED * 65536 + GREEN * 256 + BLUE where RED, GREEN, and BLUE are color intensity values
between 0 and 255. When used in dL4 for Windows or with dL4Term, the color value also has standard
color values expressed as negative numbers. The standard values are:

-1 Dialog text color

-2 Dialog background color

-3 Window text color

-4 Window background color

 Mnemonics 24

dL4 Language Reference Guide©

-5 Highlighted text color

-6 Highlighted text background color

The support of a mnemonic is driver-class dependent. In the case of the terminal translation driver, it is
also terminal description file dependent.

The following are some examples of mnemonics usage.

PRINT 'CS'; ! Clear screen

PRINT 'CS 10ML'; ! Clear and move left 10 positions.

PRINT @5,5;’CL'; ! Position to column 5, row 5 and clear line

PRINT @10,L; ! Position cursor to column 10, row L.

 Mnemonics 25

dL4 Language Reference Guide©

Mnemonic Values

Mnemonics for Keyboard and Auxiliary Port

Mnemonic Explanation

AE Enable the Auxiliary port on the terminal. This mnemonic enables the Auxiliary
Printer port until the AD mnemonic is sent.

AD Disable the Auxiliary port on the back of the terminal.

BA Begin Transparent output to Auxiliary printer port. Enabling Transparent output
causes all output characters (and input echoing) to be directed to the Auxiliary Port
of the terminal until the mnemonic EA is sent.

BO Begin non-Transparent output to Auxiliary printer port. This mnemonic operates
similarly to the 'BA' mnemonic except that data is transmitted to both the Auxiliary
port and the screen until an EO mnemonic is sent.

CONTINUEAUX Continue output to the auxiliary printer. This mnemonic is used with the
SUSPENDAUX mnemonic to intersperse auxiliary output with normal output while
maintaining the continuity of the auxiliary output.

EA End Transparent output to Auxiliary port.

EO End non-Transparent output to Auxiliary port.

EF End Function Key Definition. This code terminates all characters being sent to
down-load function keys using the mnemonics P1 through P8.

LK Lock Keyboard. The keyboard is locked and no further characters are accepted from
the terminal. All keys are locked out until the UK mnemonic is sent or until the
terminal is reset.

P1 Begin Programming downloadable function key 1. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P2 Begin Programming downloadable function key 2. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P3 Begin Programming downloadable function key 3. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P4 Begin Programming downloadable function key 4. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P5 Begin Programming downloadable function key 5. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P6 Begin Programming downloadable function key 6. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P7 Begin Programming downloadable function key 7. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

P8 Begin Programming downloadable function key 8. All further characters are sent to
the terminal's function key until the mnemonic EF is sent.

PGMFN Program the function key specified by the numeric parameter 1 with the string
specified by the string parameter 2. Example: Print PChr$(1,”Help\15\”);’PGMFN’

 Mnemonics 26

dL4 Language Reference Guide©

PGMHELPFN Program the function key specified by the numeric parameter 1 with the string
specified by the string parameter 2. When typed, the function key will send both the
string and the action string of the current selected GUI (‘WCxxxx’) element. This
mnemonic is normally used to support a context dependent help key in a GUI
application. Example: Print PChr$(1,”Help\15\”);’PGMHELPFN’

RF Reset Function keys to their default values.

SUSPENDAUX Suspend output to the auxiliary printer. This mnemonic is used with the
CONTINUEAUX mnemonic to intersperse auxiliary output with normal output
while maintaining the continuity of the auxiliary output.

UK UnLock Keyboard. Characters and functions can now be entered from the keyboard.

Mnemonics to Clear and Reset the Terminal

Mnemonic Explanation

CE Clear from cursor to end of screen. All unprotected characters from the current cursor
position up to the end of the screen are cleared.

CL Clear from cursor to end of line. All unprotected characters from the current cursor up to
the end of the line are cleared. Inside windows, CL/CE skips over protected fields.

CS Clear the entire screen. All characters both protected and unprotected are cleared.

CT Clear all TAB Stops set by the ST mnemonic.

CU Clear all unprotected characters on the screen. This mnemonic is used to clear data from
the screen while leaving any protected mask intact. Also, performs a Move Home (MH),
if window tracking is on. The cursor is moved to position 0,0 of the current window.

ES End Write Status Line. Characters output and echoed are no longer displayed in the
status line of the terminal (See also: WS).

K0 CURSOR Set no cursor to be displayed on the terminal.

K1 CURSOR Set Blinking Block.

K2 CURSOR Set Steady Block.

K3 CURSOR Set Blinking Underline.

K4 CURSOR Set Steady Underline

NR Narrow Character Display. Set wide display mode (commonly 132 columns) and display
further output and echoed characters in narrow format.

NV Normal video. Display reverse video as dark on lighted background.

RS Reset Terminal. Send the commands to reset the terminal to its power-up parameters.
This normally resets protocols, translations, function keys and clears the screen.

RV Reverse video. Display reverse video as lighted characters on dark background.

SF Status Line OFF. Turn off the optional status line at the bottom (or top) of the screen.

SO Status Line ON. Turn on the optional status line at the bottom (or top) of the screen.

WD Wide Character Display. Set the terminal into normal mode (commonly 80 columns) and
display further output and echoed characters in normal format.

WS Write Status Line. All further characters echoed or output are displayed in the terminal’s
status line until the ES mnemonic is sent.

XX Initialize Terminal. This mnemonic can define a series of functions such as Clear screen,
Clear Memory, Clear Status Line, etc. required to reset the terminal; See also: RS.

 Mnemonics 27

dL4 Language Reference Guide©

Mnemonics Applied to the Cursor Position

Mnemonic Explanation

BK Cursor Back. A carriage return without line-feed is sent to the screen moving the cursor
to the beginning of the current line.

ALIGN Move the cursor to the next character column which is a multiple of the parameter. For
example, if printed at column 20, the mnemonic string ‘15ALIGN’ will move the cursor
to column 30. This mnemonic is used by the comma operator of the PRINT statement.

CR Perform a new-line operation. A carriage return and a line-feed are sent to the terminal.
If the cursor is at the bottom of the window, the screen scrolls up one line. Some
terminals do not scroll if the screen window contains protected fields. Hard-coded
sequences of "\15\\12\" or 'CRLF' should be replaced with "\15\" or 'CR'.

DC Delete Character. The character at the cursor is deleted and all remaining characters on
the line are shifted left.

DL Delete Line. The line containing the current cursor is deleted from the window and all
remaining lines are moved up.

FF Form Feed. Scroll to the next page. This mnemonic is used primarily for printers.

IC Insert Character. A space is added at the current cursor position by shifting the character
under the cursor (and all remaining characters on the line) right one position.

IL Insert Line. A new line is added by shifting the line containing the cursor (and all
following lines) down one line. Lines can disappear off the end of a window. The
universal new line code is \15\. Inside windows, IL/DL moves to the beginning of the
line.

LF Perform a Line-Feed. This, in effect, is identical to a MD mnemonic. The cursor is
moved down to the next line while staying at the same column.

MD Move Down. The cursor is moved down to the next line while staying at the same
column. Some terminals scroll if you are already on the last line of the screen. Inside
windows, MD wraps on the last line if the window has WRAP style; otherwise it is non-
operative.

MH Move Home. The cursor is moved to position 0,0 of the current window.

ML Move Left. The cursor is moved Left one character.

MOVETO Move the cursor to the grid position specified by the parameters. If a single numeric
parameter is given (‘10MOVETO’), then the cursor will be moved to the specified grid
column on the current row. If two parameters are used (’10,20MOVETO’), then the
cursor will set the cursor grid column to the first parameter (10) and the cursor grid row
to the second parameter (20).

MP Use Memory Pointer instead of cursor for next positioning command.

MR Move Right. The cursor is moved Right one character. Inside windows, MR wraps on
the last position if the window has WRAP style; otherwise it is non-operative.

MU Move Up. The cursor is moved up to the previous line while staying at the same column.

TB Tab Backward. The cursor is moved to the start of the previous TAB Stop as defined
with the ST mnemonic.

TF Tab Forward. The cursor is moved to the start of the next TAB Stop as defined with the
ST mnemonic.

VT Vertical Tab. Move the cursor Down in the window to the next preset Vertical Tab Stop.
This mnemonic is normally used for printers using the supplied printer filter or when you
direct data through the Auxiliary printer port.

 Mnemonics 28

dL4 Language Reference Guide©

Mnemonics to Control Attributes

Mnemonic Explanation

BB Begin Blink Mode. All further output and echoed characters blink until the EB
mnemonic is sent.

BBOLD Begin bold mode.

BC Begin compressed mode.

BD Begin Dimmed Intensity Mode. All further output and echoed characters are displayed
in dimmed (half) intensity until the ED mnemonic is sent. Some terminals treat dimmed
intensity data as protectable and use of the FM mnemonic causes dimmed fields to
become protected. Inside windows, BP/EP implies dimmed and protected.

BG Begin Graphics Mode. This is a legacy mnemonic that normally has no effect.

BI Begin Italic mode.

BP Begin Protectable Field. Further characters echoed or sent to the terminal are flagged as
protectable and are usually displayed in half-intensity. Similarly, half-intensity data
printed using the 'BD' mnemonic can also be protectable, depending upon your terminal.
After you have painted your protectable fields on the terminal, you must issue the FM
mnemonic to format and write-protect your protected field. Inside windows, BP does not
imply FX.

BR Begin Reversed Video . All further output and echoed characters are displayed in
reverse video format. On most terminals, the background becomes lit and the characters
are shown as black. Color monitors and other terminals can permit control of the dis-
play.

BSO Begin strike-out mode.

BSUB Begin subscript mode.

BSUP Begin superscript mode.

BU Begin Underline Mode. All further output and echoed characters are underlined until the
EU mnemonic is sent.

BX Begin Expanded Print. All further output and echoed characters are displayed in your
pre-defined choice of double-high, double-wide or both.

CPI Set the fontsize to produce the number of characters per inch specified by the numeric
parameter (’10 CPI’). The mnemonic may also be used with two parameters, n and d, to
set the number of characters per inch to the fraction n/d (’50 3 CPI’ selects 16.66..
characters per inch).

EB End Blink Mode. Characters output and echoed no longer blink.

EBOLD End bold mode.

EC End compressed mode.

ED End Dimmed Mode. Characters output and echoed are no longer be in half-intensity.

EG End Graphics Mode. This is a legacy mnemonic that normally has no effect.

EI End italic mode.

EP End Protectable Field. All further characters transmitted are not to be considered part of
a protected field. Inside windows, EP does not imply FM.

ER End Reversed Video. Characters output and echoed are no longer in reverse video
format.

ESO End strike-out mode.

 Mnemonics 29

dL4 Language Reference Guide©

ESUB End subscript mode.

ESUP End superscript mode.

EU End Underline Mode. Characters output and echoed are no longer underlined.

EX End Expanded Print. Characters output or echoed are no longer in expanded format.

FM Enter Format Mode. Write protect is set on all characters previously sent using the BP
mnemonic. The protectable fields are now protected preventing any overwriting of
protected data. On some terminals, dimmed characters (BD) can also become protected.

FONTCELL Set the font size to fit into a character cell whose height is the parameter times the current
coordinate grid row height. The font width is set by the operating system to the preferred
width for the specified font height and typeface. This mnemonic is used to precisely
control the line height.

FONTFACE Set the font typeface to the name supplied by the string parameter. For example, the
statement ‘PRINT PChr$(“Helvetica”);’FONTFACE’’ would select Helvetica or an
operating system chosen substitute as the current typeface.

FONTSIZE Set the font size to the parameter times the current coordinate grid row height. The font
width is set by the operating system to the preferred width for the specified font height
and typeface.

FX Exit Format Mode. All previously write-protected characters are now returned to their
protectable state. Fields can be overwritten or changed until another FM is issued. Some
terminals cannot overwrite protected characters once formatted by the FM mnemonic. A
clear-screen (CS) is required to reset these fields.

LPI Set font size to produce the number of lines per inch specified by the numeric parameter
(‘6 LPI’).

RESETFONT Reset font to default font and size.

ST Set a TAB Stop at the cursor. To be used with the TF and TB mnemonics for presetting
TAB stops on the screen.

Mnemonics to Control Color

Mnemonic Explanation

RE Color RED. All further output and echoed characters are displayed in Red.

GR Color GREEN. All further output and echoed characters are displayed in Green.

YE Color YELLOW. All further output and echoed characters are displayed in Yellow.

BL Color BLUE. All further output and echoed characters are displayed in Blue.

BLACK Color Black. All further output and echoed characters are displayed in Black.

MA Color Magenta. All further output and echoed characters are displayed in Magenta.

CY Color CYAN. All further output and echoed characters are displayed in Cyan.

WH Color WHITE. All further output and echoed characters are displayed in White.

BACKCOLOR Set background color to the RGB parameter. The parameter is a 24-bit integer RGB
value in which the most significant 8-bits specify the red component, the middle 8-
bits specify the green component, and the least significant 8-bits specify the blue
component.

FONTCOLOR Set text color to the RGB parameter. The parameter is a 24-bit integer RGB value in
which the most significant 8-bits specify the red component, the middle 8-bits

 Mnemonics 30

dL4 Language Reference Guide©

specify the green component, and the least significant 8-bits specify the blue
component.

DEFAULTCOLOR Set the default colors for the current session from the current text and background
colors.

INVERT Invert colors within a specified area. The mnemonic has 4 formats accepting 0, 1, 2,
and 4 numeric parameters:

 ‘INVERT’ – invert colors from the cursor to the end of the line.

 ‘n INVERT’ – invert colors for ‘n’ columns from the cursor position.

 ‘w,h INVERT’ – invert colors in a rectangle of ‘w’ columns and ‘h’ rows’ where the
cursor is at the upper left corner of the rectangle.

 ‘x1,y1,x2,y2 INVERT’ – invert colors in a rectangle with the upper left corner at
‘x1,y1’ and the lower right corner at ‘x2,y2’.

PENCOLOR Set color used by BOX and LINE statements to the RGB parameter. The parameter
is a 24-bit integer RGB value in which the most significant 8-bits specify the red
component, the middle 8-bits specify the green component, and the least significant
8-bits specify the blue component.

RESETCOLOR Reset the current foreground, pen, and background colors to the default values of the
output window. Note that the 'CS' and 'XX' mnemonics differ in that 'CS' does not
reset the current colors, but the 'XX' mnemonic does.

Mnemonics to Transmit Data

Mnemonic Explanation

BT Begin Transmission. Begin transmitting all characters from the terminal's memory. This
function is highly terminal dependent.

ET End Transmission. Disable transmission of characters from the terminal's memory.

LU Send Line Unprotected. All non-protected characters from the current cursor through
the end of the line are transmitted from the terminal.

PS Print Screen. Send the contents of the current screen through the terminal's
Auxiliary/Printer port.

PU Send Page Unprotected. All unprotected characters on the screen are transmitted from
the screen to the system.

SL Send Line All. All characters (including protected fields) on the line containing the
cursor are transmitted from the screen to the system.

SP Send Page All. All characters (including protected fields) on the screen are transmitted
to the system.

TL Transmit Line unprotected. All non-protected characters from the current cursor through
the end of the line are transmitted from the terminal.

TP Transmit Line protected. All characters (including protected fields) on the screen from
the current cursor to the end of the screen are transmitted to the system.

TR Transmit Screen unprotected. All non-protected characters from the current cursor
through the end of the screen are transmitted from the terminal.

TS Transmit Screen protected. All characters from the current cursor through the end of the
screen are transmitted from the terminal.

 Mnemonics 31

dL4 Language Reference Guide©

Mnemonics for Drawing

Mnemonic Explanation

ELLIPSE Draw an ellipse bounded by a rectangle using the first two parameters as one corner and
the second two parameters as the opposite corner using the current pen color and pen
weight. For example, the mnemonic string ’10,15,30,50ELLIPSE’ would draw an ellipse
within the a rectangle with one corner at grid coordinates 10,15 and the opposite corner
at coordinates 30,50. The interior of the ellipse is filled by the current brush (normally
transparent). The current cursor position is not changed.

FILLIMAGE Draw an image file (such as JPEG or BMP) filling the defined rectangle.

PChr$(filepath,x1,y1,x2,y2);’FILLIMAGE’

filepath Image file path. When using dL4Term, this must be a path on the client system.

x1 Grid column of the upper left rectangle corner

y1 Grid row of the upper left rectangle corner

x2 Grid column of the lower right left rectangle corner

y2 Grid row of the lower right rectangle corner

FITMAGE Draw an image file (such as JPEG or BMP) inside the defined rectangle preserving the
image aspect ratio.

PChr$(filepath,x1,y1,x2,y2);’FITIMAGE’

filepath Image file path. When using dL4Term, this must be a path on the client system.

x1 Grid column of the upper left rectangle corner

y1 Grid row of the upper left rectangle corner

x2 Grid column of the lower right left rectangle corner

y2 Grid row of the lower right rectangle corner

FRAME Draw a frame around (outside) a rectangle using the first two parameters as one corner
and the second two parameters as the opposite corner. The frame color is controlled by
the overall color scheme and not by the color mnemonics. An optional fifth parameter, a
single character string, specifies the frame style (“S” for sunken, “R” for raised, “E” for
etched, and “B” for bump). The default frame style is the style used by a ‘WCSTRING’
input box.

LINETO Draw line from the current cursor position to the specified coordinate grid and column
(’10,15LINETO’) which becomes the new current cursor position. The line is drawn
using the current pen color and pen weight. This mnemonic is used by the LINE
statement.

PENCOLOR Set color used by BOX and LINE statements to the RGB parameter. The parameter is a
24-bit integer RGB value in which the most significant 8-bits specify the red component,
the middle 8-bits specify the green component, and the least significant 8-bits specify the
blue component

PENWEIGHT Set the pen width to the parameter times the coordinate grid unit.

RECT Draw a rectangle using the first two parameters as one corner and the second two
parameters as the opposite corner using the current pen color and pen weight. For
example, the mnemonic string ’10,15,30,50RECT’ would draw a rectangle with one
corner at grid coordinates 10,15 and the opposite corner at coordinates 30,50. The
interior of the rectangle is filled by the current brush (normally transparent). The current
cursor position is not changed.

 Mnemonics 32

dL4 Language Reference Guide©

RECTTO Draw a rectangle using the current cursor position as one corner and the two parameters
as the opposite corner using the current pen color and pen weight. For example, the
mnemonic string ‘30,50RECT’ would draw a rectangle with one corner at the current
cursor position and the opposite corner at grid coordinates 30,50. The interior of the
rectangle is filled by the current brush (normally transparent). The current cursor
position is not changed. This mnemonic is used by the BOX statement.

Mnemonics to Define the Coordinate Grid

Mnemonic Explanation

GRIDENGLISH Set coordinate grid by English units. The coordinate grid is defined to be in thousandths
of an inch times the parameter measured from the upper left corner of the printable area.
For example, the mnemonic string ‘100gridenglish’ would set the grid to be in tenths of
an inch and in that grid the statement “PRINT @15,23;” would position the cursor to a
point 1.5 inches to the right and 2.3 inches down from the upper left corner of the
printable area of the screen, window, or page. The mnemonic may also be used with two
numeric parameters, ‘n,d GRIDENGLISH’, to set the grid size to the fraction n/d. Thus
the mnemonic ‘1000,72 GRIDENGLISH’ would set the grid unit to (1000/72)
thousandths of an inch which simplifies to 1/72 inch or a “point”.

GRIDMETRIC Set coordinate grid by metric units. The coordinate grid is defined to be in hundredths of
a millimeter times the parameter measured from the upper left corner of the printable
area. For example, the mnemonic string ‘100gridmetric’ would set the grid to be in
millimeters and in that grid the statement “PRINT @15,23;” would position the cursor to
a point 15 millimeters to the right and 23 millimeters down from the upper left corner of
the printable area of the screen, window, or page. The mnemonic may also be used with
two numeric parameters, ‘n,d GRIDMETRIC’, to set the grid size to the fraction n/d.

GRIDFONT Set coordinate grid by the current font size. The coordinate grid is defined to be in
average character widths and heights divided by the parameter and measured from the
upper left corner of the printable area. For example, the mnemonic string ‘1gridfont’
would set the grid to be in character columns and rows as defined by the average width
and height of a character in the current font. This is the default coordinate grid. The
column width and row height are determined by the font in use when the GRIDFONT
mnemonic is processed and will not be changed if the font typeface, style, or size is
changed until another GRIDFONT mnemonic is processed. The mnemonic may also be
used with two numeric parameters, ‘n,d GRIDFONT’, to set the grid size to the fraction
n/d.

Miscellaneous Mnemonics

Mnemonic Explanation

BH Box Horizontal character. This mnemonic is used to draw horizontal box characters
using WINDOW. If undefined, the '_' character is printed.

BV Box Vertical character. This mnemonic is used to draw vertical box characters using
WINDOW. If undefined, the '|' character is printed.

LANDSCAPE Set printer to landscape mode (‘1 LANDSCAPE’) or to portrait mode (‘0
LANDSCAPE’).

 Mnemonics 33

dL4 Language Reference Guide©

MARGIN Set printer margins. The mnemonic has two forms: ‘w MARGIN’ which sets the left
margin to “w” grid units and ‘w,h MARGIN’ which sets the left margin to ‘w’ grid units
and the top/bottom margins to ‘h’ grid units.

RB Ring BELL. Sends the sequence causing the terminal to beep.

TP Toggle Page. Switches the display to another page of memory in the terminal.

RD Read Cursor. The terminal transmits its current coordinate position to the program. This
function is highly dependent upon the terminal.

PI Position Indicator. This mnemonic is used by supplied utilities to display the requested
number of input characters in a field. The form used by the program is usually 'nPInML'
where n is the number of characters in the field. The default character for this mnemonic
is _.

SA User Defined mnemonic to contain any non-supported terminal function.

SB User Defined mnemonic to contain any non-supported terminal function.

SC User Defined mnemonic to contain any non-supported terminal function.

SD User Defined mnemonic to contain any non-supported terminal function.

S1 User Defined mnemonic to contain any non-supported terminal function.

S2 User Defined mnemonic to contain any non-supported terminal function.

S3 User Defined mnemonic to contain any non-supported terminal function.

S4 User Defined mnemonic to contain any non-supported terminal function.

Special Mnemonics for I/O Control

Mnemonic Explanation

BACTFN Begin activate-on-function-character. INPUT terminates on receipt of any normal
termination character (such as carriage return) or any mnemonic character that is defined
as a data character (such as ‘F3’ or ‘NEXTPAGE’). The terminating character can be
read using the KEY option of the INPUT statement.

EACTFN Disable activate-on-function-character. Normal INPUT (default) is restored. Input is
terminated by [EOL] (usually RETURN), length or time.

BCTRACK Begin cursor tracking. If input is performed immediately after outputting a BCTRACK
mnemonic, input edit keys will be treated as data and returned as mnemonic characters
such as ‘ML’. Cursor tracking is terminated by outputting any character other than a
BCTRACK mnemonic.

BEGIN Sent to a GUI element or as part of preprogrammed typeahead to set the cursor to the
start of the current value and visibly mark the current value for possible replacement or
deletion. The mnemonic ‘n BEGIN’ performs these operations on GUI element “n” and
sets the input focus to that element.

IOBC Begin activate-on-control-character. The IOBC mnemonic enables XON/XOFF and
CTRL Q/CTRL S are ignored. The terminating control character is placed into the last
position of the INPUT string variable. INPUT continues to terminate on receipt of a
control character until the mnemonic 'IOEC' is sent.

IOBD Begin Destructive Backspace. When destructive backspace is enabled (default), pressing
a BACKSPACE or CONTROL-H results in the sequence backspace, space, backspace
being transmitted to the screen. Destructive backspace continues until the 'IOED'
mnemonic is sent.

 Mnemonics 34

dL4 Language Reference Guide©

IOBE Begin Input Echo. As characters are entered on the screen, they are displayed (normal
default). Input echo continues until the IOEE mnemonic is sent. The SYSTEM
statement provides an additional way to enable/disable echo. Any of the 3 methods can
be used together or separately.

IOBF Mnemonic accepted, but does not perform a function.

IOBI Begin input transparency. The IOBI mnemonic enables Binary Input mode resulting in
no input translation of characters received until the IOEI is sent. Nulls, [ESC]s, and
control characters are placed into the string exactly as received with and without the
high-order bit set. When Binary Input is enabled, your INPUT statements must specify a
time limit or character count or input continues indefinitely. See also HALT Command
to unlock a port, and SYSTEM Statement Binary Input Mode.

IOBO Begin output transparency. The IOBO mnemonic enables Binary Output Mode resulting
in no special output translation of characters.

IOBX Begin XON/XOFF protocol. The IOBX mnemonic enables Unix sending XON/XOFF
protocol when communicating with a Host computer until the IOEX mnemonic is sent.
The system prevents overflow of the type-ahead buffer by sending an XOFF to a host
when the buffer is full. This function is usually used when you activate a program on a
port that is wired directly to another system. Normal keyboard XON/XOFF protocol is
always enables.

IOB\ Begin sending the \ character to the screen whenever [ESC] is pressed. The default
operation is to always send the \ character without [ESC] branching in effect. The \ is
sent until the IOE\ mnemonic is sent.

IOCI Clear the contents of the terminal's type-ahead buffer. Any input entered but not
processed as INPUT is discarded.

IOEC Disable activate-on-control-character. Normal INPUT (default) is restored, and
XON/XOFF flow control are terminated. CTRL Q and CTRL S are recognized. Input is
terminated by [EOL] (usually RETURN), length or time.

IOED End Destructive Backspace. Stop sending backspace, space, backspace. Send only a
single backspace and erase the input character from the input buffer.

IOEE End Input Echo. Disable echo of input characters on the terminal. Identical to using
SYSTEM Statement. Input characters are not displayed on the screen until echo is
enabled by SYSTEM or an IOBE mnemonic is sent.

IOEF Mnemonic accepted, but does not perform a function.

IOEI End Input Transparency. Normal Input Mode is activated, and Binary Input is disabled.
Special characters are processed and [EOL] (usually RETURN) terminates INPUT.

IOEX End XON/XOFF Protocol. Normal overflow of the type-ahead buffer is allowed. This is
the default condition whereby type-ahead buffer overflow outputs a bell to the terminal,
and input is discarded.

IOE\ End sending the \ character to the screen whenever [ESC] is pressed. This function
disables the IOB\ mnemonic and system default. The \ character is never sent to the
terminal when [ESC]is pressed.

IOIH Setup for special Input Handling. This mnemonic is followed by a byte defining the type
of Input processing to be performed.

IORS Reset the I/O parameters for this terminal. Echo is enabled as is the output of "\" on
[ESC]. All other IO modes are turned off.

 Mnemonics 35

dL4 Language Reference Guide©

Mnemonics for Graphic User Interfaces

Mnemonic Explanation

ONCLOSE Define action to perform when a user attempts to close a session. This
mnemonic is used to prevent a user from improperly exiting an application. A
user can close a session by disconnecting a telnet session, selecting a window
exit button, or any external method of terminating the user interface. The
mnemonic requires a numeric parameter (the action number) and a string
parameter. Action 0 displays the string text in a message box and gives the user
a choice of exiting dL4 or continuing the current application. Action 1 displays
the string text in a message box and then continues the current application.
Action 2 discards the user request to exit and sends the string text as input to the
application. The ONCLOSE setting can be cleared by specifying action 0 with
an empty string (“”). Usage:

PChr$(n,text);’ONCLOSE’

n Action to perform.

Text String to display.

WCBUTTON Create button. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCBUTTON’

n GUI element number

x1 Grid column of upper left button corner

y1 Grid row of upper left button corner

x2 Grid column of lower right left button corner

y2 Grid row of lower right button corner

label Title string displayed on button with optional ampersand before
selection key

options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss
of focus)

WCDEFAULTBTN Create default button. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCDEFAULTBTN’

n GUI element number

x1 Grid column of upper left button corner

y1 Grid row of upper left button corner

x2 Grid column of lower right left button corner

y2 Grid row of lower right button corner

label Title string displayed on button with optional ampersand before
selection key

options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss
of focus)

WCPAD Create transparent button. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,scale}}});’WCPAD’

n GUI element number

x1 Grid column of upper left button corner

 Mnemonics 36

dL4 Language Reference Guide©

y1 Grid row of upper left button corner

x2 Grid column of lower right left button corner

y2 Grid row of lower right button corner

label Not used.

options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss
of focus)

scale Scaling value for the pointer coordinates returned by a
WCQUERY of a WCPAD element.

WCCHECK Create check box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCCHECK’

n GUI element number

x1 Grid column of upper left check box corner

y1 Grid row of upper left check box corner

x2 Grid column of lower right left check box corner

y2 Grid row of lower right check box corner

label Title string displayed in check box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on losss of focus)

WCRADIO Create radio button. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCRADIO’

n GUI element number

x1 Grid column of upper left radio button corner

y1 Grid row of upper left radio button corner

x2 Grid column of lower right left radio button corner

y2 Grid row of lower right radio button corner

label Title string displayed in radio button rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

WCNUMBER Create numeric input box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCNUMBER’

n GUI element number

x1 Grid column of upper left edit box corner

y1 Grid row of upper left edit box corner

x2 Grid column of lower right left edit box corner

y2 Grid row of lower right edit box corner

label Title string displayed in edit box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

 Mnemonics 37

dL4 Language Reference Guide©

l Limit on number of characters accepted in edit box

WCSTRING Create character input box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCSTRING’

n GUI element number

x1 Grid column of upper left edit box corner

y1 Grid row of upper left edit box corner

x2 Grid column of lower right left edit box corner

y2 Grid row of lower right edit box corner

label Title string displayed in edit box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

l Limit on number of characters accepted in edit box

WCPRIVATE Create character hidden input box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCPRIVATE’

n GUI element number

x1 Grid column of upper left edit box corner

y1 Grid row of upper left edit box corner

x2 Grid column of lower right left edit box corner

y2 Grid row of lower right edit box corner

label Title string displayed in edit box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

l Limit on number of characters accepted in edit box

WCLABEL Create a label for an input box. Usage:

PChr$(n,x1,y1,x2,y2 ,label);’WCLABEL’

n GUI element number

x1 Grid column of upper left display box corner

y1 Grid row of upper left display box corner

x2 Grid column of lower right left display box corner

y2 Grid row of lower right display box corner

label Title string displayed in display box rectangle with optional
ampersand before selection key

WCTEXT Create multi-line character display box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options {,width}}});’WCTEXT’

n GUI element number

x1 Grid column of upper left text box corner

y1 Grid row of upper left text box corner

x2 Grid column of lower right left textt box corner

 Mnemonics 38

dL4 Language Reference Guide©

y2 Grid row of lower right text box corner

label Title string displayed in text box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 32 = send input on loss
of focus)

width Maximum line length in characters. Using this parameter also
enables a horizontal scroll bar.

WCMEMO Create multi-line character input box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCMEMO’

n GUI element number

x1 Grid column of upper left memo box corner

y1 Grid row of upper left memo box corner

x2 Grid column of lower right left memo box corner

y2 Grid row of lower right memo box corner

label Title string displayed in memo box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

l Limit on number of characters accepted in memo box

WCLIST Create selection list box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCLIST’

n GUI element number

x1 Grid column of upper left list box corner

y1 Grid row of upper left list box corner

x2 Grid column of lower right left list box corner

y2 Grid row of lower right list box corner

label Title string displayed in list box rectangle with optional ampersand
before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change,8 = allow multiple selection, 16 = first field invisible, 32 =
send input on loss of focus)

WCSHOWLIST Create read-only list box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCSHOWLIST’

n GUI element number

x1 Grid column of upper left list box corner

y1 Grid row of upper left list box corner

x2 Grid column of lower right left list box corner

y2 Grid row of lower right list box corner

label Title string displayed in list box rectangle with optional ampersand
before selection key

options Numeric options (1 = disable, 2 = tab stop, 16 = first field
invisible, 32 = send input on loss of focus)

 Mnemonics 39

dL4 Language Reference Guide©

WCEDITLIST Create editable selection list box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCEDITLIST’

n GUI element number

x1 Grid column of upper left edit list box corner

y1 Grid row of upper left edit list box corner

x2 Grid column of lower right left edit list box corner

y2 Grid row of lower right edit list box corner

label Title string displayed in edit list box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

l Limit on number of characters accepted in edit box

WCLISTDROP Create drop down selection list. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options}});’WCLISTDROP’

n GUI element number

x1 Grid column of upper left list box corner

y1 Grid row of upper left list box corner

x2 Grid column of lower right left list box corner

y2 Grid row of lower right list box corner

label Title string displayed in list box rectangle with optional ampersand
before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 16 = first field invisible, 32 = send input on loss of focus)

WCEDITDROP Create drop down editable list box. Usage:

PChr$(n,x1,y1,x2,y2 {,label {,options{,l}}});’WCEDITDROP’

n GUI element number

x1 Grid column of upper left edit box corner

y1 Grid row of upper left edit box corner

x2 Grid column of lower right left edit box corner

y2 Grid row of lower right edit box corner

label Title string displayed in edit box rectangle with optional
ampersand before selection key

options Numeric options (1 = disable, 2 = tab stop, 4 = send input on
change, 32 = send input on loss of focus)

l Limit on number of characters accepted in edit box

WCMENU Create menu. Usage:

PChr$(n,label,shortcut{,options});’WCMENU’

n GUI element number

label Menu title string with optional ampersand before selection key

 Mnemonics 40

dL4 Language Reference Guide©

shortcut Shortcut key string

options Numeric options (1 = disable)

WCSUBMENU Create submenu. Usage:

PChr$(n,label,shortcut{,options});’WCSUBMENU’

n GUI element number

label Menu title string with optional ampersand before selection key

shortcut Shortcut key string

options Numeric options (1 = disable)

WCMENUACTION Create menu action item. Usage:

PChr$(n,label,shortcut{,options});’WCMENUACTION’

n GUI element number

label Menu title string with optional ampersand before selection key

shortcut Shortcut key string

options Numeric options (1 = disable)

 WCMENUCHECK Create menu check box item. Usage:

PChr$(n,label,shortcut{,options});’WCMENUCHECK’

n GUI element number

label Menu title string with optional ampersand before selection key

shortcut Shortcut key string

options Numeric options (1 = disable)

WCMENURADIO Create menu radio button item. Usage:

PChr$(n,label,shortcut{,options});’WCMENURADIO’

n GUI element number

label Menu title string with optional ampersand before selection key

shortcut Shortcut key string

options Numeric options (1 = disable)

WCMENUSEP Create menu separator

WCENDMENU End menu or sub-menu definition

WCGROUP Group graphical elements. Usage:

PChr$(n,x1,y1,x2,y2,label);’WCGROUP’

n GUI element number

x1 Grid column of upper left group rectangle corner

y1 Grid row of upper left group rectangle corner

x2 Grid column of lower right left group rectangle corner

y2 Grid row of lower right group rectangle corner

label Title string displayed in group rectangle outline

WCMSGASK Display message dialog box and return as an input string the uppercase label of
the button selected by the user. Usage:

 Mnemonics 41

dL4 Language Reference Guide©

PChr$(nmsg{,title{,options}});’WCMSGASK’

msg Message string to be displayed in dialog box

title Optional title string for dialog box

options Optional string that controls the presence and labeling of buttons
within the dialog box. The default value is “O”. The first
uppercase letter selects the default button. The supported values
are:

"ARI" "Abort", "Retry", "Ignore"

"O" "Ok"

"OC" "Ok", "Cancel"

"RC" "Retry", "Cancel"

"YN" "Yes", "No"

"YNC" "Yes", "No", "Cancel"

WCMSGERROR Display an error message dialog box and return as an input string the uppercase
label of the button selected by the user. See ‘WCMSGASK’ for a description of
the parameters.

WCMSGINFO Display an information message dialog box and return as an input string the
uppercase label of the button selected by the user. See ‘WCMSGASK’ for a
description of the parameters

WCMSGWARN Display a warning message dialog box and return as an input string the
uppercase label of the button selected by the user. See ‘WCMSGASK’ for a
description of the parameters

WCSELECT Select parameter (‘n WCSELECT’) as current graphical element

WCENABLE Enable user input/selection to/of a specified element(‘n WCENABLE’) or a
range of elements (‘n,m WCENABLE’).

WCDISABLE Disable user input/selection to/of a specified element (‘n WCDISABLE’) or a
range of elements (‘n,mWCDISABLE’).

WCQUERY Request a single graphical element (‘n WCQUERY’) or a range of elements
(‘n,m WCQUERY’) to send their current values.

WCASKCOLOR Display color selection dialog using the parameter (‘n WCASKCOLOR’) as the
default RGB color. The selected color, if any, will be sent as a decimal number
followed by a carriage return.

WCDELETE Delete specifed graphical elements (‘n WCDELETE’ or ‘first,last
WCDELETE’)

WCACTION Change action performed by input element. Usage:

PChr$(n,action,label);’WCACTION’

n GUI element number

action Action to be modifed.0 changes the text sent when the element is
selected. 1 changes the text sent when the element value is
changed.

label String to be sent by the specified action.

WCEVENT Enable or disable keyboard input deferral after a GUI event is reported. If input
is deferred (‘1 WCEVENT’), then keyboard input will be buffered and not
processed after a GUI event is report until a ‘WCFOCUS’ or ‘BEGIN’

 Mnemonics 42

dL4 Language Reference Guide©

mnemonic is printed. This allows the application to set the input focus to a
desired input element and direct the keyboard input to that new element. Input
deferral mode is disabled by the ‘0 WCEVENT’ mnemonic string or by an ‘XX’
mnemonic. A ‘2 WCEVENT’ mnemonic string clears and discards any deferred
keyboard input.

WCEXTKEYS Enable or disable extended keyboard behavior in graphical elements. Without
any parameters or in the form ‘3 WCEXTKEYS’, the mnemonic enables
treating the ENTER key as a tab between GUI elements and as a newline within
WCMEMO input boxes. The form ‘1 WCEXTKEYS’ just enables treating the
ENTER key as a tab between elements. The form ‘2 WCEXTKEYS’ just
enables treating ENTER as a newline in WCMEMO boxes. The form ‘0
WCEXTKEYS’ disables both options.

AUTOCOMPLETE Define autocompletion value for a WCSTRING or WCNUMBER box.

PChr$(n,value);’AUTOCOMPLETE’

n GUI element number

value Autocompletion string value. If the current value of the input box
matches the leading characters of the string, the current value will
be replaced by the string.

WCBQRYBUF Enable separate buffering of data sent by ‘WCQUERY’. When enabled,
‘WCQUERY’ results are read from record 1 (“INPUT #3,1;S$”).

WCEQRYBUF Disable separate buffering of data sent by ‘WCQUERY’

WCFOCUS Set current focus to selected element (‘n WCFOCUS’)

WCMARK Mark or select item in a list box (‘n WCMARK’)

WCUNMARK Unmark or unselect item in a list box (‘n WCUNMARK’)

WCSETCOLOR Set text and background colors for graphical elements. If sent to a window, it
sets the defaults for all subsequently created elements. If sent to an element, it
changes the colors of the element. The mnemonic can be used without
parameters (‘WCSETCOLOR’) or with two RGB parameters (‘t b
WCSETCOLOR’). If used without parameters, the mnemonic uses the current
window colors.

WCRESETCOLOR Reset text and background colors to the defaults for graphical elements. The
mnemonic can be sent to a window or to an existing element.

WCMARKCOLOR Set text and background colors for selected items in graphical element item lists.
The mnemonic can be used with 0, 1, or 2 numeric parameters. With no
parameters, the window text and background colors are used. A single
parameter is treated as an RGB text color and the window background color is
used for the background. Two RGB parameters (‘t b WCMARKCOLOR’) set
the text and background colors explicitly.

WCSETFONT Set font for controls

WCRESETFONT Reset font for controls to the default font

WCWHERE Request the graphical element that currently has the input focus to send the
action string “n”as input (‘n WCWHERE’). If the window itself has the focus, a
‘CR’ will be be returned as input. Note that the user may move the focus after
the ‘WCWHERE’ mnemonic has been processed.

 Mnemonics 43

dL4 Language Reference Guide©

Table of Extended Graphics Codes

Form and chart components:

Mnemonic Hex Value Meaning
G1 0x250c FORMS LIGHT DOWN AND RIGHT

G2 0x2510 FORMS LIGHT DOWN AND LEFT

G3 0x2514 FORMS LIGHT UP AND RIGHT

G4 0x2518 FORMS LIGHT UP AND LEFT

GC 0x253c FORMS LIGHT VERTICAL AND HORIZONTAL

GD 0x252c FORMS LIGHT DOWN AND HORIZONTAL

GH 0x2500 FORMS LIGHT HORIZONTAL

GL 0x2524 FORMS LIGHT VERTICAL AND LEFT

GR 0x251c FORMS LIGHT VERTICAL AND RIGHT

GU 0x2534 FORMS LIGHT UP AND HORIZONTAL

GV 0x2502 FORMS LIGHT VERTICAL

Table of Mnemonic Codes

Control Characters

Mnemonic Hex Value Meaning
NUL 0x0000 NULL

SOH 0x0001 START OF HEADING

STX 0x0002 START OF TEXT

ETX 0x0003 END OF TEXT

EOT 0x0004 END OF TRANSMISSION

ENQ 0x0005 ENQUIRY

ACK 0x0006 ACKNOWLEDGE

BEL 0x0007 BELL

BS 0x0008 BACKSPACE

HT 0x0009 HORIZONTAL TABULATION

LF 0x000a LINE FEED

VT 0x000b VERTICAL TABULATION

FF 0x000c FORM FEED

CR 0x000d CARRIAGE RETURN

SO 0x000e SHIFT OUT (possibly "status line on")

SI 0x000f SHIFT IN

DLE 0x0010 DATA LINK ESCAPE

DC1 0x0011 DEVICE CONTROL ONE

 Mnemonics 44

dL4 Language Reference Guide©

DC2 0x0012 DEVICE CONTROL TWO

DC3 0x0013 DEVICE CONTROL THREE

DC4 0x0014 DEVICE CONTROL FOUR

NAK 0x0015 NEGATIVE ACKNOWLEDGE

SYN 0x0016 SYNCHRONOUS IDLE

ETB 0x0017 END OF TRANSMISSION BLOCK

CAN 0x0018 CANCEL

EM 0x0019 END OF MEDIUM

SUB 0x001a SUBSTITUTE

ESC 0x001b ESCAPE

FS 0x001c FILE SEPARATOR

GS 0x001d GROUP SEPARATOR

RS 0x001e RECORD SEPARATOR (or "reset terminal")

US 0x001f UNIT SEPARATOR

0x0020 - 0x007e Printable ASCII

DEL 0x007f DELETE

PAD 0x0080 PADDING CHARACTER

HOP 0x0081 HIGH OCTET PRESET

BPH 0x0082 BREAK PERMITTED HERE

NBH 0x0083 NO BREAK HERE

IND 0x0084 INDEX

NEL 0x0085 NEXT LINE

SSA 0x0086 START OF SELECTED AREA

ESA 0x0087 END OF SELECTED AREA

HTS 0x0088 CHARACTER TABULATION SET

HTJ 0x0089 CHARACTER TABULATION WITH JUSTIFICATION

VTS 0x008a LINE TABULATION SET

PLD 0x008b PARTIAL LINE FORWARD

PLU 0x008c PARTIAL LINE BACKWARD

RI 0x008d REVERSE LINE FEED

SS2 0x008e SINGLE-SHIFT TWO

SS3 0x008f SINGLE-SHIFT THREE

DCS 0x0090 DEVICE CONTROL STRING

PU1 0x0091 PRIVATE USE ONE

PU2 0x0092 PRIVATE USE TWO

STS 0x0093 SET TRANSMIT STATE

CCH 0x0094 CANCEL CHARACTER

MW 0x0095 MESSAGE WAITING

SPA 0x0096 START OF GUARDED AREA

EPA 0x0097 END OF GUARDED AREA

 Mnemonics 45

dL4 Language Reference Guide©

SOS 0x0098 START OF STRING

SGCI 0x0099 SINGLE GRAPHIC CHARACTER INTRODUCER

SCI 0x009a SINGLE CHARACTER INTRODUCER

CSI 0x009b CONTROL SEQUENCE INTRODUCER

STRM 0x009c STRING TERMINATOR

OSC 0x009d OPERATING SYSTEM COMMAND

PM 0x009e PRIVACY MESSAGE

APC 0x009f APPLICATION PROGRAM COMMAND

NBSP 0x00a0 NON-BREAKING SPACE

General punctuation

Mnemonic Hex Value Meaning
ENQUAD 0x2000 EN QUAD

EMQUAD 0x2001 EM QUAD

ENSPACE 0x2002 EN SPACE

EMSPACE 0x2003 EM SPACE

THREEEMSP 0x2004 THREE-PER-EM SPACE

FOUREMSP 0x2005 FOUR-PER-EM SPACE

SIXEMSP 0x2006 SIX-PER-EM SPACE

FIGSP 0x2007 FIGURE SPACE

PUNCTSP 0x2008 PUNCTUATION SPACE

THINSP 0x2009 THIN SPACE

HAIRSP 0x200a HAIR SPACE

ZWSP 0x200b ZERO WIDTH SPACE

NONJOINER 0x200c ZERO WIDTH NON-JOINER

JOINER 0x200d ZERO WIDTH JOINER

LRMARK 0x200e LEFT-TO-RIGHT MARK

RLMARK 0x200f RIGHT-TO-LEFT MARK

LINESEP 0x2028 LINE SEPARATOR

PARASEP 0x2029 PARAGRAPH SEPARATOR

LRE 0x202a LEFT-TO-RIGHT EMBEDDING

RLE 0x202b RIGHT-TO-LEFT EMBEDDING

PDF 0x202c POP DIRECTIONAL FORMATTING

LRO 0x202d LEFT-TO-RIGHT OVERRIDE

RLO 0x202e RIGHT-TO-LEFT OVERRIDE

CJK symbols and punctuation

Mnemonic Hex Value Meaning

 Mnemonics 46

dL4 Language Reference Guide©

IDEOSP 0x3000 IDEOGRAPHIC SPACE

UNCLASSIFIED

Mnemonic Hex Value Meaning
IOIHIR 0xf000 IO INPUT HANDLING IRIS

IOIHSM 0xf001 IO INPUT HANDLING SMBASIC INPUT

IOIHSR 0xf002 IO INPUT HANDLING SMBASIC READ RECORD

IOIHSI 0xf003 IO INPUT HANDLING SIMPLE

IOBE 0xf004 IO BEGIN INPUT ECHO

IOEE 0xf005 IO END INPUT ECHO

IOBI 0xf006 IO BEGIN TRANSPARENT INPUT

IOEI 0xf007 IO END TRANSPARENT INPUT

IOBO 0xf008 IO BEGIN TRANSPARENT OUTPUT

IOBD 0xf009 IO BEGIN DESTRUCTIVE BACKSPACE

IOED 0xf00a IO END DESTRUCTIVE BACKSPACE

IOBS 0xf00b IO BEGIN BACKSLASH ON ESCAPE

IOES 0xf00c IO END BACKSLASH ON ESCAPE

IOCI 0xf00d IO CLEAR INPUT BUFFER

IOBC 0xf00e IO BEGIN ACTIVATE ON CONTROL CHARACTER

IOEC 0xf00f IO END ACTIVATE ON CONTROL CHARACTER

IOBX 0xf010 IO BEGIN XON XOFF PROTOCOL

IOEX 0xf011 IO END XON XOFF PROTOCOL

IORS 0xf012 IO RESET ALL

IOBF 0xf013 IO BEGIN FUNCTION KEY INPUT TRANSLATION

IOEF 0xf014 IO END FUNCTION KEY INPUT TRANSLATION

IOTE 0xf015 IO TOGGLE INPUT ECHO

GRIDENGLISH 0xf020 SET COORDINATE GRID BY ENGLISH

GRIDMETRIC 0xf021 SET COORDINATE GRID BY METRIC

GRIDFONT 0xf022 SET COORDINATE GRID BY FONT

FONTFACE 0xf024 SET FONT TYPEFACE

FONTSIZE 0xf025 SET FONT SIZE

FONTWEIGHT 0xf026 SET FONT WEIGHT

FONTCOLOR 0xf027 SET FONT COLOR

PENSTYLE 0xf02c SET PEN STYLE

PENWEIGHT 0xf02d SET PEN WEIGHT

PENCOLOR 0xf02e SET PEN COLOR

BRUSHCOLOR 0xf034 SET BRUSH COLOR

TALEFT 0xf038 SET TEXT ALIGNMENT LEFT

TACENTER 0xf039 SET TEXT ALIGNMENT CENTER

 Mnemonics 47

dL4 Language Reference Guide©

TARIGHT 0xf03a SET TEXT ALIGNMENT RIGHT

TADECIMAL 0xf03b SET TEXT ALIGNMENT DECIMAL

BACKCOLOR 0xf03c SET BACKGROUND COLOR

LINETO 0xf03f DRAW LINE TO

RECTTO 0xf03e DRAW RECTANGLE TO

RECT 0xf040 DRAW RECTANGLE

ELLIPSE 0xf041 DRAW ELLIPSE

BCTRACK 0xf081 BEGIN CURSOR TRACKING

ET 0xf083 END TRANSMISSION

RB 0xf087 RING BELL

ML 0xf088 MOVE LEFT

TF 0xf089 TAB FORWARD

MH 0xf08f MOVE HOME

CS 0xf090 CLEAR SCREEN

S1 0xf091 SPECIAL CODE 1

S2 0xf092 SPECIAL CODE 2

S3 0xf093 SPECIAL CODE 3

S4 0xf094 SPECIAL CODE 4

ES 0xf095 END WRITE STATUS LINE

SF 0xf097 STATUS LINE OFF

WS 0xf098 BEGIN WRITE STATUS LINE

K0 0xf099 SET CURSOR OFF

K1 0xf09a SET CURSOR BLINKING BOX

K2 0xf09b SET CURSOR STEADY BLOCK

K3 0xf09c SET CURSOR BLINKING UNDERLINE

K4 0xf09d SET CURSOR STEADY UNDERLINE

BG 0xf09e BEGIN GRAPHICS MODE

EG 0xf09f END GRAPHICS MODE

MR 0xf0a0 MOVE RIGHT

RD 0xf0a1 READ CURSOR POSITION

EF 0xf0a2 END PROGRAM FUNCTION KEY

CU 0xf0a3 CLEAR SCREEN UNPROTECTED

CL 0xf0a4 CLEAR TO END OF LINE

CE 0xf0a5 CLEAR TO END OF SCREEN

P1 0xf0a6 PROGRAM FUNCTION KEY 1

P2 0xf0a7 PROGRAM FUNCTION KEY 2

P3 0xf0a8 PROGRAM FUNCTION key 3

P4 0xf0a9 PROGRAM FUNCTION key 4

MD 0xf0aa MOVE DOWN

MU 0xf0ab MOVE UP

 Mnemonics 48

dL4 Language Reference Guide©

P5 0xf0ac PROGRAM FUNCTION KEY 5

P6 0xf0ad PROGRAM FUNCTION KEY 6

P7 0xf0ae PROGRAM FUNCTION KEY 7

P8 0xf0af PROGRAM FUNCTION KEY 8

BB 0xf0b0 BEGIN BLINK MODE

EB 0xf0b1 END BLINK MODE

BR 0xf0b2 BEGIN REVERSE VIDEO MODE

ER 0xf0b3 END REVERSE VIDEO MODE

BD 0xf0b4 BEGIN DIMMED INTENSITY MODE

ED 0xf0b5 END DIMMED INTENSITY MODE

BP 0xf0b6 BEGIN PROTECTED MODE

EP 0xf0b7 END PROTECTED MODE

BU 0xf0b8 BEGIN UNDERLINE MODE

EU 0xf0b9 END UNDERLINE MODE

BX 0xf0ba BEGIN EXPANDED PRINT MODE

EX 0xf0bb END EXPANDED PRINT MODE

FM 0xf0bc BEGIN FORMAT MODE

FX 0xf0bd END FORMAT MODE

LK 0xf0be LOCK KEYBOARD

UK 0xf0bf UNLOCK KEYBOARD

BT 0xf0c0 BEGIN TRANSMISSION FROM MEMORY

MP 0xf0c1 USE MEMORY POINTER FOR NEXT POSITION

IL 0xf0c2 INSERT LINE

DL 0xf0c3 DELETE LINE

IC 0xf0c4 INSERT CHARACTER

DC 0xf0c5 DELETE CHARACTER

CT 0xf0c6 CLEAR TABS

ST 0xf0c7 SET TAB

AE 0xf0c8 AUXILIARY PORT ENABLE

AD 0xf0c9 AUXILIARY PORT DISABLE

SL 0xf0ca SEND LINE

LU 0xf0cb SEND LINE UNPROTECTED

SP 0xf0cc SEND PAGE

GN 0xf0cd SET COLOR GREEN

TB 0xf0ce TAB BACKWARD

PI 0xf0cf INPUT POSITION INDICATOR

RE 0xf0d0 SET COLOR RED

PU 0xf0d1 SEND PAGE UNPROTECTED

YE 0xf0d2 SET COLOR YELLOW

BL 0xf0d3 SET COLOR BLUE

 Mnemonics 49

dL4 Language Reference Guide©

MA 0xf0d4 SET COLOR MAGENTA

CY 0xf0d5 SET COLOR CYAN

WH 0xf0d6 SET COLOR WHITE

XX 0xf0d7 RESET ALL

SA 0xf0d8 SPECIAL CODE A

SB 0xf0d9 SPECIAL CODE B

SC 0xf0da SPECIAL CODE C

SD 0xf0db SPECIAL CODE D

BV 0xf0dc BOX VERTICAL LINE

BH 0xf0dd BOX HORIZONTAL LINE

WD 0xf0e2 SET WIDE MODE

NR 0xf0e3 SET NARROW MODE

RF 0xf0e4 RESET FUNCTION KEYS

TL 0xf0e5 TRANSMIT LINE UNPROTECTED

TP 0xf0e6 TRANSMIT LINE PROTECTED

TR 0xf0e7 TRANSMIT SCREEN UNPROTECTED

TS 0xf0e8 TRANSMIT SCREEN PROTECTED

PS 0xf0e9 PRINT SCREEN

BA 0xf0eb BEGIN TRANSPARENT PRINT MODE

EA 0xf0ec END TRANSPARENT PRINT MODE

RV 0xf0ed SET REVERSED VIDEO

NV 0xf0ee SET NORMAL VIDEO

BO 0xf0ef BEGIN VISIBLE PRINT MODE

EO 0xf0f0 END VISIBLE PRINT MODE

BK 0xf0f1 BACK TO BEGINNING OF LINE

BC 0xf0f2 BEGIN COMPRESSED MODE

EC 0xf0f3 END COMPRESSED MODE

BI 0xf0f4 BEGIN ITALIC MODE

EI 0xf0f5 END ITALIC MODE

BSO 0xf0f6 BEGIN STRIKE OUT MODE

ESO 0xf0f7 END STRIKE OUT MODE

BBOLD 0xf0f8 BEGIN BOLD MODE

EBOLD 0xf0f9 END BOLD MODE

BSUB 0xf0fa BEGIN SUBSCRIPT MODE

ESUB 0xf0fb END SUBSCRIPT MODE

BSUP 0xf0fc BEGIN SUPERSCRIPT MODE

ESUP 0xf0fd END SUPERSCRIPT MODE

ALIGN 0xf0fe ALIGN TO NEXT HORIZONTAL BOUNDARY

MOVETO 0xf0ff MOVE TO

ADD 0xf100 FUNCTION KEY ADD

 Mnemonics 50

dL4 Language Reference Guide©

BEGIN 0xf101 FUNCTION KEY BEGIN

CANCEL 0xf102 FUNCTION KEY CANCEL

CLEAR 0xf103 FUNCTION KEY CLEAR

CLOSE 0xf104 FUNCTION KEY CLOSE

COMMAND 0xf105 FUNCTION KEY COMMAND

COPY 0xf106 FUNCTION KEY COPY

CREATE 0xf107 FUNCTION KEY CREATE

CUT 0xf108 FUNCTION KEY CUT

DIVIDE 0xf109 FUNCTION KEY DIVIDE

END 0xf10a FUNCTION KEY END

EXEC 0xf10b FUNCTION KEY EXEC

EXIT 0xf10c FUNCTION KEY EXIT

FIND 0xf10d FUNCTION KEY FIND

HELP 0xf10e FUNCTION KEY HELP

LOAD 0xf10f FUNCTION KEY LOAD

MARK 0xf110 FUNCTION KEY MARK

MESSAGE 0xf111 FUNCTION KEY MESSAGE

MODIFY 0xf112 FUNCTION KEY MODIFY

MOVE 0xf113 FUNCTION KEY MOVE

MULTIPLY 0xf114 FUNCTION KEY MULTIPLY

NEXT 0xf115 FUNCTION KEY NEXT

NEXTPAGE 0xf116 FUNCTION KEY NEXTPAGE

NEW 0xf117 FUNCTION KEY NEW

OPEN 0xf118 FUNCTION KEY OPEN

OPTIONS 0xf119 FUNCTION KEY OPTIONS

PASTE 0xf11a FUNCTION KEY PASTE

PAUSE 0xf11b FUNCTION KEY PAUSE

PREV 0xf11c FUNCTION KEY PREV

PREVPAGE 0xf11d FUNCTION KEY PREVPAGE

PRINT 0xf11e FUNCTION KEY PRINT

REDO 0xf11f FUNCTION KEY REDO

REFRESH 0xf120 FUNCTION KEY REFRESH

RENAME 0xf121 FUNCTION KEY RENAME

REPLACE 0xf122 FUNCTION KEY REPLACE

RESTART 0xf123 FUNCTION KEY RESTART

RESTORE 0xf124 FUNCTION KEY RESTORE

RESUME 0xf125 FUNCTION KEY RESUME

RUN 0xf126 FUNCTION KEY RUN

SAVE 0xf127 FUNCTION KEY SAVE

SELECT 0xf128 FUNCTION KEY SELECT

 Mnemonics 51

dL4 Language Reference Guide©

SETTINGS 0xf129 FUNCTION KEY SETTINGS

SIZE 0xf12a FUNCTION KEY SIZE

SORT 0xf12b FUNCTION KEY SORT

START 0xf12c FUNCTION KEY START

STOP 0xf12d FUNCTION KEY STOP

SUBTRACT 0xf12e FUNCTION KEY SUBTRACT

SUSPEND 0xf12f FUNCTION KEY SUSPEND

UNDO 0xf130 FUNCTION KEY UNDO

F0 0xf140 FUNCTION KEY 0

F1 0xf141 FUNCTION KEY 1

F2 0xf142 FUNCTION KEY 2

.

.

.

F63 0xf17f FUNCTION KEY 63

BLACK 0xf180 SET COLOR BLACK

RESETCOLOR 0xf181 RESET FG/PEN/BG COLOR TO DEFAULT

WINDOW 0xf182 CREATE WINDOW

WMODAL 0xf183 CREATE MODAL WINDOW

WCHILD 0xf184 CREATE CHILD WINDOW

WDELETE 0xf185 CLOSE/DESTROY WINDOW

WHIDE 0xf186 MAKE WINDOW INVISIBLE

WTITLE 0xf187 CHANGE WINDOW TITLE

WSELECT 0xf188 SELECT CURRENT WINDOW

WRANK 0xf189 CHANGE WINDOW Z-ORDER

WCANVAS 0xf18a CHANGE CANVAS SIZE

WOUTPUT 0xf18b CHANGE OUTPUT REGION SIZE/POSITION

WVIEW 0xf18c CHANGE DISPLAY WINDOW CANVAS SIZE/POSITION

WSCROLL 0xf18d SCROLL WINDOW POSITION IN CANVAS

WMOVE 0xf18e MOVE DISPLAY WINDOW ON SCREEN

WSHOW 0xf18f MAKE WINDOW VISIBLE

WOUTPUTSIZE 0xf190 RESIZE OUTPUT REGION

WVIEWSIZE 0xf191 RESIZE DISPLAYED WINDOW IN CANVAS

WENABLE 0xf192 ENABLE WINDOW

WDISABLE 0xf193 DISABLE WINDOW

WCBUTTON 0xf194 CREATE BUTTON

WCCHECK 0xf195 CREATE CHECK BOX

WCRADIO 0xf196 CREATE RADIO BUTTON

WCNUMBER 0xf197 CREATE NUMERIC INPUT BOX

WCSTRING 0xf198 CREATE CHARACTER INPUT BOX

 Mnemonics 52

dL4 Language Reference Guide©

WCPRIVATE 0xf199 CREATE CHARACTER HIDDEN INPUT BOX

WCLABEL 0xf19a CREATE A LABEL FOR AN INPUT BOX

WCTEXT 0xf19b CREATE MULTI-LINE CHARACTER DISPLAY BOX

WCMEMO 0xf19c CREATE MULTI-LINE CHARACTER INPUT BOX

WCLIST 0xf19d CREATE SELECTION LIST BOX

WCEDITLIST 0xf19e CREATE EDITABLE SELECTION LIST BOX

WCLISTDROP 0xf19f CREATE DROP DOWN SELECTION LIST

WCEDITDROP 0xf1a0 CREATE DROP DOWN EDITABLE LIST BOX

WCMENU 0xf1a1 CREATE MENU

WCMENUACTION 0xf1a2 CREATE MENU ACTION ITEM

WCMENUCHECK 0xf1a3 CREATE MENU CHECK BOX ITEM

WCMENURADIO 0xf1a4 CREATE MENU RADIO BUTTON ITEM

WCMENUSEP 0xf1a5 CREATE MENU SEPARATOR

WCENDMENU 0xf1a6 END MENU OR SUB-MENU DEFINITION

WCGROUP 0xf1a7 GROUP GRAPHICAL ELEMENTS

WCSELECT 0xf1a8 SELECT CURRENT GRAPHICAL ELEMENT

WCENABLE 0xf1a9 ENABLE USER INPUT/SELECTION TO/OF ELEMENT

WCDISABLE 0xf1aa DISABLE USER INPUT/SELECTION TO/OF ELEMENT

WCQUERY 0xf1ab REQUEST GRAPHICAL ELEMENT TO SEND VALUE

WCDELETE 0xf1ac DELETE A GRAPHICAL ELEMENT

WCACTION 0xf1ad CHANGE ACTION PERFORMED BY INPUT ELEMENT

WCFOCUS 0xf1ae SET CURRENT FOCUS TO SELECTED ELEMENT

WCMARK 0xf1af MARK OR SELECT ITEM

WCUNMARK 0xf1b0 UNMARK OR UNSELECT ITEM

WCSUBMENU 0xf1b1 CREATE SUBMENU

WCSETFONT 0xf1b3 SET FONT FOR CONTROLS

INPUTSTART 0xf1b4 RECORD START OF INPUT

LITNUL 0xf1b5 LITERAL NULL (BINARY ZERO)

LITCR 0xf1b6 LITERAL CARRIAGE RETURN

RESETATTR 0xf1b7 CLEAR ALL ATTRIBUTES (BLINK, DIM, ..)

BACTFN 0xf1b8 BEGIN ACTIVATE ON MNEMONIC CHARS

EACTFN 0xf1b9 END ACTIVATE ON MNEMONIC CHARS

INVERT 0xf1ba INVERT COLORS IN SPECIFIED AREA

PGMFN 0xf1bb PROGRAM FUNCTION KEY

ONCLOSE 0xf1bc WARN/PREVENT EXIT

LANDSCAPE 0xf1bd ENABLE PRINTER LANDSCAPE/PORTRAIT

WCWHERE 0xf1be RETURN CURRENT GRAPHICAL ELEMENT ACTION

LPI 0xf1bf LINES PER INCH (PRINTERS)

CPI 0xf1c0 CHARACTERS PER INCH (PRINTERS)

FONTCELL 0xf1c1 FONT CHARACTER CELL SIZE

 Mnemonics 53

dL4 Language Reference Guide©

MARGIN 0xf1c2 SET MARGINS (PRINTERS)

WCDEFAULTBTN 0xf1c3 CREATE DEFAULT BUTTON

SUSPENDAUX 0xf1cd SUSPEND AUX PRINTING

CONTINUEAUX 0xf1ce CONTINUE AUX PRINTING

WCEVENT 0xf1cf CONTROL TRANSMISSION OF GUI EVENTS

PGMHELPFN 0xf1d0 PROGRAM FUNCTION KEY TO RETURN FOCUS

WCBQRYBUF 0xf1d1 BEGIN WCQUERY INPUT BUFFERING

WCEQRYBUF 0xf1d2 END WCQUERY INPUT BUFFERING

WCRESETFONT 0xf1d3 RESET FONT FOR CONTROLS

RESETFONT 0xf1d4 RESET FONT FOR TERMINAL/WINDOW

DEFAULTCOLOR 0xf1d7 USE CURRENT COLORS AS SESSION DEFAULTS

WCSETCOLOR 0xf1d8 SET BG/FG COLORS FOR CONTROLS

WCRESETCOLOR 0xf1d9 RESET BG/FG COLORS FOR CONTROLS

WCASKCOLOR 0xf1da ASK USER TO CHOOSE COLOR

WCMARKCOLOR 0xf1db SET COLORS FOR SELECTED ITEMS

WCMSGWARN 0xf1dc DISPLAY WARNING MESSAGE DIALOG

WCMSGINFO 0xf1dd DISPLAY INFORMATION MESSAGE DIALOG

WCMSGASK 0xf1de DISPLAY QUESTION MESSAGE DIALOG

WCMSGERROR 0xf1df DISPLAY ERROR MESSAGE DIALOG

FITIMAGE 0xf1e3 DISPLAY IMAGE FILE PRESERVING ASPECT RATIO

FRAME 0xf1e4 DRAW EDGE AROUND RECTANGLE

FILLIMAGE 0xf1e6 DRAW IMAGE FILLING SPECIFIED RECTANGLE

WCEXTKEYS 0xf1e7 ENABLE OR DISABLE EXTENDED KEY BEHAVIOR

WCPAD 0xf1e8 CREATE TRANSPARENT BUTTON

WCSHOWLIST 0xf1e9 CREATE READ ONLY LIST BOX

AUTOCOMPLETE 0xf1ea ENABLE AUTOCOMPLETION IN GRAPHICAL ELEMENTS

 Statements 54

dL4 Language Reference Guide©

Chapter 7 - Statements

Introduction
This chapter describes dL4 BASIC statements that are used to create dL4 BASIC programs. A quick
reference listing of these statements is available in Appendix D of this guide. The notations used to
represent the syntax of statements is listed in "Syntax", Chapter 1 of this guide.

Statement Structure
A BASIC statement can optionally begin with either a line number or a label:

{stmt.no | label:} STATEMENT

dL4 BASIC statements are executed when a user executes the program. Debugging is facilitated through
SCOPE, which is documented in the dL4 Command Reference Guide.

Certain statements may be executed immediately from the keyboard, i.e., they are executed as soon as the
user finishes typing a statement. These statements are identified in this chapter by "Executable From
Keyboard".

In this chapter, statements are listed alphabetically with the general forms given in terms of literal elements
in upper case or variables in italic type. Upper case is used for all key words such as utilities, statements,
functions, and environment variables. Key words are all cross-referenced in the Index at the back of this
guide. Each statement begins on a separate page and conforms to the standard format.

NOTE: The syntax of every statement begins with:

 {stmt.no | label:} STATEMENT {parameters}

 as in:

 {stmt.no | label:}ADD chan. expr, arg {...};

What this means is that some statements are executable from the keyboard, making statement numbers and
labels unnecessary, while other statements are not executable from the keyboard. This guide clearly
identifies whether each statement can or cannot be executed from the keyboard. To avoid repetition, this
stmt.no/label argument is omitted from statement syntaxes, but it should be understood to exist in every
case.

 Statements 55

dL4 Language Reference Guide©

Statement Documentation Format
Each statement begins a new page in this guide, documented as follows:

STATEMENT
Synopsis

Summary of the functionality of the statement.
Syntax

STATEMENT syntax with its parameter lists.
Parameters

Description of each parameter.
Executable From Keyboard?

Yes or No
Remarks

Discussion of the usage of the statement in context.
Examples

Examples of the statement in context.

See also
Related statements.

 Statements 56

dL4 Language Reference Guide©

Statements, Line Numbers and Labels
All program instructions are called statements. They have the general form:

{ line-no | label: } { statement { \ statement } }

line no is the valid line number, 1 to 268369919.

label: is a valid statement label followed by a colon.

statement is any valid BASIC statement.

{\...} is the separator for multiple statements (also called sub-statements) appearing on the same statement
line.

Line Identification
Each line begins with an optional line number, line-no, and ends with the [EOL] end of line character. If
specified, line-no must be an integer in the range 1 through 268369919.

Following, or in place of, the line-no can be a statement label. The label can be from 1 to 32 characters in
length consisting of letters, digits, and underscore. A label must begin with a letter or underscore and end
with a colon.

Throughout this guide, line-no is used to indicate selection of either a line number or label. If a label is not
explicitly defined for a statement, any supplied line-no is considered both the line number and label. If a
statement has neither a line-no or label, it cannot be directly referenced by other program statements.

A statement is one instruction to be executed by the computer, such as printing a list of values. A program
line is a line consisting of one or more statements.

Multiple-Statement Lines
Several statements can appear on a single line, separated by a backslash (\) . Statements are numbered on
each line from the left, starting with 1. For example:

PRINT TOTAL; J \ IF J End

When utilizing multi-statement lines, you should note certain programming effects. Conditional branching
(GOTO, GOSUB, ON) can only select the first statement of any line. Branching to statements (other than
the first) is provided only by the JUMP statement.

 Statements 57

dL4 Language Reference Guide©

ADD
Synopsis

Low-level statement to insert data or data definitions into a file.
Syntax

ADD chan.expr {expr.list} {;}
Parameters

chan.expr is a driver-class dependent channel expression.

expr.list is an arbitrary number of comma separated expressions or variables of any dL4 data types.

";" unlocks the record after a successful ADD.
Executable From Keyboard?

Yes.
Remarks

The ADD statement is most commonly used to insert a new data record or to define a new index. ADD is a
low-level statement intended for use in utilities and other programs that need to perform special file
manipulations. Most applications should use the ADD RECORD or ADD INDEX statements rather than
ADD. Refer to the dL4 Files and Devices reference manual for more information on using ADD with
specific file types or drivers.

Examples
Add #1,0,0,-1;CustRec.Name$

Add #1,0,-1,-1;

See also
 ADD RECORD, ADD INDEX, DEFINE RECORD

 Statements 58

dL4 Language Reference Guide©

ADD INDEX
Synopsis

Add an index to a file.
Syntax

ADD INDEX chan.no, index.no; struct.var
Parameters

chan.no identifies a valid channel number.

index.no is a numeric expression whose integer value identifies an index to be created in the file.

struct.var is a variable of structure data type.

Executable From Keyboard?

Yes.
Remarks

In many drivers, indices may be added only before data has been written to the file. Indices should be
created beginning with index 1 with consecutive index numbers.

Defining an index requires defining a structure where all members have 'fieldname' designations. This
structure identifies the various parts of the key.

Options for the entire Key include: Unique, Duplicates and Packed.

Options for Key members include: Ascending, Descending, Uppercase.
Def Struct CustKey1 : Key "NameCtyBal" + Duplicates + Descending
 Member Name$[25] : Key "Name" + Uppercase
 Member City$[25] : Key "City" + Uppercase
 Member 3%,Balance : Key "CurrBal"
End Def

Dim Key1. As CustKey1
Add Index #5,1;Key1. ! Define index 1 as NameCtyBal directory

In this example, the structure CustKey1 is named "NameCtyBal" and represents an index of possibly
duplicate keys which are to be collated in descending order.

The member Name$ is an 25-character string from the data field with the same name. It is to be
uppercased. The field City$ is a 25-character string from the data filed with the same name. It is also to be
uppercased. The last part of this key, Balance, is a 3% numeric field from the field named "CurrBal".

Once the structure is defined, a new index (directory) is added by the ADD INDEX statement and all
active records are keyed immediately. If no errors result, the selected index was successfully added.

Examples
Add Index #1,1;Key1.

Add Index #1,2;Key2. ! Indices must be added in order

See also
ADD

 Statements 59

dL4 Language Reference Guide©

ADD RECORD
Synopsis

Add new record to file.
Syntax

ADD RECORD chan.no; struct.var {;}
Parameters

chan.no identifies a valid channel number.

 struct.var is a variable of structure data type.

";" unlocks the record after a successful ADD RECORD.

Executable From Keyboard?

Yes.
Remarks

A new record is allocated, written and all keys associated with this record are inserted. When the add
operation is complete, the new record becomes the current record.

If no errors result, the selected record was successfully added to the file.
Examples

Add Record #1;CustRec.

Add Record #chan;CustRec.;

See also
ADD

 Statements 60

dL4 Language Reference Guide©

BOX
Synopsis

Draw a rectangular figure on display device.
Syntax

BOX {chan.no;} {@x1,y1;} [TO @x2,y2;] | [SIZE w,h]
Parameters

chan.no identifies a valid channel number.

x1,y1 are the column, row coordinates of the upper left corner.

x2,y2 are the lower right column, row coordinates.

w,h identify the width and height.
Executable From Keyboard?

Yes.
Remarks

Box drawing is a function of the window and printer drivers, and uses the #,#RECTTO and #,#RECT
mnemonics.

If @x1,y1 is not specified, the current cursor position is used as the upper left corner.
Examples

Box @7,2; To @70,10;

Box @7,2; Size 70,19

Box To @70,10;

See Also
LINE, SIZE

 Statements 61

dL4 Language Reference Guide©

BUILD
Synopsis

Create and open a file.
Syntax1

BUILD chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
BUILD chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Syntax3
BUILD chan.no, + file.spec.str {, {chan.no,} +file.spec.str} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file specification
used to build and open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to build and open a file.

+ file.spec.str identifies a valid dL4 file specification used to create and open a text file.
Executable From Keyboard?

Yes.
Remarks

Each file.spec.str, which is described in detail in Chapter 9 of this guide, contains the file's attributes and
filename to be created. Multiple strings may be specified to create several files and they will be opened on
successive channel numbers. Any new channel number (#channel) in the filename list will cause
assignment of channels to continue from that number.

The attributes are optional and may consist of several items, selecting the type, structure, and protection of
the file.

The filename is any legal filename. If the filename is to replace an existing file on the system, the name
must be terminated with an exclamation point (!).

Unless as AS clause is used, the file type to be built will be determined by the file.spec.str or
file.spec.items.

If the file is to be created as a Contiguous data file, the initial Record Count and Record Length must be
specified in the form "[count:length]". The Record Count is the initial number of records to be allocated to
the file. Record length is specified in words.

If no record count/length is specified, the file is created as a Formatted Item file. The Record Length and
format is defined by the program when Record 0 is written.

If the str.expr defining the filename is preceded by a + sign (note: the + character is not within the
str.expr), the file is created as a text file.

 Statements 62

dL4 Language Reference Guide©

The AS clause can be used to override the default driver selection:

Build #c; <filename> As "CLASS NAME"

Build #c; <filename> As "DRIVER NAME"

class might be "Full-ISAM" for any available full ISAM driver, or a specific full ISAM driver.

Older-style BUILD statements such as:

Build #1,+"MYFILE!"

can be made more readable as:

Build #1,"MYFILE" As "TEXT"

Examples
Build #1,"cust.masterfi!" As "Full-ISAM"

Build #0,"2/ABC" , + "/usr/ub/3/textfile!"

Build #C,"<644> [1000:256] PAYROLL/CFILE!"

See also
OPEN, EOPEN, ROPEN, WOPEN

 Statements 63

dL4 Language Reference Guide©

CALL (BASIC Program)
Synopsis

Call a BASIC program.
Syntax

CALL filename {, parm.list}
Parameters

filename is a string literal or expression containing a dL4 BASIC program filename which is optionally
preceded by a relative or absolute directory pathname.

parm.list is a comma separated list of expressions or variables of any data types to be passed to the calling
program.

Executable From Keyboard?
No.

Remarks
BASIC programs called as subroutines are referred to as subprograms. A subprogram accepts a list of
argument variables passed by the calling program by use of the ENTER statement. The number and type
of arguments in the CALL statement must match those in the ENTER statements of the called program.
The maximum number of arguments is limited only by the maximum statement length.

A subprogram accepts and returns values through the passed list of arguments which may be any
combination of: variables, constants, or expressions. The argument name in the subprogram does not
need to (and generally won't) be identical to the name of the passed variable in the calling program. For
example, if the calling program passes A$ and T, the subprogram may ENTER with DATA$ and VALUE.
The variable names specified by ENTER are mapped to reference the data space of the variable names
passed in the CALL. All other variables in a subprogram are considered local to the subprogram.

Subprograms can be nested indefinitely, limited only by the maximum process size of the Operating
System.

The parm.list may be defined as any combination of str.vars, num.vars, mat.vars, str.exprs, num.exprs,
array.vars or str.lit, depending on the requirements of the subroutine being called. A mat.var or array.var
in CALL or ENTER must be specified with empty subscripts; e.g. A3[]. Otherwise, only the first array
element will be passed as an argument. The subroutine may use these items for input and output of data.
A variable (not an expression) must be specified in positions of the parm.list which return information to
the program.

Examples
Call "pgm",A$,B[],C[2],Input$

See also
CALL (Procedure), ENTER

 Statements 64

dL4 Language Reference Guide©

CALL (Procedure)
Synopsis

Call a procedure.
Syntax

CALL proc.name ({parm.list})
Parameters

proc.name is the name of a valid existing procedure.

parm.list is a comma separated list of expressions or variables of any data types to be passed to the calling
procedure.

Executable From Keyboard?
No.

Remarks
Whenever a proc.name is to be used before its definition within the current program unit or program, or
physically resides in another program, a DECLARE statement must occur before its first use.

An error is generated before program execution starts, if any EXTERNAL proc.name references are
unresolved.

Optionally parameters may be passed to the procedure in the param.list. The parameters may be any type
of data, including a structure. When passing a structure, the procedure must also include its own structure
definition of an identical structure and supply the structures designation.

Variables are passed to procedures by reference, not by name. Expressions are passed to procedures by
value. When variables are passed by reference to a procedure, that procedure actually points its referenced
variables to the caller's supplied variables data space. Any changes to the variable are affected in the
caller's program. If a procedure updates, or returns a value in, a referenced variable, that operation will be
lost if the caller passed an expression. Normally, procedures need not concern themselves with what was
passed, however the caller should be aware of the appropriate calling sequence.

When a caller invokes a procedure which accepts a specific list of arguments, the interpreter verifies that
the parameter types being passed are of the correct type. If the procedure calls for a string, the interpreter
will verify that the argument is string.

An error is not generated should a caller pass an expression when the procedure assumes a variable
reference. The caller simply elects not to care about any result returned in that variable reference.

Examples
! This is an example of the CALL statement (calling a procedure)
External Sub Printit(S$)
 If Not(S$) Exit Sub ! nothing to print, exit
 Print S$
End Sub

Call Printit("Call a procedure")
Call Printit("")

See also
END SUB, SUB, DECLARE, EXTERNAL SUB, CALL (BASIC Program)

 Statements 65

dL4 Language Reference Guide©

CASE
Synopsis

Control complex conditional and branching operations.
Syntax1

CASE [num.lit | [num.lit TO num.lit] | [IS rel.op num.lit]] {, [num.lit | [num.lit TO num.lit] | [IS rel.op
num.lit]]} ...

Syntax2
CASE [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]] {, [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]]} ...

Syntax3
CASE ELSE

Parameters
num.lit is a numeric literal.

rel.op is a relational operator.

str.lit is a string literal.
Executable From Keyboard?

No.
Remarks

The CASE statement specifies the conditions for which its associated statements are executed. Multiple
conditions, separated by comma may be specified.

CASE ELSE is optional and the associated statements are executed when no other CASE expression
matched the value of the primary expr. If present, CASE ELSE must be the last CASE in the block.

Examples
! This is an example of the Case statement
Dim %1, Choice
Print 'CS'
Choice = 1
Do Until Choice = 6
 Select Case Choice
 Case 1
 Print @15,Choice + 15;"This is case 1"
 Case 2 To 3
 Print @15,Choice + 15;"This is case 2 or 3"
 Case IS > 3
 Print @15,Choice + 15;"This is case greater than 3"
 Case Else
 Print @15,Choice + 15;"This is default case"
 End Select
 Choice = Choice + 1
Loop

See also
SELECT CASE, ELSE, END SELECT

 Statements 66

dL4 Language Reference Guide©

CHAIN
Synopsis

Transfer control to another program.
Syntax

CHAIN filename {, num.expr {, num.var}}
Parameters

filename is a string literal or expression containing a dL4 BASIC program filename which is optionally
preceded by a relative or absolute directory pathname.

num.expr is an expression yielding a starting stmt.no in the new program to begin execution.

num.var is a variable of numeric type which is set to the stmt.no following the CHAIN in the current
program.

Executable From Keyboard?
Yes.

Remarks
CHAINing to a null string terminates the current program. If the program was executed under SCOPE,
the user will return to command mode. If the program was executed under RUN, then RUN will exit.

There are two types of CHAIN operations; short and long.

A short CHAIN transfers control from one BASIC program to another. All files remain open and common
variables are passed using COM or CHAIN READ / CHAIN WRITE. A short CHAIN is performed if
the filename is the name of an existing BASIC program, or begins with the string 'RUN' or 'run'.

A long CHAIN appends the supplied filename to the type-ahead buffer, exits the program to command
mode, and processes type-ahead as though the command was entered from the keyboard.

Several commands may be within a long CHAIN, and they are executed in sequence. A long CHAIN is
performed for dL4 programs whenever a short CHAIN fails. If filename begins with the character "\010\",
"\031\", "\032\", or "\177\" a long chain will be performed after deleting that character.

Each command should be terminated with an [EOL] terminator. The number of characters that can be
passed in this fashion is limited to the size of the user's input buffer.

Any long CHAIN which enters or passes input to command mode first closes all channels.

Any CHAIN terminates the current program.

The CHAIN statement is illegal in a procedure.
Examples

Chain "3/FILENAME"

Chain Q$,4000,B

See also
COM, CHAIN READ, CHAIN WRITE

 Statements 67

dL4 Language Reference Guide©

CHAIN READ
Synopsis

Read variables from a previous program.
Syntax

CHAIN READ [var.list | = | *]
Parameters

var.list is a list of comma separated variables of any dL4 data types passed to this program.
Executable From Keyboard?

No.
Remarks

CHAIN READ specifies common variables passed to this program via CHAIN WRITE statements in a
preceding program. Multiple CHAIN READ statements may be used, and they may be placed anywhere
within a program. Variables listed in a CHAIN READ may not be dimensioned by a DIM statement. If a
specified variable was not passed by a CHAIN WRITE statement, an error is generated.

CHAIN READ = causes all variables passed as common to be read into the program. All such variables
must appear in the program at least once (even if not used).

CHAIN READ * functions like CHAIN READ = except that variables passed to, but not appearing in this
program are ignored.

The CHAIN READ statement is ignored if executed. When a program passes data to another using
CHAIN WRITE, the new program's CHAIN READ statements are executed during the CHAIN opera-
tion.

The actual CHAIN READ statements may be placed anywhere in a program, however the best method is
to group them together at the beginning of a program near your DIM statements.

CHAIN READ statements may not be used together with COM.

The CHAIN READ statement is illegal in a procedure.
Examples

Chain Read A,B,C,X$

Chain Read *

See also
CHAIN READ IF, CHAIN WRITE, COM

 Statements 68

dL4 Language Reference Guide©

CHAIN READ IF
Synopsis

Conditionally read variables from a previous program.
Syntax

CHAIN READ IF [var.list | = | *]
Parameters

var.list is a list of comma separated variables of any dL4 data types passed to this program.
Executable From Keyboard?

No.
Remarks

CHAIN READ IF specifies common variables passed to this program via CHAIN WRITE statements in
a preceding program. Multiple CHAIN READ IF statements may be used, and they may be placed any-
where within a program. Variables listed in a CHAIN READ IF may not be dimensioned by a DIM
statement. If a specified variable was not passed by a CHAIN WRITE statement, no error is generated.

CHAIN READ IF = causes all variables passed as common to be read into the program. All such
variables must appear in the program at least once (even if not used).

CHAIN READ IF * functions like CHAIN READ IF = except that variables passed to, but not appearing
in this program are ignored.

The CHAIN READ IF statement is ignored if executed. When a program passes data to another using
CHAIN WRITE, the new program's CHAIN READ IF statements are executed during the CHAIN
operation.

The actual CHAIN READ IF statements may be placed anywhere in a program, however the best method
is to group them together at the beginning of a program near your DIM statements.

CHAIN READ IF statements may not be used together with COM.

The CHAIN READ IF statement is illegal in a procedure.
Examples

Chain Read If A,B,C,X$

Chain Read If *

See also
CHAIN READ, CHAIN WRITE, COM

 Statements 69

dL4 Language Reference Guide©

CHAIN WRITE
Synopsis

Write variables to the program selected by the preceding CHAIN statement.
Syntax

CHAIN WRITE [var.list | *]
Parameters

var.list is a list of comma separated variables of any dL4 data types to be passed to the chained program.
Executable From Keyboard?

No.
Remarks

CHAIN WRITE statements specify variables to be passed as common to the next program. All variables
specified must be dimensioned or otherwise have a value assigned to them in order to be passed. It is the
responsibility of the receiving program to contain the necessary CHAIN READ statements to accept the
data.

All variables are passed complete to their dimensioned length, such that strings with embedded nulls are
passed in their entirety.

A CHAIN WRITE must not be directly executed. Multiple CHAIN WRITE statements may be used,
and should only be placed as a group after a CHAIN or SWAP statement.

CHAIN WRITE * passes all variables in the program as common. It cannot be used with any other
CHAIN WRITE statements.

CHAIN WRITE statements may not be used together with COM.

The CHAIN WRITE statement is illegal in a procedure.
Examples

Chain Write A,B,C,X$

Chain Write *

See also
CHAIN READ, COM

 Statements 70

dL4 Language Reference Guide©

CHANNEL
Synopsis

Low-level statement to perform a driver-specific command.
Syntax

CHANNEL chan.cmd, chan.expr {expr.list}
Parameters

chan.cmd is an integer value indicating a driver-class dependent action.

chan.expr is a driver-class dependent channel expression.

expr.list is an arbitrary number of comma separated expressions or variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

Refer to the dL4 Files and Devices reference manual for information on channel commands supported by
specific drivers.

Examples
Channel 38, #1, 1; Creationdate#

Channel 38, #1, 2; LastAccessdate#

Channel 38, #1, 3; Modificationdate#

See also

 Statements 71

dL4 Language Reference Guide©

CHDIR
Synopsis

Change default directory to a specified path.
Syntax

CHDIR str.expr
Parameters

str.expr is an expression yielding a string value.
Executable From Keyboard?

Yes.
Remarks

The str.expr must be a legal filename of a directory.
Examples

Chdir C$

Chdir "../menu"

See also

 Statements 72

dL4 Language Reference Guide©

CLEAR
Synopsis

Clear channels or initialize variables.
Syntax1

CLEAR {chan.no {, chan.no}...}
Syntax2

CLEAR var.list
Parameters

chan.no is a valid channel number.

var.list is an arbitrary number of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

The chan.no expression is evaluated, truncated to an integer and used to select the channel number (0 to
99) to clear. Multiple channels, separated by comma may be cleared. If no chan.no is given, all opened
files (Channels 0 to 99) are cleared. Record locks on the file are removed, the file header may be updated
and the system file descriptor is released. A cleared channel is available for re-use for another file.

CLEAR differs from CLOSE in that it will always succeed: any I/O errors that occur while clearing the
channel will be ignored. Additionally, if the channel was opened with BUILD, the file will be deleted.
Refer to the dL4 Files and Devices reference manual for the file type or driver specific effects of CLEAR.

Clearing a variable initializes its value as if the variable had just been DIMed. Numeric and binary values
are zeroed. String values are set to nulls. Date values are set to a special value that indicates that it isn't a
valid date.

dL4 programs generate an error when a specified chan.no is not currently open.
Examples

Clear #5,#8,#X+2

Clear

See also
CHANNEL, CLOSE

 Statements 73

dL4 Language Reference Guide©

CLOSE
Synopsis

Close specified or all channels.
Syntax

CLOSE {chan.no {, chan.no}...}
Parameters

chan.no identifies a valid channel number.
Executable From Keyboard?

Yes.
Remarks

The chan.no expression is evaluated, truncated to an integer and used to select the channel number (0 to
99) to close. Multiple channels, separated by comma may be closed. If no chan.no is given, all opened
files (Channels 0 to 99) are closed. Record locks on the file are removed, the file header may be updated
and the system file descriptor is released. A cleared channel is available for re-use for another file.

Refer to the dL4 Files and Devices reference manual for file type or device specific effects of CLOSE.

dL4 programs generate an error when a specified chan.no is not currently open.
Examples

Close #1

Close #5,#8,#X+2

Close

See also
BUILD, CHANNEL, CLEAR, EOPEN, OPEN, ROPEN, WOPEN

 Statements 74

dL4 Language Reference Guide©

COM
Synopsis

Specify common variables.
Syntax

COM {[%prec | prec%] ,} var.list { , [%prec | prec%], var.list } ...
Parameters

prec indicates the precision number defined for the variable.

var.list is an arbitrary number of comma separated variables of any dL4 data types.
Executable From Keyboard?

No.
Remarks

The COM statement allocates space and defines precision for variables which can be passed between
programs. The form is identical to the DIM statement, except that all variables defined by COM are
flagged as common and eligible to be passed during CHAIN or SWAP.

Precisions can be defined for the variables in the var.list by including the optional %prec or prec%
precision. All further variables in the var.list will be at the last specified precision. The last supplied
precision in a COM or DIM statement is used as the default for all automatically assigned variables.

All COM statements in a program must be executed before any statement which allocates or defines a new
variable (LET, DIM, IF, etc.). Statements such as REM, ESCSET, GOTO, etc. which use no variables
may precede COM. An error is generated if a COM statement is executed out of order.

Variables to be passed must be defined in a COM statement by each program that is to use them.
Generally, two or more programs using a set of common variables will contain identical COM statements
in order to pass the entire set between them. A program CHAIN may exclude certain variables in its
common set, and these variables become unassigned. Similarly, the program may add variables to the set,
and they will be allocated and initialized as done by a DIM. Numeric precision may not be changed
between programs, but strings and arrays may be re-dimensioned to smaller sizes using COM.

CHAIN READ and CHAIN WRITE statements may not be used together with COM.

The COM statement is illegal in a procedure.
Examples

Com A$[19],B$[1],T4$[132]

Com C$[1762]

Com A[5],T$[120],D[23,14],%3,X[17]

Com 1%,A,B,%2,C,D,%3,E,F,4%G

See also
CHAIN READ, CHAIN WRITE, DIM

 Statements 75

dL4 Language Reference Guide©

CONV
Synopsis

Convert binary data to decimal, or convert decimal data to binary.
Syntax1

CONV 0, expr, num.var
Syntax2

CONV 1, var, num.expr
Parameters

expr is an expression of string or binary data type.

num.var is a variable of numeric type.

var is a variable of string or binary data type.

num.expr is an expression yielding a numeric value to be converted.
Executable From Keyboard?

Yes.
Remarks

The CONV mode 0 statement extracts binary information from a var or expr and returns the value in
decimal into a num.var. Additionally, using CONV mode 1, numeric information in a num.expr can be
converted to binary and placed into a var or expr.

The var or expr specifies the binary string and must define a string of one to four characters. The num.var
is the decimal numeric variable. When converting from or to a string, each character will be treated as an
8-bit byte and the upper 8-bits of the Unicode character will be treated as zeroes.

The valid numeric ranges, as well as the internal storage format, are determined by the length of the var or
expr given. This variable would usually be subscripted to select the desired length, otherwise the
dimensioned length of the string would be assumed. The following table compares the string length with
the range of values that can be stored.

 str.var SIZE DECIMAL
 B$[x,x] 1 byte 0 to 255

 B$[x,x+1] 2 bytes 0 to 65535

 B$[x,x+2] 3 bytes 0 to 16777215

 B$[x,x+3] 4 bytes -2,147,483,648 to 2,147,483,647

The conversion process allows positive integers only to be represented in 1, 2, or 3 byte lengths. A
negative value must be converted to a 4 byte length to retain its negative sign. Converting a negative value
to a shorter length and back would result in a truncated positive integer different from the original value.

The 4 byte length described here is identical to the internal format of a double-precision integer numeric
variable written to a file, and such a value could be read as a string and converted to numeric. The 2 byte
length, however, is NOT compatible with the %1 format because it is unsigned. Signed values could be
converted using 1, 2, or 3 byte lengths provided the program performs an adjustment for 16-bit two's
complement notation.

 Statements 76

dL4 Language Reference Guide©

Examples

100 Rem Convert binary to decimal D
110 Conv 0,A$[1,n],D
120 If D>R Then Let D=D-A
200 Rem Convert decimal D to binary
210 If D<0 Then Let D=D+A
220 Conv 1,A$[1,n],D

 Size (n) Range (R) Adjust by (A)

 1 byte -128 to 127 256 (28)

 2 bytes -32768 to 32767 65536 (216)

 3 byte -8388608 to 8388607 16777216 (224)

This method causes the upper bit of each string to be considered a sign
bit, just as is done by CONV with the 4 byte length. In the case of 2
bytes, for example, the values 0 thru 32767 represent themselves, while
65535 thru 32768 represent -1 thru -32768.

See also

PRECISIONS, STRINGS

 Statements 77

dL4 Language Reference Guide©

DATA
Synopsis

Define internal program data.
Syntax

DATA num.lit | str.lit {, num.lit | str.lit}...
Parameters

num.lit is a numeric literal value.

str.lit is a quoted sequence of characters.
Executable From Keyboard?

No.
Remarks

Each num.lit or str.lit is stored within the program as a numeric or string constant according to its type.
Character strings must be quoted.

No other statement may follow DATA on the same program line. All text up to the end of the line is
considered part of the DATA statement.

DATA statements may appear anywhere within a program and are ignored if executed, that is, they are
treated like REM comments.

Each DATA statement may contain as many values as can be entered, up to the size of the input buffer.

Numeric data items must be separated by comma, but can be in decimal and E-notation. A comma cannot
be part of a numeric item that will be read into a num.var.

For IRIS compatibility, a %prec declaration may be included before numeric values, but it will be ignored
and discarded.

Examples
Data 200,300,400,500,600,700.25,800,23.45

Data "quoted string, has comma", "\015\\015\"

See also
READ, RESTORE

 Statements 78

dL4 Language Reference Guide©

DECLARE
Synopsis

Declare a non-local procedure or provide a forward definition.
Syntax1

DECLARE { EXTERNAL | INTRINSIC } SUB proc.name {, ...}
Syntax2

DECLARE { EXTERNAL | INTRINSIC } FUNCTION func.name {, ...}
Parameters

proc.name is a valid procedure name.

func.name is a valid function name.
Executable From Keyboard:

No.
Remarks

EXTERNAL identifies the procedure as a separate secondary program unit with its own set of variables
and program options.

INTRINSIC identifies the procedure as an internal language function, added by a developer and linked
into the runtime. These functions are written in C and include some of the familiar IRIS calls, such as
$TRXCO.

If the procedure is an internal procedure within the program unit, neither EXTERNAL nor INTRINSIC is
declared. Internal procedures share everything with the surrounding program unit.

If any of the declared procedures are EXTERNAL and outside of the program, they must be in one of a
declared list of library files. At runtime, those libraries declared with the EXTERNAL LIB statement are
opened and the required procedures are dynamically linked into the calling program.

Examples
Declare Intrinsic Function FmtOf

Declare External Function IsPrime

Declare Function IsPrime

Declare External Sub VerifyDate(D$, ...)

See also
END FUNCTION, END SUB, SUB, EXTERNAL LIB, EXTERNAL SUB, FUNCTION

 Statements 79

dL4 Language Reference Guide©

DEF FN
Synopsis

Define user function.
Syntax

DEF func.name ({parm.list}) = expr
Parameters

func.name is a valid function name.

parm.list is a comma separated list of expressions or variables of any data types to be passed to the calling
function.

expr is an expression of the same type as the func.name.
Executable From Keyboard

No.
Remarks

Each user function must have a DEF statement executed before it can be used. User functions cannot be
redefined using subsequent DEF statements within the same program unit.

The parenthesized parm.list is considered a dummy argument. The expr is the expression to be evaluated
whenever the function is called. When this occurs, the actual argument supplied will be substituted for
every occurrence of the dummy argument in the given expression. Any variable currently in use with the
same name as the dummy argument is not affected by the function call.

A user function may call another user function in its definition, provided the called function has already
been defined. User functions may be nested in this manner up to a maximum of 500 levels.

Examples
Def FNA(X)=(X^3)*(X^2)*X

Def DoIt(V)=(V^4)*FNA(V) ! Nested FNA

Def Round(X)=SGN(X)*ABS(100*INT(X)+.5)/100

See also
EXTERNAL FUNCTION, FUNCTIONS, DECLARE

 Statements 80

dL4 Language Reference Guide©

DEFINE RECORD
Synopsis

Define the record format for a file.
Syntax

DEFINE RECORD chan.no; struct.var
Parameters

chan.no is a valid channel number.

struct.var is a variable of structure data type.
Executable From Keyboard

Yes.
Remarks

The DEFINE RECORD statement is used to establish the record definition and data dictionary of a newly
built Full-ISAM database file.

structvar is the name of a structure variable including ITEM "Fieldname" specifications for each member
of the structure template. Refer to the dL4 Files and Devices reference manual for details on character and
length requirements for field names.

The record layout of the file is structured according to the members of the given structure, i.e. types, sizes,
and fieldnames.

No data records are written to the file by the DEFINE RECORD operation.

For example, given the following structure template:
Def Struct Customer ! Define using 'fieldnames'
 Member Name$[25] : Item "Name" ! supply database fieldnames.
 Member Address$[25] : Item "Addr"
 Member City$[25] : Item "City"
 Member State$[2] : Item "State"
 Member Zip$[10] : Item "PostCode"
 Member 3%,Balance : Item "CurrBal" : Decimals 2
End Def

and the following dim and build statements:
Dim Cust. As Customer
Build #5, "Customers" As "Full-ISAM"

the structure is mapped to the record layout of the file.
Define Record #5; Cust.

If no errors result, the record definition was accepted and written to the file.
Examples

Define Record #1;CustRec.

See also
ADD RECORD, SET

 Statements 81

dL4 Language Reference Guide©

DEF STRUCT
Synopsis

Define a structure.
Syntax1

DEF STRUCT struct.name= {%prec | prec% ,} var.list {, { %prec | prec% ,} var.list} ...
Syntax2

DEF STRUCT struct.name

MEMBER {%prec | prec% ,} var.list {, { %prec | prec% ,} var.list} ...

.

.

.

END DEF
Syntax3

DEF STRUCT struct.name {: ITEM id } {:RAW}

 MEMBER {%prec | prec% ,} var.name [: ITEM id] { DECIMALS digits}

.

.

.

END DEF
Syntax4

DEF STRUCT struct.name {: KEY id option.list }

 MEMBER {%prec | prec%,} var.name [: KEY id option.list] { DECIMALS digits}

.

.

.

END DEF
Parameters

struct.name is a structure identifier.

prec indicates the precision number defined for the variable.

var.list is a list of comma separated variable names of any dL4 data types.

id is a string or a numeric literal identifying a fieldname or an item number.

var.name is a variable name.

digits is a numeric literal identifying the number of decimal digits.

option.list is a list of UPPERCASE, DESCENDING, UNIQUE, VARLEN, and/or PACKED key
options, each preceded by a plus sign ("+").

 Statements 82

dL4 Language Reference Guide©

Executable From Keyboard
No.

Remarks
DEF STRUCT is the start of the template for the definition of a complex data type. struct.name is a
unique name tagged to this template. The name may be from one to thirty-two characters in length, and
contain letters, digits, and underscores. DEF STRUCT does not actually allocate a structure using the
supplied name, rather it informs the compiler to define a unique structure template tagged with this name.

var.name may be any type of variable declaration: string, numeric, date, binary, array or another structure.
The syntax and function of MEMBER statements are nearly identical to that of DIM. Any MEMBER
statement declaring a numeric or date member must specify the precision (%prec or prec%). Any
MEMBER statement declaring an array is expressed as follows:

Member var.name [num.expr {, ...}]

The subscript dimensions of the array may be given with [num.expr {, ...}]. Any MEMBER statement
declaring a structure as a member is expressed as follows:

 Member var.name. {[num.expr {, ...}] } As struct.name2

var.name. is the name of a structure whose members are defined by the structure definition struct.name2.
struct.name2 must be an existing struct.name which has been previously defined. The var.name. may
include array subscript dimensions as in [num.expr {, ...}], if var.name. is to be an array of structures.

If Syntax1 is used, all MEMBER var.list names must be contained on a single program line. Syntax2,
Syntax3, or Syntax4 may be used for readability, or when all of the members cannot be defined on a single
line.

The END DEF statement defines the end of a structure definition.

Prior to using a structure, you must dimension one or more variables as a specific struct.name. The
following general form is used to dimension a structure:

Dim variable. { [expr {, ... }] } As struct.name

variable. is an actual variable in the program which is to be referenced as a structure. The variable may
include array subscript dimensions, if the variable. is to be an array of structures.

As struct.name informs the compiler which compiled structure definition is to be used for variable.

A structure definition itself may contain one or more structures, or arrays of structures. To define a
structure which includes a structure, a MEMBER is expressed as follows:

 Member name. { [expr {, ... }] } As struct.name2

name. is the name within struct.name2 whose members are defined by the structure definition
struct.name2. struct.name2 must be an existing structname which has been previously defined.

The names of structure members are distinct from any other names outside the structure; e.g. Data.Q$ is
distinct from Q$ which is distinct from Data1.T.Q$.

The members of a structure are physically contiguous in memory, and are ordered in memory as defined by
DEF STRUCT. Individual structure members cannot be re-dimensioned.

The RAW option enables special file access behavior similar to OPTION FILE ACCESS RAW but
applied only to the members of the structure when used in an ADD RECORD, READ RECORD, or
WRITE RECORD statement.

Examples
Def Struct Stat = %4,Population,City$[40]
Def Struct StatMem
 Member %4, Population
 Member City$[40]
End Def

 Statements 83

dL4 Language Reference Guide©

See also
END DEF, MEMBER

 Statements 84

dL4 Language Reference Guide©

DELETE INDEX
Synopsis

Delete an index in a file.
Syntax

DELETE INDEX chan.no, index.no
Parameters

chan.no is a valid channel number.

index.no is a numeric expression whose integer value identifies an index to be deleted in the file.
Executable From Keyboard?

Yes.
Remarks

When an index is no longer required, it may be deleted. It is driver dependent whether deleting an index is
supported or results in savings of disk space. In most cases, it is assumed that the file structure will reuse
the empty portion of the file.

If no errors result, the selected index was successfully deleted.

DELETE INDEX is not supported by any driver in dL4 revision 3.1 or earlier. For later revisions of dL4,
refer to the dL4 Files and Devices reference manual to determine whether a particular driver supports
DELETE INDEX.

Example
Delete Index #1,2

See also
ADD INDEX

 Statements 85

dL4 Language Reference Guide©

DELETE RECORD
Synopsis

Delete current locked record from a file.
Syntax

DELETE RECORD chan.no
Parameters

chan.no is a valid channel number.
Executable From Keyboard?

Yes.
Remarks

The current record is deallocated, and all keys associated with this record are removed. The current record
must be locked in order to be deleted.

If no errors result, the current record was successfully deleted.
Examples

Delete Record #2

See also

 Statements 86

dL4 Language Reference Guide©

DIM
Synopsis

Allocate space for variables.
Syntax1

DIM {[%prec | prec%] ,} var.list { , [%prec | prec%], var.list } ...
Syntax2

DIM var.list AS struct.name
Parameters

prec indicates the precision number defined for the variable.

var.list is a list of comma separated variables of any dL4 data types. See Chapter 3 for information on
variable types and subscripting variables.

struct.name is a structure identifier.
Executable From Keyboard?

Yes.
Remarks

The DIM statement allocates space and defines precision for variables which are considered local to the
current program. The form is identical to the COM statement, except that all variables defined by DIM
are not automatically passed during CHAIN statements unless specified using CHAIN WRITE and
CHAIN READ.

Precisions can be defined for the variables in the var.list by including the optional %prec or prec%
precision. All further variables in the var.list will be at the last specified precision. The last supplied
precision in a COM or DIM statement is used as the default for all automatically assigned variables.

If the var.list contains an str.var, in the form str.var$[num.expr], the num.expr within subscripts is
evaluated, truncated to an integer, and used as the maximum size of the string variable in characters. Any
attempt to store data beyond this maximum results in data truncation. String variables must appear in a
DIM or COM statement before use by any other statement. They cannot be re-dimensioned unless the
variable is deallocated (see the FREE statement).

If the var.list contains an binary.var, in the form binary.var?[num.expr], the num.expr within subscripts is
evaluated, truncated to an integer, and used as the maximum size of the binary variable in 8-bit bytes. Any
attempt to store data beyond this maximum results in data truncation. Binary variables must appear in a
DIM or COM statement before use by any other statement. They cannot be re-dimensioned unless the
variable is deallocated (see the FREE statement).

If the var.list contains a variable in the form struct.var. then Syntax2 is used to dimension the variable as a
structure of type struct.name. The variable may include array subscript dimensions, if it is to be an array of
structures. The AS struct.name informs the compiler which compiled structure definition is to be used for
struct.var. (see the DEF STRUCT statement).

If the var.list contains a num.var or date.var without subscripts, it is allocated at the current default
precision as a simple numeric or date variable.

If the var.list contains a variable in the form var.name[num.expr], or var.name[num.expr1,num.expr2], it is
allocated at the current default precision as a one or two dimensional array. An array can have up to 16
dimensions. The expression within subscripts are evaluated, truncated to integers, and used to select the
size (number of elements) of the array. Variables specifying one expression result in a one-dimensional
array (vector or list). Two expressions separated by a comma result in a two-dimensional array (matrix).
Any array used in a program without specifically being mentioned in a DIM or COM statement is
automatically dimensioned to [10] for each dimension.

 Statements 87

dL4 Language Reference Guide©

It is considered good programming practice to define all variables (other than temporaries and variables to
use the default precision) in a DIM or COM statement.

The final %prec or prec% executed in your program selects the default for any run-time variable
assignments.

Examples
Dim Alpha$[26],Byte?[80],DayOfMonth#[31]

Dim CustInfo.[1000] As Customer

Dim State$[50,2],%3,X[17]

Dim %1,A,B,2%,C,D,3%,E,F,%4

See also
DEF STRUCT, COM

 Statements 88

dL4 Language Reference Guide©

DO
Synopsis

Begin a program loop.
Syntax

DO
Parameters

None.
Executable From Keyboard?

No.
Remarks

Program loops may be established using the DO and LOOP statements as a means of blocking a set of
repeated statements. These statements provide greater flexibility and looping control than FOR / NEXT.

The bare DO loop must have a specific termination statement such as IF condition EXIT DO as one of the
blocked statements or an infinite loop will result.

Execution resumes at the statement following the DO and continues normally. Upon execution of the
LOOP statement, execution resumes at the statement following the corresponding DO.

Unlike FOR, DO loops may nest indefinitely. In addition, each DO loop must contain exactly one
matching LOOP statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a DO loop will not cause an error, rather the program will
remain in the loop until it terminates. The DO statement itself need not be executed to commence looping.

Examples
Do
 done = 1
 Print done
 If done Exit Do
Loop

See also
DO UNTIL, DO WHILE, EXIT DO, LOOP

 Statements 89

dL4 Language Reference Guide©

DO UNTIL
Synopsis

Begin a loop to be performed as long as the expression is false.
Syntax

DO UNTIL bool.expr
Parameters

bool.expr is an expression evaluated to produce a boolean value.
Executable From Keyboard?

No.
Remarks

Program loops may be established using the DO and LOOP statements as a means of blocking a set of
repeated statements. These statements provide greater flexibility and looping control than FOR / NEXT.

The UNTIL expression provides the loop with a specific termination condition. UNTIL provides for
looping as long as the expression remains false - that is until it becomes true.

The optional UNTIL clause may be placed on either the line containing the DO or LOOP statement,
depending upon when expression is to be tested. By placing the clause with LOOP, the developer ensures
that at least one iteration is performed.

Execution resumes at the statement following the DO and continues normally. Upon execution of the
LOOP statement, execution resumes at the statement following the corresponding DO.

Unlike FOR, DO loops may nest indefinitely. In addition, each DO loop must contain exactly one
matching LOOP statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a DO loop will not cause an error, rather the program will
remain in the loop until it terminates. The DO statement itself need not be executed to commence looping.

Examples
Choice = 1
Do Until Choice = 4
 Print Choice
 Choice = Choice + 1
Loop

See also
DO, DO WHILE, LOOP, EXIT DO

 Statements 90

dL4 Language Reference Guide©

DO WHILE
Synopsis

Begin a loop to be performed as long as the expression is true.
Syntax

DO WHILE bool.expr
Parameters

 bool.expr is an expression evaluated to produce a boolean value.
Executable From Keyboard

No.
Remarks

Program loops may be established using the DO and LOOP statements as a means of blocking a set of
repeated statements. These statements provide greater flexibility and looping control than FOR / NEXT.

The WHILE expression provides the loop with a specific termination condition. WHILE provides for
looping as long as the expression remains true.

The optional WHILE clause may be placed on either the line containing the DO or LOOP statement,
depending upon when expression is to be tested. By placing the clause with LOOP, the developer ensures
that at least one iteration is performed.

Execution resumes at the statement following the DO and continues normally. Upon execution of the
LOOP statement, execution resumes at the statement following the corresponding DO.

Unlike FOR, DO loops may nest indefinitely. In addition, each DO loop must contain exactly one
matching LOOP statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a DO loop will not cause an error, rather the program will
remain in the loop until it terminates. The DO statement itself need not be executed to commence looping.

Examples
Choice = 1
Do While Choice < 4
 Print Choice
 Choice = Choice + 1
Loop

See also
DO, DO UNTIL, LOOP, EXIT DO

 Statements 91

dL4 Language Reference Guide©

DUPLICATE
Synopsis

Copy a file.
Syntax

DUPLICATE str.expr {AS driver-class | driver-name }
Parameters

str.expr is a string literal or expression containing a source filename followed by a destination filename
(space separated) each of which is optionally preceded by a relative or absolute directory pathname.

driver-class specifies the driver-class.

driver-name specifies the driver-name.
Executable From Keyboard?

Yes.
Remarks

If the destination file already exists, an exclamation point ("!") must be appended to the destination
filename to overwrite the existing file.

If the file consists of two or more subfiles, each file will be copied. For example, an Indexed Contiguous
file might consist of a data file ("source") and an index file ("source.idx"). These files would be copied to
the destination filename ("destination" and "destination.idx"). Refer to the dL4 Files and Devices reference
manual for more information on specific file types.

Examples
Duplicate "PAYROLL PAY1QTRBKUP"

Duplicate "/usr/ub/23/file /u/u1/23/file"

See also

 Statements 92

dL4 Language Reference Guide©

EDIT
Synopsis

Format numeric and string expressions.
Syntax

EDIT str.expr, str.var; expr.list
Parameters

str.expr is an expression yielding a string value.

str.var is any destination string variable used to receive the formatted result.

expr.list is an arbitrary number of comma separated expressions or variables of string or numeric data
types.

Executable From Keyboard?
Yes.

Remarks
The str.expr defines the format string to apply to the list of variables in the expr.list. Output is formatted
according to the rules for the String Operator: USING.

Only numeric data is formatted, string data is copied exactly to the destination.

The EDIT statement is used to format string and numeric output. EDIT operates similar to LET USING;
formatting output and storing the result in a string variable. Unlike LET USING, EDIT allows a list of
arguments for the formatted result.

Examples
Edit "$#,##&.##",D$;T,E,F,"TAXES",T9

Edit A$,B$;"TOTAL DUE",Z,"BALANCE",Q,R$,T9

See also
LET USING

 Statements 93

dL4 Language Reference Guide©

ELSE
Synopsis

Control conditional branching.
Syntax

ELSE {IF bool.expr}
Parameters

bool.expr is a expression evaluated to produce a boolean value.
Executable From Keyboard?

No.
Remarks

Inclusion of an ELSE or ELSE IF block is optional. ELSE must be the only statement on the line (except
that it may be followed by a trailing ! comment).

Statements to be executed on the bool.expr being true follow the ELSE IF on subsequent lines. All
statements up to the associated ELSE or ENDIF are part of the true condition.

ELSE defines an optional block of stmts to execute when the corresponding Blocked-IF was false.
Examples

If (A=100 And B=200)
 Print A,B
Else If A=100
 Print B
Else
 Print A
End If

See also
IF, THEN, END IF

 Statements 94

dL4 Language Reference Guide©

END
Synopsis

Terminate the program.
Syntax

END
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

If the program was executed from the SCOPE Interactive Development Environment (IDE), an END
statement causes program execution to cease and the user is returned to the SCOPE IDE following the
prompt:
 Ready

If the program was executed from another environment, such as the Operating System prompt, via the
applicable RUN filename command, the user is returned to that environment.

Other statements may follow an END, and inclusion of an END is optional. If a program reaches its
physical end of the program and no END statement exists, an implied END is performed.

END leaves the current program (with all variables) in the user's partition. All channels are closed
automatically.

The END statement is illegal in a procedure.
Examples

End

See also
STOP, SUSPEND

 Statements 95

dL4 Language Reference Guide©

END DEF
Synopsis

End a structure definition.
Syntax

END DEF
Parameters

None.
Executable From Keyboard?

No.
Remarks

The END DEF statement defines the end of a structure definition.
Examples

Def Struct StatMem
 Member %4, Population
 Member City$[40]
End Def

See also
DEF STRUCT

 Statements 96

dL4 Language Reference Guide©

END FUNCTION
Synopsis

End a FUNCTION definition.
Syntax

END FUNCTION return.expr
Parameters

return.expr yields the value to be returned, which must match the data type of the function.
Executable From Keyboard?

No.
Remarks

END FUNCTION is used to mark the end of the definition of a multi-line function and provide the return
value for the function.

The EXIT FUNCTION statement can be used to return from a function before reaching the END
FUNCTION statement.

Examples
External Function IsPrime(N)
 Dim %2,I
 If N = 1 Exit Function 0 ! not a prime number
 For I=2 To Sqr(N)
 If Not(N Mod I) Exit Function 0 ! not prime
 Next I
End Function 1 ! prime

See also
EXIT FUNCTION, EXTERNAL FUNCTION, FUNCTION

 Statements 97

dL4 Language Reference Guide©

END IF
Synopsis

End conditional branch.
Syntax

END IF
Parameters

None
Executable From Keyboard?

No.
Remarks

END IF must be the only statements on the line (except that it may be followed by a trailing ! comment).

END IF defines the end of a blocked IF.

An ELSE IF does not need an END IF.
Examples

If A=100
 Print A
 If J
 Write #3,R;A$
 Else
 Read #3,R;A$
 End If
End If

See also
IF, ELSE, THEN

 Statements 98

dL4 Language Reference Guide©

END SELECT
Synopsis

End complex conditional branch
Syntax

END SELECT
Parameters

None.
Executable From Keyboard?

No.
Remarks

The compiler ensures that each END SELECT statement has a previous matching SELECT CASE
statement.

Examples
Random (0)
Choice = INT(RND(4))
Select Case Choice
 Case 1
 Print "This is case 1"
 Case 2
 Print "This is case 2"
 Case Else
 Print "This is default case"
End Select

See also
CASE, SELECT CASE

 Statements 99

dL4 Language Reference Guide©

END SUB
Synopsis

End a procedure definition.
Syntax

END SUB
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

END SUB is used to mark the end of the definition of a procedure.

The EXIT SUB statement can be used to return from a procedure before reaching the END SUB
statement.

Examples
External Sub DoIt(D$)
 Print D$
End Sub

See also
SUB, EXTERNAL SUB, EXIT SUB

 Statements 100

dL4 Language Reference Guide©

END TRY
Synopsis

End a TRY block.
Syntax

END TRY
Parameters

None.
Executable From Keyboard?

No.
Remarks

END TRY is used to mark the end of a TRY block. Error branching is restored at the upon the completion
of the block.

Examples
Dim %1, Chan
Chan = 2
Try
 Open #Chan,"cust.master"
 Print "Opened cust.master on channel "; Chan
Else If Spc(8) = 42 ! file not found
 Call "fm.cust", Chan
 Print "Attempting to open cust.master file again"
 Retry
Else
 Print "Unexpected Error: ";Spc(8); " at line ";Spc(10)
End Try
Print "Terminating program"
Close

See also
TRY

 Statements 101

dL4 Language Reference Guide©

ENTER
Synopsis

Accept arguments into a procedure.
Syntax

ENTER parm.list
Parameters

parm.list is a list of variables associated with parameters passed, optionally followed by three dots ("...").
Executable From Keyboard?

No.
Remarks

The ENTER statement accepts argument variables from a CALL by filename to a saved BASIC program
(subprogram) or can be used to process variable length parameter lists in a procedure.

The ENTER statement can be located on any line of the subprogram, but the variables cannot be used until
the ENTER statement has been executed. This means that the ENTER statement should be at the
beginning of the program in most cases.

The number and types of variables in the ENTER statement must match the CALL statement or function
invocation exactly or an error message is displayed.

The parm.list may be defined as any combination of variables, depending on the requirements of the
subprogram. The subprogram can only return data within arguments that are passed as variables,
subscripted numeric variables, or matrix variables. A matrix variable in a CALL, a function reference, or
an ENTER is given as a variable with empty subscripts; e.g. A3[].

If a subprogram is called with arguments, but no ENTER statement is executed, no error will occur and the
arguments will not be changed. If a subprogram has no parameters, an ENTER statement with no
parameters can be used to detect unnecessary arguments on the invoking CALL statement.

Subprograms called by filename and procedures may also accept a variable list of parameters. The
compiler performs no type or parameter checking for subprograms and procedures defined with a variable
list of parameters. Procedures with a variable list of parameters are defined in the following manner:

Sub name (fixed.parms, ...) Function name (fixed.parms, ...)

Sub name (...) Function name (...)

Checking is only performed during the runtime processing of any ENTER statement within the called
subprogram or procedure. It is the sole the responsibility of the subprogram or procedure to check the
passed parameters.

A caller's list of arguments is placed into a list to be processed by the actual subprogram or procedure. The
general form of the ENTER statement when used for this purpose is:

Enter expected.parameter { , ... }

expected.parameter specifies the type of parameter expected by the procedure. If the next parameter in the
list matches the supplied expected.parameter, it is extracted from the list and passed to the procedure. If
not, an error is generated to the procedure which may decide to alter its course of action.

If additional parameters might follow, the ENTER statement must end with ... This preserves any
remaining arguments in the list passed by the caller. If the subprogram or procedure is certain that
additional parameters are not in the list, or that an error should result if there are, do not terminate the
ENTER statement with ...

 Statements 102

dL4 Language Reference Guide©

Examples
Call PGM,B,A,D$[4,7] (from master program)
Enter B$,J,F$ (from called subprogram)

! This is an example of the Enter Statement with
! a variable length parameter list
External Sub VerifyDate(D$, ...)
 Option Date Format Native
 Dim 2%, D#
 Dim %1, NoStatVar

 Try Enter R$, ... Else Dim R$[6]
 Dim %1
 Try Enter S Else S = 0; NoStatVar = 1

 Try
 Let D# = D$
 R$ = (Year(D#) Mod 100) * 10000 + Month(D#) * 100 +
 MonthDay(D#) Using "&&&&&&"
 Else
 S = 1
 End Try
 If S And NoStatVar Error 38
End Sub

Call VerifyDate("06/05/97", S)
If S
 Print "Not a valid date"
Else
 Print "Valid date"
End If

See also
CALL, LIB, END, SUB, EXTERNAL SUB, FUNCTION, EXTERNAL FUNCTION

 Statements 103

dL4 Language Reference Guide©

EOFCLR
Synopsis

Clear end-of-file branching.
Syntax

EOFCLR
Parameters

None.
Executable From Keyboard?

No.
Remarks

EOFCLR clears any special end-of-file branching in effect. Normal error processing is resumed. If an
error branch is in effect from an ERRSET, ERRSTM, or IF ERR, it will be in control of further end-of-
file errors.

Examples
Eofclr

See also
IF ERR, ERRSET, ERRSTM, EOFSET

 Statements 104

dL4 Language Reference Guide©

EOFSET
Synopsis

Specify end-of-file error branching.
Syntax

EOFSET label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

EOFSET traps any further occurrence of error 52, "Record not written". If such an error occurs on any
channel, the program will branch to the label: or stmt.no given in the EOFSET statement. EOFSET
affects only this single error. Other errors are processed in the current error handling mode.

IF ERR, ERRSET and ERRSTM statements are used to trap all errors, including end-of-file. The
EOFSET statement is used to override normal error branching for this special error.

EOFSET branching remains in effect until specifically cleared by EOFCLR. Other error branching
disable functions do not clear this special branch.

Examples
Eofset 1050

Eofset NoData

See also
IF ERR, ERRSET, ERRCLR, ERRSTM, EOFCLR

 Statements 105

dL4 Language Reference Guide©

EOPEN
Synopsis

 Exclusively OPEN an existing file.
Syntax1

EOPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
EOPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file specification
used to open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
The EOPEN statement exclusively links a selected file to a channel.

EOPEN differs from OPEN in that the request will exclusively lock the file to the program. EOPEN,
OPEN, ROPEN or WOPEN requests by other programs will not be allowed until the file is closed.

The operation of EOPEN is driver and operating system dependent. Refer to the dL4 Files and Devices
reference manual to determine if and how EOPEN is supported for specific file types.

Examples
Eopen #1,"23/MMFILE", C$

Eopen #1,"23/MMFILE" As "Full-ISAM"

Eopen #2,"FILE1","FILE2",#10,"FILE4"

See also
BUILD, OPEN, ROPEN, WOPEN

 Statements 106

dL4 Language Reference Guide©

ERASE
Synopsis

Perform driver-class dependent erase function.
Syntax

ERASE chan.no
Parameters

chan.no is a valid channel number.
Executable From Keyboard?

Yes.
Remarks

Refer to the dL4 Files and Devices reference manual for information on a specific driver.
Examples

! This is an example of the Erase statement
Dim s$[1]
Print 'CS'
W = 38 \ H = 12
Open #1,{" Windows ","TITL",W,H} As "Window"
Print #1; "Enter any character to Erase (Clear) Window ";
Read #1;S$
Erase #1

See also
CHANNEL

 Statements 107

dL4 Language Reference Guide©

ERRCLR
Synopsis

Clear error branching.
Syntax

ERRCLR
Parameters

None.
Executable From Keyboard?

No.
Remarks

ERRCLR clears any error-branching in effect and returns normal error processing to the application.
Normal error processing is to abort the current running program and output the error message text:
 Error in statement stn;sub-stn / Text description of error

Special end-of-file branching in effect from the EOFSET statement is not cleared by ERRCLR.

ERRCLR is used to clear automatic branch-on-error conditions previously set using ERRSET, ERRSTM
and IF ERR.

Normal error termination does not close all opened data files.
Examples

Errclr

See also
EOFSET, ERRCLR, IF ERR, ERRSTM, ERRSET

 Statements 108

dL4 Language Reference Guide©

ERROR
Synopsis

Generate a dL4 BASIC error.
Syntax

ERROR num.expr
Parameters

num.expr is an expression yielding an error number.
Executable From Keyboard?

No.
Remarks

The ERROR statement generates a dL4 error to the current running program. The specified error number
is returned by SPC(8), and forces an error event within a TRY block, procedure, or to any other error
handler. The statement is helpful when writing procedures or user calls to provide a meaningful exit to the
caller.

num.expr is any expression which, following evaluation, is truncated to an integer and returned to the
application as an error number (event).

Application defined error numbers should have values >= 10,000.
Examples

Error E+10000

See also

 Statements 109

dL4 Language Reference Guide©

ERRSET
Synopsis

Specify error branching.
Syntax

ERRSET label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

ERRSET is used to specify a label: or stmt.no to receive program control upon the occurrence of any
BASIC error.

Error branching remains in effect until an ERRCLR is executed.

When the ERRSET statement is executed, any existing error branching from an IF ERR, or ERRSTM is
reset to branch to the selected stmt.no upon occurrence of any error.

ERRSET does not affect the state of the special EOFSET branch on end-of-file error.
Examples

Errset 8000

Errset ItDied

See also
EOFSET, ERRCLR, IF ERR, ERRSTM

 Statements 110

dL4 Language Reference Guide©

ERRSTM
Synopsis

Specify statement(s) to execute on an error.
Syntax

ERRSTM stmt { \ stmt } ...
Parameters

 stmt is any valid dL4 BASIC statement.
Executable From Keyboard?

No.
Remarks

The ERRSTM statement specifies a line of statements to be executed upon the occurrence of any error.

Error statement processing remains in effect until an ERRCLR statement is executed.

When the ERRSTM statement is executed, any existing error branching from an IF ERR, or ERRSET is
reset to perform the stmts following ERRSTM upon the occurrence of any error. Normal execution
resumes at the next BASIC line, reserving all stmts following ERRSTM for when an error occurs.

ERRSTM must be the last statement of a multi-statement line.

ERRSTM has no effect on any special EOFSET end-of-file branch in effect.
Examples

Errstm Print "ERROR OCCURRED AT LINE:";Spc 10

Errstm Close \ Stop

Errstm If Spc 8 = 42 Stop Else !Success

See also
EOFSET, ERRCLR, IF ERR, ERRSET

 Statements 111

dL4 Language Reference Guide©

ESCCLR
Synopsis

Clear any ESCAPE branching in effect.
Syntax

ESCCLR
Parameters

None.
Executable From Keyboard?

No.
Remarks

ESCCLR removes any special ESCape branching or disabling in effect.

Previous ESCape branching or disable set by ESCSET, ESCSTM or ESCDIS statements is disabled, and
normal ESCape termination of a program is resumed.

The [ABORT] character may be used to override and abort any program that has ESCape disabled, or an
ESCape branch in effect.

Examples
Escclr

See also
ESCSET, ESCDIS, ESCSTM, IF ERR

 Statements 112

dL4 Language Reference Guide©

ESCDIS
Synopsis

Disable escape events.
Syntax

ESCDIS
Parameters

None.
Executable From Keyboard?

No.
Remarks

The ESCDIS statement prevents unauthorized ESCape termination of any BASIC program. Any pressing
of the ESCape key by the user is ignored.

ESCDIS remains in effect until an ESCSET, ESCSTM or ESCCLR is executed.

When the ESCDIS statement is executed, any existing ESCape branching is reset to ignore further
ESCape characters.

The [ABORT] character may be used to override and abort any program that has ESCape processing.
Examples

Escdis

See also

 Statements 113

dL4 Language Reference Guide©

ESCSET
Synopsis

Enable branch to statement on escape events.
Syntax

ESCSET label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

ESCSET specifies a label: or stmt.no to receive program control upon pressing of the ESCape key.

Escape branching remains in effect until an ESCCLR is executed.

The [ABORT] character may be used to override and abort any program that has ESCape processing.

When the ESCSET statement is executed, any existing ESCape branching from the ESCSTM or ESCDIS
is reset to branch to the ESCSTM stmt.no upon the occurrence of an ESCape.

ESCCLR is used to clear automatic branch-on-ESCape and resume normal ESCape processing. Normal
ESCape processing terminates the running BASIC program and produces a STOP at prompt on the
screen:
 Stop at statement xx;yy in program name

Normal ESCape termination does not close all opened data files.

Note that ESCape's function may be assigned to keys other than ESCape itself, just as the ESCape key
may be assigned to perform some other function. The ESCape statements described above will act upon
any key currently defined as an [ESCAPE].

Examples
Escset 8000

Escset ItDied

See also
ESCDIS, ESCCLR, ERRSET, IF ERR

 Statements 114

dL4 Language Reference Guide©

ESCSTM
Synopsis

Specify statement(s) to execute on escape events.
Syntax

ESCSTM stmt { \ stmt } ...
Parameters

stmt is any valid dL4 BASIC statement.
Executable From Keyboard?

No.
Remarks

The ESCSTM statement specifies a line of statements to be executed upon the pressing of an ESCape key.

ESCape statement processing remains in effect until an ESCCLR statement is executed.

The [ABORT] character may be used to override and abort any program that has ESCape processing.

When the ESCSTM statement is executed, any existing ESCape branching from the ESCSET or ESCDIS
is reset to perform the stmts following ESCSTM upon the occurrence of any error. Normal execution
resumes at the next BASIC line, reserving all stmts following ESCSTM for an ESCape.

ESCSTM must be the last statement of a multi-statement line.

Note that ESCape's function may be assigned to keys other than ESCape itself, just as the ESCape key
may be assigned to perform some other function. The ESCape statements described above will act upon
any key currently defined as an [ESCAPE].

Examples
Escstm Print "ESCAPE PRESSED AT LINE";Err(2)

Escstm Close \ Stop

Escstm Close \ Chain "MAINMENU"

See also
ERRSTM, ESCSET, ESCCLR

 Statements 115

dL4 Language Reference Guide©

EXIT DO
Synopsis

Exit a DO loop.
Syntax

EXIT DO
Parameters

None.
Executable From Keyboard?

No.
Remarks

The EXIT DO statement gracefully exits a DO loop.

EXIT DO is the preferable method to terminate a DO loop when writing portable code. Branching out of
a loop is never recommended.

Examples
Do
 done = 1
 Print done
 If done
 Exit Do
 End If
Loop

See also
 DO, DO UNTIL, DO WHILE, LOOP, EXIT FOR

 Statements 116

dL4 Language Reference Guide©

EXIT FOR
Synopsis

Exit a FOR/NEXT loop.
Syntax

EXIT FOR
Parameters

None.
Executable From Keyboard?

No.
Remarks

The EXIT FOR statement gracefully exits a FOR loop.

EXIT FOR is the preferable method to terminate a FOR loop when writing portable code. Branching out
of a loop is never recommended, and may lead to stack overflows.

Examples
For I = 1 To 10
 If I > 5
 Exit For
 End If
 Print "i = ";I
Next I

See also
FOR, NEXT

 Statements 117

dL4 Language Reference Guide©

EXIT FUNCTION
Synopsis

Exit a function.
Syntax

EXIT FUNCTION return.expr
Parameters

return.expr yields the value to be returned, which must match the data type of the function.
Executable From Keyboard?

No.
Remarks

EXIT FUNCTION provides an alternate means other than END FUNCTION to return to the routine that
called the function. It is generally used in the body of the function upon meeting some condition.

Examples
External Function IsPrime(N)
 Dim %2,I

 If N = 1 Exit Function 0 ! not a prime number
 For I=2 To Sqr(N)
 If Not(Fra(N / I)
 Exit Function 0 ! not prime
 End If
 Next I
End Function 1 ! prime

See also
END FUNCTION, EXTERNAL FUNCTION, FUNCTION

 Statements 118

dL4 Language Reference Guide©

EXIT SUB
Synopsis

Exit a subroutine.
Syntax

EXIT SUB
Parameters

None.
Executable From Keyboard?

No.
Remarks

EXIT SUB provides an alternate means other than END SUB to return to the calling program. It is
generally used in the body of the subroutine upon meeting some condition.

Examples
External Sub DoIt(D$)
 If D$ = "" Then Print "Nothing to print." \ Exit Sub
 Print D$
End Sub

Call DoIt('CS')
Call DoIt("Print this.")
Call DoIt("")

See also
END SUB, SUB, EXTERNAL SUB

 Statements 119

dL4 Language Reference Guide©

EXTERNAL FUNCTION
Synopsis

Define a function.
Syntax

EXTERNAL FUNCTION func.name ({parm.list })
Parameters

func.name is the function name.

parm.list is a list of variables associated with parameters passed, optionally followed by three dots ("...").
Executable From Keyboard?

No.
Remarks

EXTERNAL identifies the function as a separate secondary program unit which shares nothing with its
surrounding program and any main program unit, except channels. It is an independent program unit
within a program and visible to other program units both inside and outside of the program. Regardless of
its physical location, it has its own set of variables, Lib directory, DATA statements, current precision,
stacks, OPTIONS, etc.

The developer declares a function EXTERNAL whenever:

• The function is to share only variables and data passed by reference with the caller. It declares its own
data, precisions and local variables which are independent of any surrounding program unit.

• The function sets its own parameters independent of the caller.

• The function shares nothing with the caller except parameters and channels.

• Other programs need to call the function.

A group of External functions (and subroutines) may be saved in a single program, called a library file. A
program which has both an executable main program unit as well as External functions may also be
referenced as a library by other programs. However, it is advisable to segregate shared External functions
into library files which do not include a main program unit to ensure that they remain constant and
available to other program units. An exception for compatibility purposes might be a function which is
called by filename and therefore exists as a main program unit of the library file.

A function exits and returns a value to the caller when an EXIT FUNCTION or END FUNCTION
statement is executed.

A func.name may be from one-to-thirty-two characters in length and must end with the type designation
matching the data type returned from the function. Numeric data has no suffix, strings end with $, dates
with # and binary variables end with ?. Structures may be passed and operated upon, but a function cannot
return a structure.

Whenever a function is to be used before its definition within the current program unit or program, or
physically resides in another program, a DECLARE statement must occur before its first use.

 Functions may be written to allow the caller to pass other than a fixed list of parameters. Parameter types
and number are not checked by the compiler or interpreter. Rather, it is left to the function to process each
of the arguments passed by a caller. To define a function of this type, the following general forms are
supported:
 Function name (...)

The definition of the function itself specifies '...' informing the compiler and interpreter to leave the
parameter type and number checking to the function.

 Statements 120

dL4 Language Reference Guide©

It is also permitted to define a function which has a known (required) list of parameters, followed by
additional optional parameters. Optional parameters must be the last parameters in the function definition.
The following example requires a numeric parameter and a string parameter, followed by an optional
number of parameters.

Function func.name (parameter1, parameter2$, ... }

Functions of this type utilize the ENTER statement to accept optional parameters.

The EXTERNAL FUNCTION statement is illegal in a procedure.
Examples

External Function IsPrime(N)
 Dim %2,I
 If N = 1 Exit Function 0 ! not a prime number
 For I=2 To Sqr(N)
 If Not(Fra(N / I))
 Exit Function 0 ! not prime
 End If
 Next I
End Function 1 ! prime

See also
FUNCTION, SUB, EXTERNAL SUB, END FUNCTION, EXIT FUNCTION, DECLARE

 Statements 121

dL4 Language Reference Guide©

EXTERNAL LIB
Synopsis

Declare library file(s).
Syntax

EXTERNAL LIB filename {, filename } ...
Parameters

filename is a string literal or expression containing a dL4 BASIC program filename which is optionally
preceded by a relative or absolute directory pathname.

Executable From Keyboard?
No.

Remarks
If any of the declared procedures are EXTERNAL and outside of the program, they must be in one of a
declared list of library files. At runtime, those libraries are opened and the required procedures are
dynamically linked into the calling program. The linking process consists of scanning the lists of
EXTERNAL LIB filenames loading and linking any required secondary program units until all
EXTERNAL references are resolved. EXTERNAL LIB declarations may be placed anywhere within a
program, and they affect the entire program.

filename is the name of a saved program which is to be opened during the dynamic linking phase when the
current program is first executed. Whenever a program is loaded, via CHAIN, RUN, CALL "filename"
or SWAP, all references to EXTERNAL procedures must be resolved prior to execution. An error is
generated if any EXTERNAL procedure references are unresolved.

Examples
External Lib "OldCalls"

External Lib "OldCalls",L$

See also
EXTERNAL SUB, EXTERNAL FUNCTION, DECLARE

 Statements 122

dL4 Language Reference Guide©

EXTERNAL SUB
Synopsis

Define a subroutine.
Syntax

EXTERNAL SUB proc.name (parm.list)
Parameters

proc.name is the procedure name.

parm.list is a list of variables associated with parameters passed, optionally followed by three dots ("...").
Executable From Keyboard?

No.
Remarks

EXTERNAL identifies the subroutine as a separate secondary program unit which shares nothing with its
surrounding program and any main program unit, except channels. It is an independent program unit
within a program and visible to other program units both inside and outside of the program. Regardless of
its physical location, it has its own set of variables, Lib directory, DATA statements, current precision,
stacks, OPTIONS, etc.

Variables are passed to procedures by reference, not by name. Expressions are passed to procedures by
value. Normally, procedures need not concern themselves with what was passed, however the caller
should be aware of the appropriate calling sequence. If a procedure updates, or returns a value in, a
referenced variable, that operation will be lost if the caller passed an expression.

Sometimes the caller may intentionally wish to pass an expression to prevent the update of a local variable
passed by reference. This may be accomplished by converting the variable into an expression. For
example, the variable 'numeric' can be made an expression in the parm.list by denoting it as (numeric + 0)
and 'string$' can be denoted as (string$ + "").

The developer declares a subroutine EXTERNAL whenever:

• The subroutine is to share only variables and data passed by reference with the caller. It declares its
own data, precisions and local variables which are independent of any surrounding program unit.

• The subroutine sets its own parameters independent of the caller.

• The subroutine shares nothing with the caller, except parameters and channels.

• Other programs need to call the subroutine.

A group of External subroutines (and functions) may be saved in a single program, called a library file. A
program which has both an executable main program unit as well as External subroutines may also be
referenced as a library by other programs. However, it is advisable to segregate shared External
subroutines into library files which do not include a main program unit to ensure that they remain constant
and available to other program units. An exception for compatibility purposes might be a subroutine which
is called by filename and therefore exists as a main program unit of the library file.

It is also permitted to define a subroutine which has a known (required) list of parameters, followed by
additional optional parameters. Optional parameters must be the last parameters in the subroutine
definition. The following example requires a numeric parameter and a string parameter, followed by an
optional number of parameters.

External Sub proc.name (parameter1, parameter2$, ... }

Subroutines of this type utilize the ENTER statement to accept optional parameters.

The EXTERNAL SUB statement is illegal in a procedure.

 Statements 123

dL4 Language Reference Guide©

Examples
External Sub DoIt(D$)
 Print D$
End Sub

See also
DECLARE, SUB, EXTERNAL FUNCTION, FUNCTION

 Statements 124

dL4 Language Reference Guide©

FOR
Synopsis

Loop while incrementing or decrementing a numeric variable through an interval.
Syntax

FOR num.var = num.expr1 TO num.expr2 {STEP num.expr3}
Parameters

num.var is a variable of numeric data type.

num.expr1 is an expression yielding a numeric value, which is assigned as the initial value of num.var.

num.expr2 is an expression yielding a numeric value, which is used as the limit value for num.var.

num.expr3 is an expression yielding a numeric value, which determines the amount that the num.var is
increased or decreased during each iteration of NEXT.

Executable From Keyboard?
No.

Remarks
The FOR statement is used in conjunction with the NEXT statement for repetitive statement execution.
Statements between the FOR/NEXT may be re-executed a given number of iterations. This repetitive
execution is known as a loop.

The num.var is termed the index variable and is used to control the loop.

Looping is initiated by setting the index variable equal to the initial value. At this point, a preliminary
check is made to see if the loop should be executed at all. If: initial > final AND step > 0, or initial < final
AND step < 0, then the loop statements are not executed and the program resumes following the associated
NEXT statement (NEXT with same index variable). If not, execution continues with the statement
following the FOR.

Upon execution of the associated NEXT statement, the step value is added to the index. If the new index
will exceed the final value, normal program execution resumes at the statement following the NEXT with
the index variable set to the terminating value; e.g. if the step value is such that the index will eventually
equal the final value, the loop terminates with index = final+step. Otherwise, index is set to the first value
causing the loop to terminate.

A step value of zero will produce an infinite loop.

FOR/NEXT loops may be nested if certain precautions are taken. The following is an example of valid
nesting:
 10 For A=1 To 10
 20 For B=1 To 5
 30 For C=B+1 To 4*A
 40 ! Statements
 50 Next C
 60 Next B
 70 Next A

 Statements 125

dL4 Language Reference Guide©

The range of FOR/NEXT loops may not overlap. The following is an example of invalid nesting:
 10 For I=1 To 10
 20 For J=I+1 To 20
 30 ! Statements
 40 Next I
 50 Next J

Example
For I=1 To 3
 ! Statements
Next I

Initially, I is set to 1, final is set to 3 and step defaults to 1. Each execution of the NEXT first checks if
(I+1)>3. When (I+1)>3, execution resumes following the NEXT with I=4.

10 For I=10 To 1 Step -2
20 ! Statements
30 Next I

Initially, I is set to 10, final is set to 1, and step is set to -2. Each execution of the NEXT first checks if (I-
2)<1. When (I-2)<1, the loop terminates, in this example with I=0. The loop is performed 5 times for I =
10, 8, 6, 4, and 2.

See also
DO, EXIT FOR, NEXT

 Statements 126

dL4 Language Reference Guide©

FREE
Synopsis

Deallocate (undimension) variable(s).
Syntax1

FREE var.list1
Syntax2

FREE ALL {EXCEPT var.list2}
Parameters

var.list1 is an arbitrary number of comma separated variables of any dL4 data types.

var.list2 is an arbitrary number of comma separated variables of any dL4 data types, which are not freed.
Executable From Keyboard?

Yes.
Remarks

A freed string variable should not be referenced.

Freeing a numeric variable causes the next reference to reDim it to the last precision level.
Examples

Free N

Free N,P$,D#

Free All Except N,P$

See also
DIM

 Statements 127

dL4 Language Reference Guide©

FUNCTION
Synopsis

Define a multi-line procedure which returns a value.
Syntax

FUNCTION func.name ({parm.list })
Parameters

func.name is the function name.

parm.list is a list of variables associated with parameters passed, optionally followed by three dots ("...").
Executable From Keyboard?

No.
Remarks

FUNCTION declares a function which operates as a separate program block within a program unit which
returns a value to the caller. A Function may also operate upon, and return values through, supplied
parameters passed by reference.

A function exits and returns a value to the caller when an EXIT FUNCTION or END FUNCTION
statement is executed.

A func.name may be from one-to-thirty-two characters in length and must end with the type designation
matching the data type returned from the function. Numeric data has no suffix, strings end with $, dates
with # and binary variables end with ?. Structures may be passed and operated upon, but a function cannot
return a structure.

Whenever a function is to be used before its definition within the current program unit or program, or
physically resides in another program, a DECLARE statement must occur before its first use.

 Functions may be written to allow the caller to pass other than a fixed list of parameters. Parameter types
and number are not checked by the compiler or interpreter. Rather, it is left to the function to process each
of the arguments passed by a caller.

To define a function of this type, the following general forms are supported:

Function name (...)

The definition of the function itself specifies '...' informing the compiler and interpreter to leave the
parameter type and number checking to the function.

It is also permitted to define a function which has a known (required) list of parameters, followed by
additional optional parameters. Optional parameters must be the last parameters in the function definition.
The following example requires a numeric parameter and a string parameter, followed by an optional
number of parameters.

Function func.name (parameter1, parameter2$, ... }

Functions of this type utilize the ENTER statement to accept optional parameters.

 Statements 128

dL4 Language Reference Guide©

Examples
Function IsPrime(N)
 If N = 1 Exit Function 0 ! not a prime number
 For I=2 To Sqr(N)
 If Not(Fra(N / I))
 Exit Function 0 ! not prime
 End If
 Next I
End Function 1 ! prime

See also
END FUNCTION, EXIT FUNCTION, EXTERNAL FUNCTION, EXTERNAL SUB, SUB

 Statements 129

dL4 Language Reference Guide©

GET
Synopsis

Obtain driver-class dependent information from a channel.
Syntax

GET chan.expr var.list
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is an arbitrary number of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

Refer to the dL4 Files and Devices reference manual for information on using GET with a specific driver.
Examples

Get #2,1,-1;Opt,name$

See also
SET

 Statements 130

dL4 Language Reference Guide©

GOSUB
Synopsis

Unconditionally branch to a subroutine
Syntax

GOSUB label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

The GOSUB statement is used in conjunction with the RETURN statement to provide traditional BASIC
subroutines. New programs should use the CALL and SUB statements which support named subroutines
with parameters.

GOSUB, like GOTO, performs an unconditional branch to the specified line number. Unlike GOTO,
however, the statement number performing the GOSUB is saved. Upon the execution of a RETURN
statement, normal execution would resume at the statement following the GOSUB. GOSUB and
RETURN are not paired as are FOR/NEXT; i.e. any RETURN will return to the last GOSUB issued.

Subroutines may be nested to eight levels or the number of levels defined by the program OPTION
statements before a RETURN must be executed.

Failure to return from all nested levels can cause an error.

See the RETURN statement for variations on returning from subroutines.
Examples

Gosub 1000

Gosub Start_Input:

See also
CALL, GOTO, OPTION GOSUB NESTING, RETURN, SUB

 Statements 131

dL4 Language Reference Guide©

GOTO
Synopsis

Unconditionally branch to a statement.
Syntax

GOTO label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

The GOTO statement is used to unconditionally branch to another statement within a program and resume
normal execution there.

GOTO always transfers control to the first sub-statement on the specified line, and the line must exist. For
transfer to any sub-statement on a line, see the JUMP statement.

The verb GOTO may also be entered as GO TO .

A statement that performs a GOTO itself may cause an infinite loop terminated only by ESCape, or
ESCape Override [ABORT].

Examples
Goto 1000

Goto BEGIN:

See also
JUMP, GOSUB

 Statements 132

dL4 Language Reference Guide©

IF
Synopsis

Control conditional branching.
Syntax1

IF bool.expr {THEN} stmt {ELSE stmt}
Syntax2

IF bool.expr {THEN}

{stmt}...

ENDIF
Syntax3

IF bool.expr

{THEN }

{ stmt } ...

{ ELSE IF bool.expr

{ stmt } ... }

{ ELSE

{ stmt } ... }

ENDIF
Parameters

bool.expr is an expression evaluated to produce a boolean value.

stmt is any valid dL4 BASIC statement.
Executable From Keyboard?

No.
Remarks

The IF statement tests a boolean expression and conditionally performs statements based on the expression
being true or false. See "Boolean Expression" in chapter 5 for a description of boolean expressions.

The IF statement will test the given expression for validity and execute the stmt following THEN if and
only if the expression proves true. If the expression is not true, the statement is checked for the ELSE
operator. If found, the stmt following the ELSE will be executed; otherwise, the program continues
normally.

Entry of the THEN operator is generally optional.

The stmt following THEN and/or ELSE may be any BASIC statement or a stmt.no alone implying a
GOTO stmt.no. The verb GOTO can also be specifically entered, with the same result. Either THEN or
GOTO must be supplied in order to perform a GOTO.

A false IF condition continues execution with the next statement line, instead of with the next sub-stmt.no.
When an IF is true, all remaining statements on the line are executed. An ELSE can be used to override
this feature. Both of the following examples perform the same function. In the first example, both
statements are executed if the expression A=100 is true. If false, execution resumes on the next line of
statements.

The second example performs a GOTO the next statement if the reverse expression is true, otherwise the
ELSE is executed following with the remaining statements on the line:

 Statements 133

dL4 Language Reference Guide©

 If A=100 Gosub 1000 \ Goto 1000

 If A<>100 Goto 120 Else Gosub 1000 \ Goto 1000

The OPTION statement OPTION IF BY STATEMENTS can be used to force execution of only one
statement for each non-blocked IF statement without an ELSE. In the first example above, the statement
"GOTO 1000" is executed for any condition. With the default of OPTION IF BY LINES in effect, the
statement "GOTO 1000" is executed only for the true condition.

A blocked-IF structure provides a more convenient method of executing several statements for both the
true and false conditions for applications.

Blocked-IF statements are assumed whenever an IF or ELSE IF statement ends following an expression.
No stmts may follow the expression excepting an optional REM.

Inclusion of an ELSE or ELSE IF block is optional. The THEN statement is completely ignored and can
be omitted, if desired. THEN, ELSE, and ENDIF must be the only statements on their line (except that
they may be followed by a trailing REM comment).

Statements to be executed on the expression being true follow the IF (or THEN) on subsequent lines. All
statements up to the associated ELSE or ENDIF are part of the true condition.

ELSE defines an optional block of stmts to execute when the corresponding Blocked-IF was false.

ENDIF defines the end of a blocked IF.

Blocked-IFs can be nested to any level, and are indented like FOR-NEXT loops for readability. There
must be an ENDIF for every blocked-IF in the program. The integrity of the blocked-IFs is checked by
the RUN, CHAIN, SAVE, VERIFY and CHECK commands. Once checked, a program is flagged OK
eliminating further verification until a statement is changed within a program.

Examples
If A*5 > B*10 Then Call PrintReport
If Len(A Using A$ TO ".") >132 Print #3;
If A-5 Then 340 Else If J=100 Gosub 100 Else Stop
If C$[1,1]<=Z$[10,10] And C$<>"X" Then 280
If (J=10 Or C=20) And (T=10 OR F=12) Stop

Blocked-IF:

If A=100 And B=200
 Print A,B
Else If A=100
 Print B
 Else
 Print A
End If

See also
ELSE, THEN, END IF, GOTO, JUMP, OPTION IF, SELECT CASE

 Statements 134

dL4 Language Reference Guide©

IF ERR 0 | 1
Synopsis

Specify a statement to execute when an error occurs.
Syntax

IF ERR 0 | 1 {stmt}
Parameters

stmt is any valid dL4 BASIC statement.
Executable From Keyboard?

No.
Remarks

IF ERR 0 is used to specify a line of statements to be executed upon the occurrence of any error.

IF ERR 1 may also be used to specify an error branch, however a separate error number is not reserved for
[INTERRUPT].

When an IF ERR 0 statement is executed, any existing error branching from a previous IF ERR 0 ,
ERRSET, or ERRSTM is reset to the stmts following the IF ERR 0. Normal execution resumes at the
next BASIC line, reserving all stmts following IF ERR 0 for error processing.

ESCape is also trapped generating a special Error code to the application.

ESCSTM, ESCSET, EOFSET, and ESCDIS statements can be used in addition to IF ERR.

Error statement processing remains in effect until an ERRCLR or IF ERR 0 statement is executed without
any trailing stmt.

IF ERR statements must be the last statement of a multi-statement line.

IF ERR statements are illegal in a procedure.
Examples

If ERR 0 Gosub 1000

If ERR 0

See also
EOFSET, ERR, ERRSET, ERRSTM, ERRCLR, JUMP

 Statements 135

dL4 Language Reference Guide©

INPUT
Synopsis

Retrieve keyboard or channel input.
Syntax1

INPUT [{LEN num.expr1;} {TIM num.expr2;} {KEY str.var; } { (num.expr3, num.var)} {crt.expr;}
{str.lit} var.list] ...

Syntax2
INPUT chan.expr [{LEN num.expr1;} {TIM num.expr2;} {KEY str.var; } { (num.expr3, num.var)}
var.list] ...

Parameters
num.expr1 is an expression yielding the maximum number of characters to read.

num.expr2 is an expression yielding the tenth-seconds time limit.

str.var receives the input terminating character, if any.

num.expr3 is an expression yielding an input mode.

num.var is a variable of numeric data type.

crt.expr indicates a CRT expression used to position the cursor.

str.lit is a literal text prompt message.

var.list indicates a list of variables of any dL4 data types, excluding structures, binary, and array data types,
to receive input.

chan.expr is a driver-class dependent channel expression.
Executable From Keyboard?

Yes.
Remarks

If a chan.expr is specified, the input for this statement will be satisfied by the selected channel. If the
chan.expr is not specified (or the selected channel is not open), input will be taken from the standard input
channel, usually the keyboard. The standard input channel can also be specified by using channel -3. When
requesting input from a chan.expr, the crt.expr, num.expr1, num.expr2, and str.lit options should not be
used.

If a crt.expr is specified, it is evaluated and output. Typically, a crt.expr is used to position the cursor on
the screen and/or clear lines, etc. prior to the request for input. Use of a crt.expr will suppress the normal
prompt unless a specific str.lit is specified.

If a str.lit is specified, the default prompt-message ? is replaced by the literal text within quotes. A null
prompt "" suppresses the output of the prompt-message as does the inclusion of any crt.expr.

If a LEN num.expr1; is specified, the num.expr1 is evaluated, truncated to an integer and set as the
maximum number of characters to be accepted for input. Unless a special input mode (such as binary
input) is in effect, the [ENTER] character may be used to terminate a character limited input prior to ex-
hausting the specified character count. If num.expr1 is greater than 16384, then input can be terminated
only by the [ENTER] character and at most (num.expr1 - 16384) characters will be accepted.

If a TIM num.expr2; is specified, the num.expr2 is evaluated, truncated to an integer and set as the number
of tenth-seconds to wait for input. If no input is seen within the specified interval, a system SIGNAL is
sent to the program with the actual number of characters entered. A SIGNAL 5 statement should
immediately follow to prevent overflowing the communication buffer. If timeout signals have been
disabled by an "OPTION INPUT TIMEOUT SIGNAL OFF" statement, a timeout will cause an error. If
num.expr2 equals -1, the input will timeout immediately.

 Statements 136

dL4 Language Reference Guide©

Both a TIM num.expr1; and LEN num.expr2; can be specified on the same INPUT statement.

Length or time limits may also be specified using num.expr2. A special num.expr3 value is provided to
read the contents of the terminal's input buffer and is used by programs to read parameters entered on a
command line. Two different mechanisms exist to invoke control features.
 (num.expr3, num.var) control with a returned response

The num.expr3 is evaluated and truncated to an integer. The second parameter must be a num.var and will
be set following the INPUT as the response.

If the num.expr3 evaluates to zero, the entire contents of the input buffer is selected as the input. The
num.var is not set to any value in this mode. Typically, this mode is used within a program that can accept
its input from a command line. To read the last command line, the input must be performed prior to any
other INPUT or PRINT statements which corrupt the input buffer.

If the num.expr3 evaluates to a positive value, the program is suspended for that number of tenth-seconds
or until the [ENTER] character is entered terminating the input. The actual number of tenth-seconds that
were spent waiting for INPUT is returned as a positive value in num.var. If no [ENTER] character
(return) is received within the specified interval, the num.var is set to the negative of the specified tenth-
second wait interval and any input characters are passed to the INPUT var.list.

If the num.expr3 evaluates to a negative value, the value is converted to a positive number selecting the
maximum number of characters to be accepted for input. -5 causes the system to wait for the input of 5
characters. The actual number of input characters is returned in the num.var. The [ENTER] character
may be used to terminate a character limited input prior to exhausting the specified character count.

GENERAL OPERATION OF DATA INPUT

Following the parsing of the optional parameters, the program is suspended while data is read from the
standard input; usually the terminal. Characters previously entered (and buffered) are processed first.

Characters are echoed (for keyboard input) unless echo is disabled by the previous entry of the
[TOGGLEECHO] character (normally CTRL E), the 'IOEE' mnemonic, or a SYSTEM 9 statement.

If the INPUT is not satisfied, the program is suspended until the [ENTER] character (return) is entered,
the specified character limit is reached, or a time-out occurs on timed input. When any of these conditions
occurs, the program resumes operation and begins processing input into the variables defined in the
var.list. The [ESCAPE] or [ABORT] characters will terminate input and abort the statement.

SYSTEM 26 and 27 alter the operation of character limited input. Normal operation is to automatically
resume execution of the program when the limiting number of characters have been processed. Executing
a SYSTEM 27 forces character limited INPUT to require entry of the [ENTER] character (return). When
the limit is reached, the terminal's bell is sounded and extra characters (except for edit keys) are ignored.
SYSTEM 26 resets character limited input to operate normally, that is, resume execution when the limiting
number of characters have been processed.

No special processing is performed on the characters received. Data is passed to the program exactly as
received from the driver (see the dL4 Files and Devices reference manual)..

When binary input IOBI (or SYSTEM 14) is enabled, all characters are passed directly to the program.
All character input processing for [ENTER], [ESCAPE], [BACKSPACE], etc. is suspended and the
program must process all input data.

WARNING: When using Binary Input, it is possible to lock the terminal if your program does not provide
a way to terminate itself. If you lock a terminal, use another port to HALT or otherwise terminate the
locked program.

Cursor tracking can be enabled by printing a ‘BCTRACK’ mnemonic as the final character of str.lit or in a
preceding PRINT statement (assuming there is no str.lit string).

When a str.var is specified in the var.list, all characters are copied up to, but not including the [ENTER]
character. If the input is larger than the specified str.var, the extra input characters are discarded. If the
input does not fill up the destination str.var, a zero-byte terminator is placed after the last character of data.
If "KEY" is specified, then the [ENTER] character will be returned in str.var.

 Statements 137

dL4 Language Reference Guide©

If a num.var is specified in the var.list, the input characters are converted to numeric and stored into the
num.var. An error is generated if the input is not numeric or contains characters other than digits + - . or E
notation. If error branching is in effect, the MSC(1) function (Last INPUT Element) may be used to
determine which input item was in error. For example:
 10 Errset 40
 20 Input A,B,C,D
 30 End
 40 Print "ERROR IN INPUT VARIABLE";Msc(1)

The user would enter the item or items, separating multiple items with a comma "," or [ENTER]. If too
many items are entered, a non-abortive error is generated and the extra items are ignored.

Numeric values may be entered in scientific notation; however, commas are not allowed within a numeric
item; e.g. 1,200 must be entered as 1200. To abort the INPUT statement, press ESCape.

Examples
Input Tim 10; Len 30; "CUSTOMER NAME >"A$

Input @10,23;"Press [RETURN]" T$

Input (-1,K) "Enter a single character "A$

Input "4 numbers w/ comma ? "A,B,C,D

See also
SYSTEM, READ

 Statements 138

dL4 Language Reference Guide©

INTCLR
Synopsis

Clear interrupt event branching.
Syntax

INTCLR
Parameters

None.
Executable From Keyboard?

No.
Remarks

INTCLR restores normal operation with respect to user interrupts. [INTERRUPT], SIGNAL 1, and
SEND no longer automatically interrupt the program and branch to a specific INTSET statement number.

Examples
Intclr

See also
INTSET, SIGNAL, SEND

 Statements 139

dL4 Language Reference Guide©

INTSET
Synopsis

Enable branch to statement on interrupt events.
Syntax

INTSET label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

INTSET sets the selected label: or stmt.no to receive control each time an interrupt character is pressed or
a message is waiting to be received. The [INTERRUPT] action may be assigned to any character, but it is
normally defined as CTRL-C. INTCLR removes the branching, and further interrupt requests or
messages are ignored.

A program branch is defined to transfer execution to a pre-defined statement when either an 'interrupt'
character is pressed or a message is transmitted to your port via the SEND or SIGNAL statements.

The interrupt handling routine can do any processing desired and return to the main program as if the
branch never occurred. Secondary interrupts are inhibited until the program clears the initial interrupt.
This is done using the ERR(3) function, which also yields the original interrupted statement number.
Generally, an interrupt handling routine loops until all interrupts or messages are received. The main body
of the program is resumed using the statement:
 stmt.no Jump ERR(3)

or
 stmt.no Jump ERR(3);ERR(7)

The latter form is required if multi-statement lines are used within the program.

The interrupt function should not use the ERR(3) function other than shown above unless it is re-entrant
and stacks multiple return locations.

Examples
Intset 1000 ! Branch on Signal, CTRL C

Intset USER ! Branch on Signal, CTRL C

See also
INTCLR, SEND, SIGNAL

 Statements 140

dL4 Language Reference Guide©

JUMP
Synopsis

Transfer control immediately to another location.
Syntax

JUMP stmt.no {; sub.stmt} {, num.var}
Parameters

stmt.no is a numeric expression whose integer value is a statement line number.

sub.stmt is a numeric expression that identifies a sub-statement in a statement.

num.var is a variable of numeric type that is set to the statement number following JUMP.
Executable From Keyboard?

No.
Remarks

The stmt.no is any num.expr which, after evaluation is truncated to an integer and used as the statement
number to branch to. The optional sub.stmt is any num.expr which, after evaluation is truncated to an
integer and used as the sub-statement on that line. JUMP performs an unconditional branch to the selected
statement (and sub-statement). On multi-statement lines, sub-statements are numbered starting at 1.

If the optional num.var is supplied, it will be set to the statement number of line following JUMP. This is
similar to the GOSUB statement, as a subsequent JUMP to this variable will essentially perform a
RETURN. The num.var will is set to zero when the JUMP is the last statement of a program.

JUMP statements are in no way affected by the RENUMB command. Therefore, they are not an
acceptable substitute for GOTO or GOSUB when a literal stmt.no can be used.

JUMP is best used in conjunction with system functions that supply statement numbers, retaining the
program's ability to be renumbered.

The JUMP statement is illegal in a procedure.
Examples

Jump K*10

Jump Spc(10)

Jump ERR(1);ERR(4),J

See also
ERR, ESCSET, ERRSET, INTSET, GOSUB, GOTO

 Statements 141

dL4 Language Reference Guide©

KILL
Synopsis

Delete file(s).
Syntax

KILL filenames {AS driver-class | driver-name } {, filenames {AS driver-class | driver-name } } ...
Parameters

filenames is a string literal or expression containing one or more space separated filenames.

driver-class specifies the driver-class.

driver-name specifies the driver-name.
Executable From Keyboard?

Yes.
Remarks

If an error occurs, the statement is aborted and any remaining filenames within the str.lit or str.expr are not
deleted. Furthermore, other filenames are not processed.

The result of deleting a file that is currently in use or open is operating system dependent. On some
operating systems, an error will be generated. On other operating systems, the effect is to remove the entry
of the filename from the system directory preventing it from being opened again. When the last user closes
the file, the system releases the disk space. Prior to closing, all types of access, including extending the
file, is permitted.

Examples
KILL "23/ABC 23/DEF"

KILL A$,B$,C$

See also

 Statements 142

dL4 Language Reference Guide©

LET
Synopsis

Assign values to variables.
Syntax1

{LET} var.name = expr { ; var.name = expr } ...
Syntax2

{LET} str.var = str.expr TO str.expr {: num.var}
Syntax3

{LET} str.var = num.expr USING str.expr {,str.expr ...}
Parameters

var.name is a variable name.

expr is a series of constants, variables, functions, and operators to define a desired computation.

str.var is a variable of string data type.

str.expr is an expression yielding a string value or a string variable.

num.var is a variable of numeric data type.
Executable From Keyboard?

Yes.
Remarks

The type of expr must match that of var.name except for the following cases:

if var.name is numeric, then expr must either be numeric or a string expression that begins with a number
in character form.

if var.name is a string, then expr must either be a string, a number, or a date.

if var.name is a date, then expr must either be a date or a string expression that begins with a date in
character form.

In each of the special cases, expr will be converted to the type of var.name.

If var.name is a structure variable, then expr must be a structure variable whose members match the types
of the members of var.name.

The LET verb is optional, and is assumed when not entered. Although entry of the LET verb is optional,
it is printed whenever the program is listed.

Multiple assignments may appear on a single line separated by semicolons.
 Z=100;Q=1;N=0;A$="TXXX"

Numeric formatting is performed within a LET statement with the USING operator. This is functionally
equivalent to the EDIT statement.
 Let D$=X Using "##,###.##"

 Let E$=X Using "##,###.##",Y,Z

In the above examples, X is formatted into the USING string. This string is then assigned to the str.var. If
the str.var is not DIMed as large as the USING string, the USING string is truncated. This will result in a
loss of the corresponding right most digits of X.

Note that the USING operator is not part of the LET statement, but is instead a general purpose operator
that can be used wherever a string expression is accepted and in any statement.

 Statements 143

dL4 Language Reference Guide©

The TO operator allows assignment of string data to terminate upon encountering a given str.expr. The
str.expr may be a single or multiple character string. The optional num.var returns the character position at
which assignment stopped.
 Let N$="ABCDEF%GHIJKL"

 Let S$=N$ To "%":K

 returns: S$="ABCDEF",K=7

If the optional num.var is used, only the first character of the second str.expr will be used to perform the
search. This form of the TO operator is recognized only in the LET statement.

Examples
Let V=1

Let T$=1/3

Let A=42;T=17;R7=91

Let B[7]=(A*T)+(R7/4) Using "#####"

Let A$="1234565";T=A$;B$=A$ To "45":T1

Let D#="January 2, 1996 11:00"

See also
DEF STRUCT, COM

 Statements 144

dL4 Language Reference Guide©

LIB
Synopsis

Specify alternate directories to locate program files.
Syntax

LIB str.expr | num.var
Parameters

str.expr is an expression yielding a string value or a string variable which indicates a space-separated list of
relative or absolute directory pathnames.

num.var is a variable of numeric data type which is set to a single directory number.
Executable From Keyboard?

No.
Remarks

A value of -1 may be used to clear a defined library logical unit.

The library unit is the first unit searched by CALL for a subprogram file, unless the subprogram filename
itself specifies a full pathname.

SPC 23 is used to determine the current library logical unit, however its return value is only valid when the
library logical unit is numbered.

Examples
Lib -1

Lib "pgms menus"

See also
CHAIN, OPTION CHAIN ALTERNATE DIRECTORIES, SWAP

 Statements 145

dL4 Language Reference Guide©

LINE
Synopsis

Draw a line on a display device.
Syntax

LINE {chan.no;} {@x1,y1;} TO @x2,y2; { TO @x2,y2; } ...
Parameters

chan.no identifies a valid channel number.

x1,y1 are the column, row coordinates of the start of a line.

x2,y2 are the ending column, row coordinates of a line.
Executable From Keyboard?

Yes.
Remarks

Line drawing is a function of the window and printer drivers. If running on a character terminal, your
terminal description file must contain a definition for the mnemonic #,#LINETO.

If @x1,y1 is not specified, the current cursor position is assumed.

TO is a keyword which must be followed by the ending coordinate position of the line segment.
Examples

Line @3,3; To @30,3;

Line @3,3; To @3,9; TO @30,9;

Line To @30,1;

See Also
BOX

 Statements 146

dL4 Language Reference Guide©

LOOP
Synopsis

End a DO loop block.
Syntax

LOOP { WHILE bool.expr | UNTIL bool.expr }
Parameters

None.
Executable From Keyboard?

No.
Remarks

The WHILE or UNTIL bool.expr provides the loop with a specific termination condition. WHILE
provides for looping as long as the bool.expr remains true, whereas UNTIL provides for looping as long as
the bool.expr remains false - that is until it becomes true.

The optional WHILE or UNTIL clause may be placed on the line containing the LOOP statement to
ensure that at least one iteration is performed.

Upon execution of the LOOP statement, execution resumes at the statement following the corresponding
DO if the bool.expr is true. If the bool.expr is false, execution resumes at the statement following the
LOOP.

Each LOOP must have exactly one matching DO statement. The compiler ensures that all loops are
properly matched. Although not recommended, branching from outside to inside a DO loop will not cause
an error, rather the program will remain in the loop until it terminates. The DO statement itself need not be
executed to commence looping.

Examples
Do
 done = 1
 Print done
 If done Exit Do
Loop

See also
DO, DO UNTIL, DO WHILE, EXIT DO

 Statements 147

dL4 Language Reference Guide©

MAP
Synopsis

Assign a logical index or an item number to an index or field name.
Syntax

MAP chan.expr str.expr
Parameters

chan.expr is driver-class dependent channel expression.

str.expr is an expression yielding a string value.
Executable From Keyboard?

Yes.
Remarks

Often it is necessary to work with a subset of fields within a database or provide for later changes in the
field content or order within the file. The MAP statement allows a program to 'marry' a structure
definition to the current file's data dictionary.

This kind of dynamic record access not only insulates the application from certain modifications to the file
structure, but also could be used by individual programs to limit record accesses to only those fields which
are directly used. Depending on the format of the underlying record data (which is subject to the rules of
the actual file being driven; FoxPro, etc.), this may circumvent unnecessary data conversion and thereby
boost performance.

MAP can also be used to define the logical index or directory number used within the application. This
statement allows a program to be written using a hard-coded directory number, which is then logically
mapped to the physical directory number within the file.

Examples
Map #2, 0, 0, -1; "CustNum"

Map #2, 0, 1, -1; "Name"

Map #2, 0, 2, -1; "YtdSales"

Map #2,1; "ByCustNum" ! map ByCustNum key to index # 1

See also
MAP RECORD

 Statements 148

dL4 Language Reference Guide©

MAP RECORD
Synopsis

Assign an alternate item number mapping.
Syntax

MAP RECORD chan.no AS struct.name
Parameters

chan.no is a valid channel number.

struct.name is a structure tag name which was defined using DEF STRUCT.
Executable From Keyboard?

Yes.
Remarks

Often it is necessary to work with a subset of fields within a database or provide for later changes in the
field content or order within the file. The MAP RECORD statement allows a program to 'marry' a
structure definition to the current file's data dictionary.

struct.name is the name of a template DEF STRUCT structure definition which is to be aligned with the
fieldnames of the database, or named index within the database. struct.name members must have ITEM
fieldname or directory name definitions.

MAP RECORD defines an alternate item number mapping at run-time. This statement allows a custom
(sub-) record schema for record access, but does so dynamically by the item's fieldname.

The fieldnames given within the Customer structure are used to align each member to its current item
number within the file. For example, if the field "Addr", which is item 1 in the structure, is currently item
4 in the physical record, a MAP RECORD would cause the driver to perform the necessary item-number
translation so that any further access to item 1 will actually access item 4.

This kind of dynamic record access not only insulates the application from certain modifications to the file
structure, but also could be used by individual programs to limit record accesses to only those fields which
are directly used. Depending on the format of the underlying record data (which is subject to the rules of
the actual file being driven; FoxPro, etc.), this may circumvent unnecessary data conversion and thereby
boost performance.

Examples
Map Record #2 As CUSTREC

See also
MAP

 Statements 149

dL4 Language Reference Guide©

MAT =
Synopsis

Copy an entire matrix.
Syntax

MAT destination.var.mat = source.var.mat
Parameters

destination.var.mat is any destination numeric matrix variable.

source.var.mat is any source numeric matrix variable.
Executable From Keyboard?

Yes.
Remarks

The destination.var.mat must be at least as large as the source.var.mat. In the following example, matrix
A is dimensioned as [5,5] and matrix B as [6,6]:

Mat B=A is acceptable.

Mat A=B Is illegal since A is not large enough to contain all of the elements in B.

The copy is performed element by element. An error or integer truncation can occur if the precisions are
not compatible. Row and column zero are not copied. MAT = cannot be used to copy single element
arrays.

Examples
Mat T=D0

Mat T[4,4] = D9

Mat T[5]=G

See also
DIM, FOR, NEXT

 Statements 150

dL4 Language Reference Guide©

MAT +
Synopsis

Add elements from two matrices.
Syntax

MAT destination.var.mat = source.var.mat1 + source.var.mat2
Parameters

destination.var.mat is any destination numeric matrix variable.

source.var.mat1 is any source numeric matrix variable.

source.var.mat2 is any source numeric matrix variable.
Executable From Keyboard?

Yes.
Remarks

The two matrices being added must be exactly the same dimensions (rows and columns). The
destination.var.mat, if not already defined, is dimensioned at the current default precision for the same
number of rows and columns as the source.var.mat. An error or integer truncation can occur if the
precisions are not compatible. Row and column zero are not added.

The same matrix variable may appear on both sides of the equation.

 A[X,Y]=A[X,Y]+B[X,Y]

The sum, matrix D, of matrix A and matrix B is:

 D[X,Y]=A[X,Y]+B[X,Y]

for each matrix element.
Examples

Mat T=D0+A9

Mat D0=D0+J

See also

 Statements 151

dL4 Language Reference Guide©

MAT *
Synopsis

Multiply elements of two matrices.
Syntax

MAT destination.var.mat = [source.var.mat1 | [num.lit)]] source.var.mat2
Parameters

destination.var.mat. is any destination numeric matrix variable.

source.var.mat1 is any source numeric matrix variable.

num.lit is a numeric literal.

source.var.mat2 is any source numeric matrix variable.
Executable From Keyboard?

Yes.
Remarks

MAT * performs a multiplication, establishing a new matrix equal to the product of two matrices. Scalar
multiplication allows each element of a matrix to be multiplied by a constant.

Following the rules of matrix multiplication, if we multiply matrix A dimensioned [X,Y] by matrix B
dimensioned [R,S], then the resulting matrix will be dimensioned [X,S]. An error or integer truncation can
occur if the two precisions are not compatible. Row and column zero elements are not multiplied.

The same matrix variable may not appear on both sides of the equation.

Scalar multiplication causes each element of the given matrix to be multiplied by the value of the num.lit.
The num.lit must be in parentheses, and immediately follow the equal sign (=).

Examples
Mat D=A*B

Mat Q=X*X

Mat C=(5)*A

See also

 Statements 152

dL4 Language Reference Guide©

MAT CON
Synopsis

Create a constant matrix.
Syntax

MAT destination.var.mat = CON { “[“num.expr1{, num.expr2 }”]” }
Parameters

destination.var.mat is any destination numeric matrix variable.

num.expr1 is a numeric expression yielding a dimension.

num.expr2 is a numeric expression yielding a dimension.
Executable From Keyboard?

Yes.
Remarks

Each element of the destination.var.mat is set to the constant value one. Row and column zero are not set.

The optional num.expr1 and num.expr2 are evaluated, truncated to integer and used to select a new
working size. The total number of elements in the new size cannot exceed that of the old. A single
element array can be converted to a matrix or vice versa as long as the total number of elements does not
exceed the original DIMensioned size. For example, a [4,4] matrix has 25 actual elements and could be re-
declared as CON[25].

A constant other than one can be accomplished using a combination of the CON function and Scalar
multiplication:
 Mat A=CON \ Mat B=(5)*A \!Fill B with 5's.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For
example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat A=CON

Mat D0=CON[7,X/2]

See also

 Statements 153

dL4 Language Reference Guide©

MAT IDN
Synopsis

Create an identity matrix.
Syntax

MAT destination.var.mat = IDN { “[“num.expr1 {, num.expr2 } “]” }
Parameters

destination.var.mat is any destination numeric matrix variable.

num.expr1 is a numeric expression yielding a dimension.

num.expr2 is a numeric expression yielding a dimension.
Executable From Keyboard?

Yes.
Remarks

The matrix function IDN establishes an identity matrix of all zeroes with a diagonal of ones.

Any matrix multiplied by an identity matrix of the same size results in the original matrix. For example: If
matrix A is dimensioned [3,3] and matrix B is an identity matrix also dimensioned [3,3], the result of:
Mat C=A*B produces matrix C equal to A. Row and column zero are not affected by IDN.

The optional num.expr1 and num.expr2 are evaluated, truncated to integer and used to select a new
working size for the array. The total number of elements in the new size cannot exceed that of the old. A
single element array can be converted to a matrix or vice versa as long as the total number of elements
does not exceed the original DIMensioned size. For example, a [4,4] matrix has 24 actual elements and
could be re-declared as IDN[25]. An identity array is an array of all zeros.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For
example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat Q=IDN

Mat T=IDN[4,4]

Mat A8=IDN[X,Y]

See also
DIM

 Statements 154

dL4 Language Reference Guide©

MAT INPUT
Synopsis

Assign keyboard/file input to a matrix.
Syntax

MAT INPUT {chan.expr} var.list
Parameters

chan.expr is driver-class dependent channel expression.

var.list is a list of comma separated numeric matrix variables.
Executable From Keyboard?

Yes.
Remarks

MAT INPUT is used to assign values to an entire matrix. The values are accepted from either keyboard
(operator) input, or through a channel (file or device).

Execution of a MAT INPUT statement pauses the program after output of a ? to your terminal. The
program is then suspended and data input is accepted. The user would enter all matrix items, separating
each item with either a comma , or [ENTER] (return). MAT INPUT does not complete until all elements
have been accepted.

The array elements are assigned by rows, starting with [1,1] thru [1,n], then continuing with [2,1] thru
[2,n], etc. Row and column zero are not assigned. For example, a 4 by 4 matrix might be entered as:
 17,42,87,12 <-

 18,14,26,14 <-

 15,0,18,29 <-

 34,29,86,69 <-

Using MAT INPUT from a channel is similar to terminal MAT INPUT, except the data is read from the
channel and must include row and column zero elements. The data must be separated by either commas or
[EOL] (return), and cannot be in the format generated by a MAT PRINT #.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For
example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Example
Mat Input T

Mat Input A,B[4,10],C

Mat Input #3;X

Mat Input #2,R,20;E1,E2

See also
INPUT, MAT PRINT

 Statements 155

dL4 Language Reference Guide©

MAT INV
Synopsis

Invert a matrix.
Syntax

MAT destination.var.mat = INV(source.var.mat)
Parameters

destination.var.mat is any destination numeric matrix variable.

source.var.mat is any source numeric matrix variable.
Executable From Keyboard?

Yes.
Remarks

The matrix function INV establishes one square matrix as the inverse of another.

Only square matrices (number of rows = number of columns) may be inverted. Both matrices must also be
the same precision and dimension. Row and column zero are not affected by INV.

The DET function supplies the determinant of the last matrix inverted by your program, e.g. if two
matrices are inverted before the DET function is used, the determinant returned will be from the second
inversion.

Examples
Mat C=INV(A)

Mat R7=INV

See also
DET, DIM

 Statements 156

dL4 Language Reference Guide©

MAT PRINT
Synopsis

Print contents of matrix(ces).
Syntax

MAT PRINT {chan.expr } var.mat.list { , | ; }
Parameters

chan.expr is a driver-class dependent channel expression.

var.mat is a list of comma or semicolon separated numeric matrix variables.
Executable From Keyboard?

Yes.
Remarks

Each var.mat is printed in character form without subscripts. Each variable may be followed by either a
comma (,) or a semicolon (;). A comma will cause the matrix variable preceding it to be spaced using
comma fields. These are generally 15 characters long. A semicolon will cause minimal spacing between
elements. Elements are normally preceded by a space or "-", indicating negative or positive, and will be
followed by one space. When all items in a matrix row have been output, two blank lines are output to
produce double spacing between rows.

Row and column zero elements are only printed for MAT PRINT when the data is directed through a
channel.

If a channel is specified to MAT PRINT, output is attempted to that channel. If the selected channel is not
open, output is sent to the terminal.

 Examples
Mat Print A

Mat Print I,J

Mat Print X;Y;Z;

Mat Print #3,T;H1,S1

See also

 Statements 157

dL4 Language Reference Guide©

MAT RDLOCK
Synopsis

Read an array, matrix or string with locking.
Syntax

MAT RDLOCK chan.expr var.list
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

MAT RDLOCK transfers data into any dL4 data type. The operation is similar to a READ statement,
except that an entire array or matrix is transferred; including row and column zero elements. If the
specified var is a string, its entire specified length is transferred including zero-byte terminators.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and
precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are transferred
including zero-bytes if support by the file type and driver (refer to the dL4 Files and Devices reference
manual).

MAT RDLOCK transfers data and unconditionally locks the record.. The data record remains locked
until a non-locking operation is performed by that same program to the same channel. While a record is
locked, other users will be unable to access the record.

MAT RDLOCK is identical to MAT READ omitting the trailing semicolon.

See the MAT READ statement for details on the transfer of data to different types of files.
Examples

Mat Rdlock #3,R1,100;A

Mat Rdlock #C,R;A$

See also
MAT READ

 Statements 158

dL4 Language Reference Guide©

MAT READ
Synopsis

Read a matrix from DATA or a channel.
Syntax1

MAT READ chan.expr var.list { ; }
Syntax2

MAT READ var.mat.list
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.

";" unlocks the record after a successful MAT READ.
Executable From Keyboard?

Yes.
Remarks

Syntax 1:

MAT READ transfers data into any dL4 data type. The operation is similar to a READ statement, except
that an entire array or matrix is transferred; including row and column zero elements. If the specified var
is a string, its entire specified length is transferred including zero-byte terminators.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and
precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are transferred
including zero-bytes if support by the file type and driver (refer to the dL4 Files and Devices reference
manual).

The optional semicolon (;) terminator eliminates the automatic record-lock applied to the supplied record
in the chan.expr. Applications may also utilize MAT RDLOCK for operations with locking transfers.

Syntax 2:

MAT READ attempts to transfer data into each dL4 data type listed in the statement. Transfer of each
element terminates at a comma (,) or at the end of the DATA statement. The format of the data is left to
the user. Attempting to read string data into a numeric variable produces the error DATA of wrong type
(numeric/string).

MAT READ transfers data sequentially from DATA statements until the entire matrix has been assigned.
Row and column zero are not read.

See the READ and DATA statements for other rules governing reading from DATA statements.
Examples

Mat Read #3,R1,100;A,B$,C[12]

Mat Read #C,R;A$

Mat Read A[2,2], B$

Mat Read B$, J

See also
READ, DATA, MAT WRITE, READ

 Statements 159

dL4 Language Reference Guide©

MAT TRN
Synopsis

Transpose a matrix.
Syntax

MAT destination.var.mat = TRN(source.var.mat)
Parameters

destination.var.mat is any destination numeric matrix variable.

source.var.mat is any source numeric matrix variable name.
Executable From Keyboard?

Yes.
Remarks

The matrix function TRN is used to establish one matrix as the transposition of another.

Transposition causes each element [X,Y] of the original matrix to be moved to element [Y,X] of the
transposed matrix. Note that this also causes the dimension of the transposed matrix to be the reverse of
the original. For example:
 Original matrix [3,4] Transposed matrix [4,3]

 1 2 3 4 1 5 9

 5 6 7 8 2 6 10

 9 10 11 12 3 7 11

 4 8 12

An error or integer truncation can occur if the two matrix precisions are not compatible. Row and column
zero are not affected by TRN.

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For
example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat C=TRN(A)

Mat R7=TRN

See also
DIM

 Statements 160

dL4 Language Reference Guide©

MAT WRITE
Synopsis

Write a variable to a channel.
Syntax

MAT WRITE chan.expr var.list { ; }
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.

";" unlocks the record after a successful MAT WRITE.
Executable From Keyboard?

Yes.
Remarks

MAT WRITE transfers data from any dL4 data type to the file opened on the supplied chan.expr. The
operation is similar to a WRITE statement, except that an entire array or matrix is transferred; including
row and column zero elements. If the specified var is a string, its entire specified length is transferred
including zero-byte terminators.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and
precision

If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are transferred
including zero-bytes if support by the file type and driver (refer to the dL4 Files and Devices reference
manual).

The optional semicolon (;) terminator eliminates the automatic record-lock applied to the supplied record
in the chan.expr. Applications may also utilize MAT WRLOCK for operations with locking transfers.

Examples
Mat Write #3,R1,100;A,B$,C[12]

Mat Write #C,R;A$

See also
MAT READ, WRITE

 Statements 161

dL4 Language Reference Guide©

MAT WRLOCK
Synopsis

Write a variable to a channel with locking.
Syntax

MAT WRLOCK chan.expr var.list
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

MAT WRLOCK transfers data from any dL4 data type to the file opened on the supplied chan.expr. The
operation is similar to a WRITE statement, except that an entire array or matrix is transferred; including
row and column zero elements. If the specified var is a string, its entire specified length is transferred
including zero-byte terminators.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and
precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. All characters are transferred
including zero-bytes if support by the file type and driver (refer to the dL4 Files and Devices reference
manual).

MAT WRLOCK transfers data and unconditionally locks the record. The data record remains locked
until a non-locking operation is performed by that same program to the same channel. While a record is
locked, other users will be unable to access the record.

See the MAT WRITE statement for details on the transfer of data.
Examples

Mat Wrlock #3,R1,100;A

Mat Wrlock #C,R;A$

See also
MAT READ, WRITE

 Statements 162

dL4 Language Reference Guide©

MAT ZER
Synopsis

Zero an entire matrix.
Syntax

MAT var.mat = ZER { "[" num.expr1 {, num.expr2 } "]" }
Parameters

 var.mat is any numeric array or matrix variable.

num.expr1 is a numeric expression yielding a dimension.

num.expr2 is a numeric expression yielding a dimension.
Executable From Keyboard?

Yes.
Remarks

The matrix function ZER allows each element of a matrix to be set to zero. Row and column zero are not
set. To set the elements of row and column zero to a zero use the CLEAR statement.

The optional num.expr1 and num.expr2 are evaluated, truncated to integer and used to select a new
working size for the array. The total number of elements in the new size cannot exceed that of the old. A
single element array can be converted to a matrix or vice versa as long as the total number of elements
does not exceed the original DIMensioned size. For example, a [4,4] matrix has 25 actual elements and
could be re-declared as ZER[24].

Any array created by a MAT statement with a single dimensions assumes a second dimension of one. For
example, Mat C= ZER[15] and Mat C = ZER[15,1] are equivalent.

Examples
Mat C=ZER

Mat R7=ZER[4,4]

See also
CLEAR

 Statements 163

dL4 Language Reference Guide©

MEMBER
Synopsis

Define a member associated with a specific structure.
Syntax1

MEMBER {%prec | prec% ,} var.list {, { %prec | prec% ,} var.list} ...
Syntax2

MEMBER {%prec | prec% ,} var.name [: ITEM id] { : DECIMALS digits} { :RAW }
Syntax3

MEMBER {%prec | prec% ,} var.name [: KEY id option.list] { : DECIMALS digits}
Parameters

prec indicates the precision number defined for the variable.

var.list is a list of comma separated variable names of any dL4 data types.

var.name is the name of a variable.

id is a string or a numeric literal identifying a fieldname or an item number.

digits is a numeric literal identifying the number of decimal digits.

option.list is a list of UPPERCASE, ASCENDING, DESCENDING, DUPLICATES, UNIQUE,
VARLEN, and/or PACKED key options, each preceded by a plus sign ("+").

Executable From Keyboard?
No.

Remarks
MEMBER var.name is any legal variable name, or precision declaration in the form: %prec or prec%.
var.name may be any dL4 data type. The syntax and function of MEMBER statements are nearly
identical to that of DIM.

A structure definition itself may contain one or more structures, arrays, or arrays of structures. To define a
structure which includes a structure, a MEMBER is expressed as follows:

 Member var.name. { [expr {, ... }] } As structname

var.name. is the name within the structure whose members are defined by the structure definition
structname. structname must be an existing structname which has been previously defined.

The names of structure members are distinct from any other names outside the structure; e.g. Data.Q$ is
distinct from Q$ which is distinct from Data1.T.Q$.

The members of a structure are physically contiguous in memory, and are ordered in memory as defined by
DEF STRUCT. Individual structure members cannot be re-dimensioned.

The order in which members of a structure are declared is important because this determines the order in
which values are read from a DATA statement, or transferred to/from a file, etc.

The RAW option enables special file access behavior similar to OPTION FILE ACCESS RAW but
applied only to the specified structure member when used in an ADD RECORD, READ RECORD, or
WRITE RECORD statement.

Examples
Def Struct StatMem
 Member CustName$. As FullName
 Member %4, Income
 Member City$[40]
End Def

 Statements 164

dL4 Language Reference Guide©

See also
 OPTION FILE ACCESS RAW

 Statements 165

dL4 Language Reference Guide©

MODIFY
Synopsis

Change filename or a file’s attributes.
Syntax

MODIFY str.expr {AS driver-class | driver-name }
Parameters

str.expr is a string expression consisting of an original file.spec.str, followed by new file attributes or a new
filename.

driver-class specifies the driver-class.

driver-name specifies the driver-name.
Executable From Keyboard?

Yes.
Remarks

The original file.spec.str specifies the file to be changed. The new filename, if included, selects a new
name or location for the original file.

If the file consists of two or more subfiles, each file will be modified. For example, an Index Contiguous
file might consist of a data file and an index file. All these files would be copied to the respective
destination filename.

If the source filename contains a lu or directory specifier, these must also precede the destination filename
or the source filename is relocated to the current working directory.

Refer to the dL4 Files and Devices reference manual for more information on specific file types.
Examples

Modify "2/FILE 23/OLDFILE"! Move the file

Modify "PAYROLL <77>"

A$= "JUNK" \ Modify A$+"<E666>"

See also

 Statements 166

dL4 Language Reference Guide©

MOVE
Synopsis

Move the components of a window.
Syntax

MOVE {chan.expr} @x,y;
Parameters

chan.expr is a driver-class dependent channel expression.

x,y are the destination column, row coordinates for the window components.
Executable From Keyboard?

Yes.
Remarks

The @x,y parameter corresponds to the column, row coordinates of the upper left corner of the window.

Depending on the driver, it is possible to move the window on the screen or control which part of the
window is displayed. Refer to the dL4 Files and Devices reference manual for more information about
windows.

Examples
Move #1;@I,I;

See also

 Statements 167

dL4 Language Reference Guide©

NEXT
Synopsis

Iterate a FOR/NEXT program loop.
Syntax

NEXT num.var
Parameters

num.var is a variable of numeric data type.
Executable From Keyboard?

No.
Remarks

The NEXT statement must have been preceded by execution of a FOR statement defining the parameters
of the loop. Nested FOR/NEXT loops are paired based on the num.var used as the index variable.

Upon execution of the NEXT, the loop's step value is added to the index. If the new index exceeds the
loop's final value, normal program execution resumes at the statement following the NEXT; otherwise, the
index value is updated by the step and execution reverts back to the statement following the associated
FOR. If a step was not specified on the associated FOR statement, it is assumed to be one.

When a loop terminates, the index variable contains the first value not used within the loop.
Examples

Next I

See also
FOR, WEND, WHILE

 Statements 168

dL4 Language Reference Guide©

ON
Synopsis

Perform conditional branch on value of expression.
Syntax

ON num.expr [GOSUB | GOTO] label: | stmt.no
Parameters

label: is a user-defined name identifying a statement line.

stmt.no is a unique positive integer that identifies a statement line.
Executable From Keyboard?

No.
Remarks

The num.expr is any numeric expression which, after evaluation is truncated to an integer n. The program
will then branch to the nth label: or stmt.no in the given list. If no label: or stmt.no corresponds to n, then
execution continues with the statement following the ON.

GOTO and GOSUB work precisely as their singular counterparts. Branching will be to the first sub-
statement of the statement number given, and the statement must exist.

Examples
On Q Goto 200,300,400,500,600

On Q Goto two, three, four, five

On (Sgn(A)+2) Goto 300,450,1000 ! Neg, Zero, Pos

On (A/100) Gosub 600,750,840,950

See also
GOTO, GOSUB

 Statements 169

dL4 Language Reference Guide©

OPEN
Synopsis

Open an existing file.
Syntax1

OPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
OPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file specification
used to open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable from Keyboard?
Yes.

Remarks
The OPEN statement links a selected file or device to the specified channel. The file must already exist on
the system or an error is generated.

Multiple str.expr's may be specified to open several files on successive channel numbers. Any new
channel number (channel) in the filename list will cause assignment of channels to continue from that
number.

In applications, if the specified channel is already in use, a CLOSE statement must be performed prior to
an OPEN.

Most files to which a user has access may be opened. The same file may be simultaneously opened by
other users, and may be opened on more than one channel. If a file is already opened for exclusive access
via EOPEN by another process, an error is generated.

OPEN will link the selected file for read/write access and update each file's last access date.

A file may not be OPEN if it, or its directory does not have read permission for the user requesting access.
If the file is read-only to the user, an implied ROPEN is performed and only read operations are allowed.

If a file.spec.str begins with a single $ character, the filename will be opened as an output pipe and the rest
of the file.spec.str will be passed to the operating system as parameters to the pipe. If a file.spec.str begins
with a "$$", the filename will be opened as an input pipe and the rest of the file.spec.str will be passed to
the operating system as parameters to the pipe. Refer to the dL4 Files and Devices reference manual for a
description of the pipe driver.

Examples
Open #1,"12/DATAFILE","FILE2",#4,"/usr/path/AR.CHECK"

Open #3,"$LPT",L$+A$!EXPRESSION IS LU+FILENAME

Open #D,""

 Statements 170

dL4 Language Reference Guide©

See also
BUILD, CLOSE, EOPEN, ROPEN, WOPEN

 Statements 171

dL4 Language Reference Guide©

OPTION
Synopsis

Specify runtime option(s) for the current program.
Syntax

OPTION { DEFAULT } opt.spec setting {, opt.spec setting } ...
Parameters

opt.spec is a runtime option specifier.

setting is a runtime option parameter.
Executable From Keyboard?

No.
Remarks

The OPTION statement is used to specify various runtime options for the current program unit. Each of
the options shown below are processed at compile-time and may be set once in each program unit,
applying to the whole unit. An OPTION DEFAULT statement sets runtime options for all program units
within a program file (it does not set options for libraries used by the program).

Unlike global environment variables, OPTION settings follow a program from system to system and are
preserved in all forms of the program.
Default Alternatives

OPTION ARITHMETIC DECIMAL OPTION ARITHMETIC IRIS DECIMAL

 OPTION ARITHMETIC ICE BINARY

 OPTION ARITHMETIC IEEE DECIMAL

 OPTION ARITHMETIC EXTENDED IEEE

 OPTION ARITHMETIC NATIVE

 OPTION ARITHMETIC BITS DECIMAL

OPTION DATE FORMAT STANDARD OPTION DATE FORMAT NATIVE

OPTION COLLATE STANDARD OPTION COLLATE NATIVE

OPTION ANGLE RADIANS OPTION ANGLE DEGREES

OPTION BASE YEAR 1988 OPTION BASE YEAR numconst

OPTION FOR NESTING 8 OPTION FOR NESTING numconst

OPTION GOSUB NESTING 8 OPTION GOSUB NESTING numconst

OPTION TRY NESTING 8 OPTION TRY NESTING numconst

OPTION COMMA SPACING 15 OPTION COMMA SPACING numconst

OPTION USING DECIMAL IS PERIOD OPTION USING DECIMAL IS COMMA

OPTION FILE ACCESS STANDARD OPTION FILE ACCESS RAW

OPTION FILE UNIT IS WORDS OPTION FILE UNIT IS BYTES

OPTION DISPLAY AUTO LF ON OPTION DISPLAY AUTO LF OFF

OPTION CHAIN FAILURE IS RETURNED OPTION CHAIN FAILURE IS ERROR

OPTION CLOSE FAILURE IS ERROR OPTION CLOSE FAILURE IS IGNORED

OPTION IF BY LINES OPTION IF BY STATEMENTS

OPTION INPUT TIMEOUT SIGNAL ON OPTION INPUT TIMEOUT SIGNAL OFF

OPTION ZERO DIVIDED BY ZERO IS ERROR OPTION ZERO DIVIDED BY ZERO IS LEGAL

OPTION STRINGS STANDARD OPTION STRINGS RAW

 OPTION STRINGS HAGEN

 Statements 172

dL4 Language Reference Guide©

OPTION STRING SUBSCRIPTS STANDARD OPTION STRING SUBSCRIPTS IRIS

OPTION STRING REDIM IS ERROR OPTION STRING REDIM IS LEGAL

OPTION OPEN AUTO CLOSE OFF OPTION OPEN AUTO CLOSE ON

OPTION RETURN BY STATEMENTS OPTION RETURN BY LINES

OPTION NUMERIC FORMAT STANDARD OPTION NUMERIC FORMAT NATIVE

OPTION INPUT BUFFER 256 OPTION INPUT BUFFER numconst

OPTION CHAIN ALTERNATE DIRECTORIES ON OPTION CHAIN ALTERNATE DIRECTORIES OFF

OPTION ARGUMENT CHECKING STANDARD OPTION ARGUMENT CHECKING IS WEAK

OPTION DIALECT STANDARD OPTION DIALECT IRIS

 OPTION DIALECT IRIS1

 OPTION DIALECT BITS

 OPTION DIALECT BITS1

 OPTION DIALECT IMS

OPTION AUTO DIM ON OPTION AUTO DIM OFF

OPTION FLUSH AFTER STATEMENT OFF OPTION FLUSH AFTER STATEMENT ON

OPTION RECORD LOCK TIMEOUT –1 OPTION RECORD LOCK TIMEOUT numconst

OPTION PROGRAM TAG “” OPTION PROGRAM TAG strconst

The OPTION ARITHMETIC EXTENDED IEEE is identical to OPTION ARITHMETIC IEEE
DECIMAL except that it maps 1% variables to 16-bit signed binary integers and 2% variables to 32-bit
signed binary integers.

The OPTION USING DECIMAL [IS PERIOD | IS COMMA] only controls the meaning of period (".")
and comma (",") in USING mask strings, not which character is output. The output character is controlled
by OPTION NUMERIC FORMAT [STANDARD | NATIVE] and the operating system locale setting.

The OPTION INPUT BUFFER numconst specifies the size in characters of the input buffer used by the
INPUT and MAT INPUT statements.

The OPTION ZERO DIVIDED BY ZERO IS [ERROR | LEGAL] controls whether dividing zero by
zero is an arithmetic error.

The OPTION STRING SUBSCRIPTS [STANDARD | IRIS] controls the handling of the subscript if it
evaluates to zero. String subscript values of zero are not normalized by default (STANDARD). Zero
string subscripts are normalized when OPTION STRING SUBSCRIPTS IRIS is used, such that a
starting subscript of 0 becomes 1, with an ending subscript of 0 being treated as if no ending subscript
were given.

The OPTION STRING REDIM IS [ERROR | LEGAL] controls whether a string variable can be
redimensioned without first FREEing the variable. By default, redimensioning a string variable to a
different size generates an error.

The OPTION CHAIN ALTERNATE DIRECTORIES [ON | OFF] controls whether the CHAIN and
SPAWN statements use a search path to locate programs. By default (ON) the Lib dirname of the
program unit is searched first. The directory of the calling program is searched next. Finally, the users
current working directory is searched. If disabled (OFF), no search path is used and the program file is
located just as in the OPEN statement.

The OPTION ARGUMENT CHECKING [STANDARD | IS WEAK] controls whether empty brackets
(“[]”) are required in order to pass array variables as arguments to subprograms (Call by Filename).
Normally, empty brackets are required. This option can only be used in an OPTION DEFAULT
statement.

The OPTION DATE FORMAT [STANDARD | NATIVE] controls the date input/output formats.
STANDARD specifies the USA format of MM/DD/YY and NATIVE specifies the format as determined
by the system locale setting.

 Statements 173

dL4 Language Reference Guide©

The OPTION AUTO DIM [ON | OFF] enables or disables auto-dimensioning of variables.

The OPTION FLUSH AFTER STATEMENT [OFF | ON] enables a flushing of the record buffer at the
end of each write statement for those file drivers that support a flush record without unlock operation.

The OPTION RECORD LOCK TIMEOUT numconst sets the default record lock timeout period in
tenth seconds for I/O statements that do not specify a timeout period. This option only effects I/O to disk
file and database drivers. The value of numconst must be between –1 (wait forever) and 36000 inclusive.

The OPTION PROGRAM TAG strconst places an ASCII string constant in the program file for use by
external utilities. Under Unix, this option can be used to place a revision string in the program file for use
with standard Unix program utilities.

The OPTION DIALECT [STANDARD | IRIS | IRIS1 | BITS | BITS1 | IMS] sets multiple options. The
default option settings should serve best for most IRIS programs. The statement OPTION DIALECT
IRIS is equivalent to OPTION STRING SUBSCRIPTS IRIS. The statement OPTION DIALECT
IRIS1 adds the additional option OPTION ZERO DIVIDED BY ZERO IS LEGAL and allows intrinsic
CALLs to return results into subscripted string arguments.

BITS users should add the following line to each program:

 OPTION DIALECT BITS

This is equivalent to adding the lines:

OPTION FILE ACCESS RAW,FILE UNIT IS BYTES,DISPLAY AUTO LF OFF

OPTION CHAIN FAILURE IS ERROR,CLOSE FAILURE IS IGNORED

OPTION IF BY STATEMENTS,INPUT TIMEOUT SIGNAL OFF,STRINGS RAW

OPTION OPEN AUTO CLOSE ON,RETURN BY LINES

For further BITS compatibility, the line

 OPTION DIALECT BITS1

is equivalent to OPTION DIALECT BITS, but also enables BITS style FOR/NEXT behavior, BITS
USING mask features, returning results to intrinsic CALL arguments that are subscripted strings, and an
initial precision of 4%.

For IMS compatibility, the line

 OPTION DIALECT IMS

is equivalent to OPTION DIALECT IRIS1 with some minor changes to USING mask behavior.
Examples

Option Date Format Native

See also
FOR, GOSUB, TRY

 Statements 174

dL4 Language Reference Guide©

PAUSE
Synopsis

Suspend program operation.
Syntax

PAUSE num.expr
Parameters

num.expr is an expression yielding tenth-seconds pause time.
Executable From Keyboard?

No.
Remarks

The num.expr is any numeric expression which, after evaluation is truncated to an integer and used to
specify a delay in program operation. The delay is limited to an integer between 0 and (232)-1
representing the number of tenth-seconds to delay.

This is the most accurate method of pausing the execution of a program. Other methods, such as finite
program loops, will be affected by the current usage of the system and most likely yield varying results.

The program is unconditionally suspended for the number of tenth-seconds specified in delay. An
[ESCAPE] without ESCape branching or [ABORT] terminates a pause.

Examples
Pause 30

Pause Fna(Q7)

Pause A*10

See also
SIGNAL

 Statements 175

dL4 Language Reference Guide©

PORT
Synopsis

Attach and control other ports.
Syntax

PORT num.expr1, num.expr2, num.var1 {, expr} ...
Parameters

num.expr1 is an expression used to select a target port number.

num.expr2 is an expression used to select the PORT statement mode.

num.var1 is a variable of numeric data type used to received operational status.

expr is an expression or variable.
Executable From Keyboard?

Yes.
Remarks

The PORT mode is a num.expr which, after evaluation is truncated to an integer and used to select an
operation for PORT. There are 8 modes as determined by the second parameter:

Mode Operation Performed.

0 Attach selected port

1 Place an attached port in command mode

2 Transmit a command string to an attached port

3 Return an attached port's operational status

4 Return the name of the current running program of a specified port

5 Return the position of the current running program of a specified port

6 Return record lock status of the program running on a specified port

7 Return user information for a specified port

8 Return information about open channels on a specified port.

9 Determine if a specified file is open on a a specified port.

num.var1 is used to return the exception status of the operation. The meaning of num.var1 depends upon
the mode selected.

The PORT statement allows a port to be attached to a program. Once attached, commands may be
transmitted to the port for normal processing, and the current status or state of the attached port can be
controlled and monitored. If the attached port has a keyboard, it may be used as any other normal terminal.
However, commands transmitted will override any current keyboard operation.

Mode 0—Attach Selected Port
Syntax

PORT num.expr1, 0, num.var1 {, num.expr2 }

A PORT mode 0 statement must be issued once for each port being attached. Once attached, the port
remains so until signed-off (sending a BYE command or executing SYSTEM 0 to the port).

num.expr2 is evaluated and truncated to an integer and used to select a different account for the attached
port when using mode 0. The account should be expressed as G*256+U, where G and U are the desired
group and user numbers respectively. The Group and User numbers must be in the range 0 to 255. If not

 Statements 176

dL4 Language Reference Guide©

specified, the group and user id of the program executing the attach is set. The meaning of Group and User
numbers is operating system dependent. The ability to start a port using group or user ids different from
the calling program will require the use of a privileged account on most operating systems.

PORT Mode 0 begins by attempting to attach the port. If the port is already running under uniBasic, the
attach operation is complete and successful.

If the port is not currently running dL4, a background process is created as the supplied port number. It
assumes the callers' environment and current working directory. It then becomes a unique process linked
to the supplied port number. This port is then available for CALL $TRXCO commands, PORT, SEND,
RECV, and SIGNAL statements from any other dL4 user as well as the program performing the initial
PORT Mode 0.

When sending commands to a port which is connected to a terminal and keyboard, you must ensure that
port is already running dL4 before sending commands. Otherwise, a phantom port is created for the
supplied port number. If a user later attempts entry into Basic using the same port number, entry into
Basic will be rejected.

Upon completion, the status variable is set to indicate

0. Successful, port is now attached.

1. The selected port is already logged-on to the system and in-use.

2. All available ports are already in use. In some configurations, the allowed number of concurrent users
is set less than the actual number of ports configured. This indicates that either another port or
phantom port must be signed-off, or the number of concurrent users increased on your license.

3. Illegal account number selected. The selected group or user number is out of the range 0-255.

Mode 1—Place an Attached Port in Command Mode
Syntax

PORT num.expr1, 1, num.var1

PORT Mode 1 sends an ESCape Override Character [ABORT] to the selected port, terminating any
running program and placing the port into command mode.

Upon completion, the status variable is set to indicate:

0. Successful, the selected port is now in command mode.

1. The select port is not attached.

Mode 2—Transmit Command String to Attached Port
Syntax

PORT num.expr1, 2, num.var1, str.expr

str.expr is used to send the command string to the specified port.

PORT Mode 2 requires that a command string be supplied following the status variable. The string data
in command string is then transmitted to the selected port. This command string may contain any legal
command input for a terminal. Any command, such as NEW, LIST, BYE, RUN, etc., may be transmitted,
as well as program statements. If a terminal is connected to the attached port, the command string is
echoed as it is processed on the attached port. An attached port connected to a terminal may also receive
commands from its keyboard.

A command string cannot be transmitted unless the attached port is in an 'input ready' state. A PORT
Mode 3 status check is suggested prior to sending a command.Upon completion, the status variable is set
to indicate:

0. Successful, command transmitted and accepted.

1. The selected port is not attached.

 Statements 177

dL4 Language Reference Guide©

2. The selected port is not in an 'input ready' state.

Mode 3—Return Attached Port's Operational Status
Syntax

PORT num.expr1, 3, num.var1, num.var2

PORT Mode 3 requires that a return value (num.var2) be supplied following the status vari-
able(num.var1). This variable will receive a value indicating the port's operational status. A PORT mode
3 should always precede any mode 2 command transmission to check for 'input ready'. It may also be used
to monitor the current state of the attached port.

0. Successful, operational status returned.

1. The selected port is not attached.

The value returned as the operational status consists of a mode, an 'Input Ready' flag, and an 'Output in
Progress' flag.

This value may be divided into its respective parts as follows:

 Assume X = value returned by PORT mode 3.
 If X>32767 Then 'Input Ready' on attached port.

The 'Input Ready' flag must be removed from the value prior to testing the 'Output in Progress' flag, since
both input and output may be in progress.

 If X>32767 Then X=X-32768 \! Remove flag.

 If X>16383 And X<32768 Then 'Output in Progress'

The attached port's current mode can be determined by:
 Let M=X % 16 \! Retrieve mode.

Mode Current State

0 Idle. At command mode or logged-off.

1,2 Command input or execution.

3 Run. Program execution in progress.

4,5 List. Program listing in progress.

6 Statement execution in immediate mode.

7 Get. Program being loaded from text file.

8 Initial Run. Becomes mode 3.

9,10 Enter. Program statement entry using ENTer.

Mode 4—Return Name of Current Program of Specified Port
Syntax

PORT num.expr1, 4, num.var1, str.var

PORT mode 4 returns in str.var the name of the current program of a specified port. For example, the
statement:

Port P,4,S,F$

will return in F$ the name of the program running on port P. As with PORT mode 3, a status is returned in
S indicating success (zero) or failure (one, port not attached). Under some operating systems, only a
privileged user (such as the Unix root account) can use PORT mode 4 to examine ports that belong to
different user ids.

 Statements 178

dL4 Language Reference Guide©

Mode 5—Return Current Program Position of Specified Port
Syntax

PORT num.expr1, 5, num.var1, str.var

PORT mode 5 returns in str.var the current execution position of the current program of a specified port.
For example, the statement:

Port P,5,S,L$

will typically return in L$ the line number and library name, if any, of the statement currently being
executed by the program running on port P. As with PORT mode 3, a status is returned in S indicating
success (zero) or failure (one, port not attached). Under some operating systems, only a privileged user
(such as the Unix root account) can use PORT mode 5 to examine ports that belong to different user ids.

Mode 6—Return Record Lock Status of Specified Port
Syntax

PORT num.expr1, 6, num.var1, num.var2, num.var3

PORT mode 6 returns the record lock status of the specified port in num.var2 and and the conflicting port
number in num.var3. For example, the statement:

Port P,6,S,B,N

will return one in B if port P has been waiting for a record lock for more than 20 seconds and it will return
zero in B if the port is not blocked. If the port is blocked, the port number of the program that has locked
the record will be returned in N. If the port number is not available, N will be set to -1. As with PORT
mode 3, a status is returned in S indicating success (zero) or failure (one, port not attached). Under some
operating systems, only a privileged user (such as the Unix root account) can use PORT mode 6 to
examine ports that belong to different user ids.

Mode 7—Return User Information of Specified Port
Syntax

PORT num.expr1, 7, num.var1, str.var1, str.var2 {, var.list }

PORT mode 7 returns the current user information for the specified port in str.var1 and str.var2.
Additional information can be returned in optional string variables in var.list. For example, the statement:

Port P,7,S,U$,W$

will, for port P, return in U$ the user name and in W$ the workstation name. The optional string variables
in var.list, if specified, receive the group name, current directory, terminal type, account number, and
group number. Values not supported by the operating system will be returned as “”. As with PORT mode
3, a status is returned in S indicating success (zero) or failure (one, port not attached). Under some
operating systems, only a privileged user (such as the Unix root account) can use PORT mode 7 to
examine ports that belong to different user ids.

Mode 8—Return Open Channel Information for Specified Port
Syntax

PORT num.expr1, 8, num.var1, num.expr2, num.expr3, struct.array.var}

PORT mode 8 returns open channel information for the specified port in struct.array.var. A range of
channel numbers to examine is specified using num.expr2 as the starting channel number and num.expr3 as
the ending channel number. The information is returned in the array variable struct.array.var which is an
array of structures using the following structure definition:

Def Struct CHANINFO
 Member 1%,ChanNum
 Member Path$[200]

 Statements 179

dL4 Language Reference Guide©

 Member 3%,RecordNum
 Member 1%,RecordState
End Def

The member names, dimensioned size of the Path$ member, and the numeric precisions of the other
structure members can be varied as desired. The filename returned in Path$ may be truncated if it is longer
than Path$ or if it exceeds system limitations. If the number of open channels in the specified range is less
than the dimensioned size of 'chaninfo.[]', then the first unused element of the array will have a ChanNum
value of -1. If the number of open channels in the specified range is greater than the dimensioned size of
'chaninfo.[]', the extra channels will be ignored. As with PORT mode 3, a status is returned in num.var1
indicating success (zero) or failure (one, port not attached). Under some operating systems, only a
privileged user (such as the Unix root account) can use PORT mode 8 to examine ports that belong to
different user ids.

Mode 9— Determine if a Specified File is Open on a Specified Port
Syntax

PORT num.expr1, 9, num.var1, str.expr, num.expr2, num.var2

PORT mode 9 determines which channel, if any, on the port specified by num.expr1 is open to the file
str.expr with record num.expr2 locked. If num.expr2 is negative, the record lock status will not be checked.
If a match is found, the channel number is returned in num.var2. If no match is found, num.var2 is set to -
1. As with PORT mode 3, a status is returned in num.var1 indicating success (zero) or failure (one, port
not attached).

Examples

Port 8,0,S \ If S Stop ! attach & check status

Port P,1,S \ If S Stop ! abort & get ready

Port P*2,2,E,C$[50] \ If E Stop ! send command

Port X,3,Y,Z \ If Y Stop ! get current mode & stat

See also
SWAP, SPAWN

 Statements 180

dL4 Language Reference Guide©

PRINT
Synopsis

Format values and output formatted string to a file or a device.
Syntax

PRINT {chan.expr} { USING str.expr ; } var.list { , | ; }
Parameters

chan.expr is a driver-class dependent channel expression. The standard output channel is used when the
chan.expr is omitted or the channel number is -4.

str.expr is a string expression used for formatting numeric values.

var.list is a list of comma or semicolon separated variables of any dL4 data types passed to this program.
Executable From Keyboard?

Yes.
Remarks

The var.list consists of variables, literals, or expressions; numeric, date, or string. Each item in the var.list
must be separated by either a comma (,) or a semicolon (;). A comma performs a TAB to the next comma
field before output of the next item. This is generally 15 characters long, but can be changed with the
OPTION COMMA SPACING statement. A semicolon prevents additional spacing in the output.

Numerics are output preceded by a '-' or space indicating negative or positive, and followed by one space
(The STR$ function may be used to omit leading and trailing spaces). Strings are output exactly as stored,
from the supplied starting position terminating at the first zero-byte terminator. No preceding or trailing
spaces are output.

When all items in the var.list are output, a new-line is output to advance the terminal to the next line (or
mark end of line in a text file). This can be suppressed by using a comma or semicolon as the last character
in the PRINT statement. In the case of a comma, a TAB is still performed.

The USING operator formats numeric data for columnar output. It may also be used to imbed commas,
asterisk check fill, floating dollar signs and other special output formats. It must be after any chan.expr
and before the var.list, and only one is allowed per statement. For additional information, see the string
operator USING.

An output column counter (base zero) is maintained for each channel holding the current character position
on the output line. This counter is reset anytime a new-line is output (usually a return) or an @0,y cursor
positioning operation is performed.

The TAB function is used to skip the terminal to a specific column. Its form is:
 Tab (num.expr)

The num.expr must be a positive value. A TAB to a position less than the current position or greater than
the device width may be ignored depending on the driver.

After all items in the var.list are placed into the terminal buffer, it is flushed immediately. No SIGNAL
3,0 is required to start output, and is ignored if executed.

If a chan.expr is specified for PRINT, the output is redirected to the selected channel. If the channel is not
open, output is transmitted to the terminal. This allows a program to selectively output to the terminal or a
printer by including an OPEN of the printer pipe on the selected channel. A separate output column
counter is maintained for each channel opened, so that the TAB and comma operator will operate on
applications doing both screen and file output operations.

 Statements 181

dL4 Language Reference Guide©

PRINT # is generally used to output to a text file, or pipe such as a line printer. The most common form
used for output to a line printer is:

 Print #chan.expr; var.list

The optional record, byte displacement and time-out specifications of a chan.expr are normally unused, as
line-oriented data is generally of variable length. Each successive PRINT # continues its transfer
immediately following the previous, unless a new record or byte displacement is specified.

Examples
Print "AVAILABLE";TAB(40);A*100;"$";Z

;@0,23;’CL’;"Error in Program";

Print #K; Using T$;X,Y,Z,Z/10

See also
OPTION

 Statements 182

dL4 Language Reference Guide©

RANDOM
Synopsis

Seed random generator for RND function.
Syntax

RANDOM num.expr
Parameters

num.expr is an expression yielding a numeric random number seed value.
Executable From Keyboard?

Yes.
Remarks

The num.expr is evaluated, truncated to a positive integer and used to seed the system's pseudo-random
number generator. Seeding implies that a sequence is selected and initiated based on the value supplied. A
seed value of zero selects a further random sequence based upon the current system time.

Typically, a non-zero seed value is used during program debugging, causing the RND function to yield the
same sequence of numbers with each successive run. Once the program is completed, a RANDOM 0 is
issued to produce better random selection.

Examples
Radom 5

Random 0

Random ((N*100)/E^2)

See also

 Statements 183

dL4 Language Reference Guide©

RDLOCK
Synopsis

Read record and keep record locked.
Syntax

RDLOCK chan.expr var.list
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

RDLOCK transfers data into user variables.

If the variable in the list is an array.var, optional subscripts may be specified. If given, these are
evaluated, truncated to integer and used to select a single element. If no subscripts are supplied, only the
first element is transferred. The entire array may be transferred using the notation "[]".

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and
precision.

If the variable in the list is a string or binary variable, its size may be controlled by subscripts.

RDLOCK transfers data and unconditionally locks the record. The data record remains locked until a
non-locking operation is performed by that same program to the same channel. While a record is locked,
other users will be unable to access the record.

RDLOCK is identical to READ omitting the trailing semicolon.
Example

Rdlock #3,R1,100;A

Rdlock #C,R;A$

See also
READ, WRLOCK, OPTION FILE ACCESS

 Statements 184

dL4 Language Reference Guide©

READ
Synopsis

READ variables from DATA statements or channel.
Syntax1

READ var.list
Syntax2

READ chan.expr; var.list { ; }
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.

";" unlocks the record after a successful READ.
Executable From Keyboard?

Yes.
Remarks

Syntax1:

An array.var or mat.var with subscripts specifies only that single element. Omission of a subscript selects
only the first element.

READ begins transferring data sequentially from the lowest numbered DATA statement found in the
program. Subsequent READ statements resume transfer at the next element of the DATA statement.
After all of the items in a given DATA statement have been read, reading continues with the next highest
numbered DATA statement. When all DATA statements have been read, any subsequent will produce the
error 'Out of Data'. The RESTOR statement can be used at any time to start reading from a specific
DATA statement.

READ attempts to transfer data into each variable listed in the var.list. Transfer of a variable terminates at
a comma (,) or at the end of the DATA statement. You may not transfer string data into any numeric
variable. String items must be enclosed in quotes (" ").

Syntax2:

If the variable in the list is an array.var or mat.var, only the first element is read. Subscripts may be used
to select any individual element to be transferred. The entire array may be transferred using the "[]"
notation. The number of bytes transferred is based upon the variable's dimensioned size. The transfer is
performed according the rules for a num.var.

If the variable in the list is a simple num.var, the transfer size is controlled by the DIMensioned size and
precision.

If the variable in the list is a string or binary variable, its size may be controlled by subscripts. Refer to the
dL4 Files and Devices reference manual for file and driver specific details of data transfer.

The optional semicolon (;) terminator is used by dL4 applications to release the automatic record-lock
applied to the supplied record in the chan.expr.

 Statements 185

dL4 Language Reference Guide©

Examples

Read A,B,D[10],A[4,4]

Read A$

Read #3,R1,100;A,B$,C[12];

Read #C,R;A$

See also
DATA, INPUT, MAT READ, RDLOCK, READ, SEARCH, WRITE, WRLOCK

 Statements 186

dL4 Language Reference Guide©

READ RECORD
Synopsis

Read an entire record structure.
Syntax

READ RECORD chan.expr; struct.var
Parameters

chan.expr is a driver-class dependent channel expression.

struct.var is a variable of structure data type.
Executable From Keyboard?

Yes
Remarks

The READ RECORD statement is similar to the normal READ of a record except for the requirement that
a struct.var is supplied and the computation and override of the item number for each member.

Examples
Read Record #2,RecAccess;CustRec.

See also
WRITE RECORD

 Statements 187

dL4 Language Reference Guide©

RECV
Synopsis

Receive a message.
Syntax

RECV num.var1, [str.var | [num.var2, num.var3]] {, num.expr}
Parameters

num.var1 is a variable of numeric data type to receive the sender's port number.

str.var is a variable of string data type to contain the received message.

num.var2 and num.var3 are variables of numeric data type to contain the received message.

num.expr is an expression yielding a number specifying a maximum wait period.
Executable From Keyboard?

Yes.
Remarks

num.var1 receives the sender's port number, or -1 if no messages are waiting for your port.

str.var receives a string message.

num.var2 and num.var3 receive 2 numeric messages. If the second parameter is a num.var, two numeric
variables must be specified. Their two values are then received. The two variables need not be the same
precision.

The optional num.expr is any numeric expression which, after evaluation is truncated to an integer to
specify a delay period (in tenth-seconds) during which the program awaits a message. If zero, or not
included, no pause is invoked, but any currently waiting message will be received. Any message appearing
during a specified delay allows RECV to accept the transmitted data and resume program execution
immediately. If no message appears during the entire delay, port is set to -1.

If the program has an INTSET branch enabled, any message sent to your port will cause a branch to the
selected statement. The interrupt handling routine can then perform a RECV to receive the message.

RECV is identical in operation to SIGNAL 2.
Examples

Recv P,A,B,600 ! Wait 60 seconds

Recv P,A$

See also
SIGNAL, SEND

 Statements 188

dL4 Language Reference Guide©

REM
Synopsis

Insert program comment.
Syntax

REM {comment }
Parameters

 comment is a sequence of characters.
Executable From Keyboard?

No.
Remarks

The REM statement allows the placement of comments within a program. A REM statement is ignored
during execution, but may be referenced within the program.

When REM statements are entered, all characters following the REM up to the end of line are considered
the comment. This includes leading and trailing spaces and control characters.

A ! may be used to abbreviate the verb REM during entry. During listing, REM is listed if it is the first
statement of the line, otherwise ! is displayed. When a REM statement is processed during program
execution, the statement is ignored. Branching (GOTO, GOSUB, etc.) to REM statements is acceptable
with little program overhead.

Note that, since all characters following a REM are considered part of the REM, the REM is always the
last statement on it's line.
 400 Print A \ Rem OUTPUT TOTAL \ Goto 200

Line 400 outputs the value of A and continues with the next program line. The "Goto 200" is considered to
be part of the comment.

Examples
Rem Request input of customer name

Gosub 1000 ! Go receive response

See also

 Statements 189

dL4 Language Reference Guide©

RESTOR
Synopsis

Reset to first data item in a DATA Statement
Syntax

RESTOR label: | stmt.no
Parameters

label is a user-defined name identifying a statement.

stmt.no is any valid dL4 statement.
Executable From Keyboard?

Yes.
Remarks

RESTORE resets the DATA statement pointer to the first data item of the first DATA statement in the
program, just as when the program started.

Including an optional label: or stmt.no sets the pointer the first data item of the first DATA statement
encountered at or past that label: or stmt.no.

If no further DATA statements are found, the pointer will be set to return an "Out of DATA" error during
the next READ.

Examples
Restor MIDDLE:

Restor 2200

See also
DATA, READ

 Statements 190

dL4 Language Reference Guide©

RETRY
Synopsis

Re-execute last TRY block.
Syntax

RETRY
Parameters

None.
Executable From Keyboard?

No.
Remarks

RETRY may be used within the ELSE block(s) to repeat the last TRY block.
Examples

Try
 Open #2,"cust.master"
 Print "Opened cust.master on channel 2"
Else
 Print "Attempting to open cust.master file again"
 Retry
End Try

See also
TRY, END TRY

 Statements 191

dL4 Language Reference Guide©

RETURN
Synopsis

Return from a GOSUB subroutine call.
Syntax

RETURN {num.expr }
Parameters

num.expr is a numeric value specifying the return point relative to the calling GOSUB statement.
Executable From Keyboard?

No.
Remarks

The RETURN statement is used with GOSUB and indicates the end of a program subroutine.

A normal RETURN (or RETURN +0) resumes execution at the statement following the matched
GOSUB. A value of +1 would branch to the second statement following the GOSUB (the first statement
past a normal RETURN). A value of -1 would branch to the statement of the GOSUB itself.

The OPTION RETURN BY LINES statement can be used to enable relative return by lines rather than
statements.

Examples
Return

Return +1

See also
GOSUB, OPTION

 Statements 192

dL4 Language Reference Guide©

REWIND
Synopsis

Reset a file to the beginning.
Syntax

REWIND chan.no {, chan.no } ...
Parameters

 chan.no is a valid channel number.
Executable From Keyboard?

Yes.
Remarks

The REWIND statement resets the selected channel's current file position to the beginning of the file. The
position is reset to record 0, byte displacement 0. If the next file transfer does not specify a record or byte
displacement, the transfer will start at the first data byte of the file.

The effect of REWIND is to reset the current file position as when the channel was initially opened.
REWIND is typically used with Text Files accessed sequentially.

A REWIND operation is ignored when issued to a channel linked to a pipe.

REWIND is identical in operation to SETFP #channel, 0, 0 ;
Examples

Rewind #T, #7, #(J*2)

See also
SETFP

 Statements 193

dL4 Language Reference Guide©

ROPEN
Synopsis

Open an existing file for Read-Only access.
Syntax1

ROPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
ROPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file specification
used to open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
The ROPEN statement opens files for read-only access with record locking disabled. This feature permits
an application to read records that are currently locked by other processes. This form of open is supported
by the Portable Formatted, Portable Indexed Contiguous, UniBasic Formatted, UniBasic Indexed
Contiguous, and FoxPro Full-ISAM drivers. Note: reading records that are currently locked may return
partially updated or inconsistent data.

A file may not be ROPENed if it, or its directory does not have read permission for the user requesting
access.

ROPEN is equivalent to an OPEN statement which specifies "<WL>" as an access option.
Examples

Ropen #1,"DATAFILE","FILE2",#4,"AR.CHECK"

Ropen #1,"23/MMFILE" As "Full-ISAM"

See also
BUILD, CLOSE, EOPEN, OPEN, WOPEN

 Statements 194

dL4 Language Reference Guide©

SEARCH (String)
Synopsis

Search string for a sub-string.
Syntax

SEARCH source.str.expr, destination.str.expr, num.var
Parameters

source.str.expr is any source string expression.

destination.str.expr is any target string expression.

num.var is a variable of numeric data type which receives the character index of the target within the
source, or zero if destination.str.expr is not found in source.str.expr.

Executable From Keyboard?
Yes.

Remarks
source.str.expr is searched for the first occurrence of destination.str.expr. If found, num.var is set to the
character position of the located substring. If not found, a zero is returned. If the source being searched is
a single str.var, it may include a starting subscript if desired, and searching begins at the selected position.
Note however that any position returned will be relative to this starting position.

When performing multiple SEARCH operations on a single string, it is best to initialize a num.var to 1;
adjusting for each located identical sub-string.
 290 Let J=1

 300 Search T$[J],"H-",R

 310 If R Then Let J=(J+R)-1

Here, destination.str.expr is adjusted for the offset caused by a starting subscript. If the substring is not
found, destination.str.expr is returned as zero. The adjustment needed for any given starting subscript 'A'
can be defined as:

 actual position in string = starting subscript + location - 1

Searching terminates when a null character is encountered in the source.str.expr. Entry of the verb
SEARCH followed by a # character is interpreted as a file SEARCH statement and treated as such.

Example
Search P$+A$,".",K

Search A$[J],"TIME",K \ J=J+K-1

See also
POS function

 Statements 195

dL4 Language Reference Guide©

SEARCH (Traditional)
Synopsis

Access or create an index in a keyed file.
Syntax

SEARCH chan.no, num.expr1, index.no {, num.expr2} ; str.var, num.var1, num.var2
Parameters

chan.no is any valid channel number..

num.expr1 is an expression yielding a number specifying the desired operation.

num.expr2 is an expression yielding a number specifying the timeout value.

index.no is a numeric expression whose integer value identifies an index in the file.

str.var is a variable of string data type which contains the source and destination key.

num.var1 is a variable of numeric data type in which the record number is returned if the operation
succeeds.

num.var2 is a variable of numeric data type which contains the return status value.
Executable From Keyboard?

No.
Remarks

In the following tables, mode is the operation as selected by the value of num.expr1.

Summary of SEARCH Operations
Mode OPERATION

0 Define and Create indices within a Contiguous Data File.

1 Return miscellaneous index information.

2 Search for an exact key.

3 Search for the next highest key.

4 Insert a new key into an index.

5 Delete an existing key from an index.

6 Search for the previous key (Search Backward).

7 Unused, included for compatibility.

8 Maintain the B-Tree insertion algorithm for an index.

9 Temporarily same as Mode 6 - Reserved for future use.

Detailed Table of SEARCH Operations
Mode Index Status Operation Performed

0 1<d<63 For a new Indexed File, sets the key length of the selected index to the number
of bytes specified by num.var1. Indices must be defined starting at one and
proceed sequentially.

0 0 Freeze the file definition and build the ISAM portion of the file. Total number
of initial data records is specified by the num.var1.

 Statements 196

dL4 Language Reference Guide©

1 >0 Return the key length of the specified index in bytes.

1 0 =0 Returns the record number of the First Real Data Record.

1 0 =1 Return the number of available records in the file.

1 0 =2 Allocate and return a new record for the application.

1 0 =3 Return a record to the file that is no longer needed. Deleted records will be
reused before the file is extended.

1 0 =4 Return in num.var1 the number of records in the file.

1 0 =5 Return in num.var1 the number of records in the file.

1 0 =6 Set the First Real Data Record to the value supplied in num.var1. This option is
only available during file structuring.

1 0 =7 Return the current number of records in use (allocated) in the data portion of the
file.

2 Search the specified index for the exact match of the supplied key. If found,
return the full key in the supplied key variable, and the associated record number
in num.var1. num.va2r is set to 0 if the key was found, and 1 if the key was not
in the index.

3 Search the specified index for the first key whose value logically exceeds the
supplied key. If found, num.var2 is set to 0, the full key is returned in str.var,
and the associated record number is returned in num.var1.

4 Insert key into the specified index using the supplied num.var1 as the
associated pointer. The record should have been previously allocated using
mode 1, status = 2 above. A status of 0 indicates a successful operation. If the
key already exists in the index, a 1 is returned as num.var2.

5 Delete the supplied key from the specified index. If successful, num.var1 is
returned as the associated pointer, and the num.var2 is set to 0. A num.var2 of 1
indicates an unsuccessful operation; ie, the key was not found in the index. The
record should be returned to the file using mode 1, status = 3 above.

6 Search the specified index for the first key whose value is logically less than the
supplied key. If found, num.var2 is set to 0, the full key is returned in str.var,
and the associated record number is returned in num.var1.

7 No operation. Reserved for future use.

8 B-Tree algorithm maintenance. If num.var1 is negative, return in num.var1 the
current B-Tree algorithm for index. If num.var1 is positive, change the insertion
algorithm to the value passed in num.var1. Set to zero (default) for random
insertion, 1 for increasing insertion, 2 for decreasing insertions.

9 Temporarily, the same as Mode 6. Reserved for future use.

Table of SEARCH status return values
Value Description of status

0 No error, the Index operation was successful.

1 Operation was unsuccessful; i.e. key not found.

2 End of index. Given on modes 3, 6 and 9 when the beginning or end of the index is reached.

3 End of data; all records are allocated.

4 File has no Indices, cannot perform an Indexed File operation.

 Statements 197

dL4 Language Reference Guide©

5 Indexed file structure error; given when key length DIM is less than the actual size of the key from an
Index on Modes 2, 3, 6 and 9. Indicates a DIMension error or structure problem, possibly a c-tree file
structuring error.

6 Index number not in sequence during creation. You must sequentially define all directories.

7 File is not a Contiguous File.

8 File is already Indexed.

9 Value of record is negative or too large.

10 Illegal Index Number.

Example
Search #5;4,1,K$,R1,E \ If E Call KeyExists

E=3 \ Search #J,1,0,K$,R1,E \ If E Call Process(K$,R1,E)

See also
SEARCH (Modern)

 Statements 198

dL4 Language Reference Guide©

SEARCH (Modern)
Synopsis

Locate a key.
Syntax

SEARCH rel.op, chan.no, index.no{,num.expr};{ var.list}
Parameters

rel.op is a relational operator.

chan.no is any valid channel number.

index.no is a numeric expression whose integer value identifies an index in the file.

num.expr is an expression yielding a number specifying the timeout value.

var.list is a list of comma separated variables of any dL4 data types passed to this program.
Executable From Keyboard?

No.
Remarks

The SEARCH statement has been streamlined for use with full ISAM data files.

SEARCH relation #c,index; structure

Where relation is =, >, >=, <, <=, index selects the directory for the operation and structure is any structure
variable which defines the key parts.

Search = #C, I; Key. !Exact search

Search > #C, I; Key. !Search Greater

Search < #C, I; Key. !Search Less

Search >= #C, I; Key. !Search Greater or Equal

Search <= #C, I; Key. !Search Less than or Equal

Search < #C,1; !Position to last key of Index 1

Search > #C,1; !Position to first key of Index 1

The SEARCH statement is used with full ISAM data files to specify an index and set a current record
position within the file for further READ and WRITE RECORD statements. It is not necessary to issue
repeated SEARCH statements unless a random repositioning is required. If the SEARCH succeeds, the
current record position is set accordingly and the index used becomes the current index. Relative record
access forward or backward is then performed using this index.

When used in conjunction with full ISAM files, the application would perform an initial SEARCH and
read the current record. A loop, such as WHILE or DO can then used to read next or previous through the
file.

When SEARCH is used with older-style indexed files, structure variables can still be used by defining a
structure containing the traditional parameters supplied to a SEARCH statement. Only the modes =, >, <
are supported for Indexed files.

 Statements 199

dL4 Language Reference Guide©

Examples

! This is an example of the Search statement
Def Struct CUSTREC
 Member CustNum$[6] : Key "CustNum"
 Member Name$[24] : Item "Name"
 Member 3%,YtdSales : Item "YtdSales"
End Def

Dim CustRec. As CUSTREC
Dim %1, RecAccess
Open #2,"cust.masterfi" As "Full-ISAM"
Map Record #2 As CUSTREC
RecAccess = -2 ! read current record
! sequentially read through a Full-ISAM file,
! from beginning to end
Search > #2,1;

Do
 Try Read Record #2,RecAccess;CustRec. Else Exit Do
 Print CustRec.CustNum$, CustRec.Name$, CustRec.YtdSales
 RecAccess = -1 ! read next (ascending) record
Loop

If Spc(8) <> 52 Print "Unexpected Error: "; Spc(8)
! end of sequential search and now about to delete a specific !
! record first delete the record associated with key value
! 011692, and then search for the deleted key to show that the
! key and record were actually deleted

For I = 1 to 2
 Try
 Search = #2,1;"4549DL"
 Read Record #2, -2;CustRec.
 Delete Record #2
 Print "Deleted Customer Number: 4549DL"
 Else
 Print "Key '4549DL' not found" ! look for this key
 End Try
Next I
Close

See also
SEARCH (Traditional)

 Statements 200

dL4 Language Reference Guide©

SELECT CASE

Synopsis

Conditionally execute blocks of statements depending upon the value of an expression.
Syntax1

SELECT CASE expr

CASE [num.lit | [num.lit TO num.lit] | [IS rel.op num.lit]] {, [num.lit | [num.lit TO num.lit] | [IS rel.op
num.lit]]} ...
 stmts

CASE ELSE

 stmts

ENDSELECT
Syntax2

SELECT CASE expr

CASE [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]] {, [str.lit | [str.lit TO str.lit] | [IS rel.op str.lit]]} ...
 stmts
CASE ELSE
 stmts
ENDSELECT

Parameters
expr is an expression which is evaluated for subsequent selection within the entire block.

stmts is any block of dL4 BASIC statements.

num.lit is a numeric literal.

rel.op is a relational operator.

str.lit is a string literal.
Executable From Keyboard?

No.
Remarks

The SELECT CASE statement organizes blocks of statements which are dependent upon the value of a
single expression.

For each expr value which requires further processing by the application, a CASE selection is specified.
These may be in the form of a single expression which is compared for equality, an inclusive range of
values specified in the form expression TO expression, or a value which results in a true relation, such as
IS > 50. Multiple conditions, separated by comma may be specified.

stmnts are those statements which are to be executed for the selected condition.

CASE ELSE is optional and the associated stmnts are executed when no other CASE expression matched
the value of the primary expr. If present, CASE ELSE must be the last CASE in the block.

 Statements 201

dL4 Language Reference Guide©

Examples

! This is an example of the Select Case statement
Print 'CS'
Choice = 1
Do Until Choice = 6
 Select Case Choice
 Case 1
 Print @15,Choice + 15;"This is case 1"
 Case 2 To 3
 Print @15,Choice + 15;"This is case 2 or 3"
 Case Is > 3
 Print @15,Choice + 15;"This is case greater than 3"
 Case Else
 Print @15,Choice + 15;"This is default case"
 End Select
 Choice = Choice + 1
Loop

See also
CASE, ENDSELECT

 Statements 202

dL4 Language Reference Guide©

SEND
Synopsis

Transmit a message to another port.
Syntax

SEND num.expr1, [str.var | [num.var2, num.var3]]
Parameters

num.expr1 is an expression yielding a number specifying the receiver's port number.

str.var is a variable of string data type containing the message to transmit.

num.var2 and num.var3 are variables of numeric data type containing messages to transmit.
Executable From Keyboard?

Yes.
Remarks

If the second parameter is numeric, two numeric expressions must be specified. Their two values are then
transmitted. The two variables need not be the same precision.

It is up to the program on the receiving port to execute the appropriate RECV or SIGNAL 2 statement to
receive the type (string/numeric) of data transmitted. If that program has an INTSET branch enabled,
SEND will cause an interrupt to occur in it.

SEND is identical in operation to SIGNAL 1.
Examples

Send 12,22,33

Send P,A$

See also
RECV, SIGNAL

 Statements 203

dL4 Language Reference Guide©

SET
Synopsis

Set driver-class dependent information in a channel.
Syntax

SET chan.expr expr.list
Parameters

chan.expr is a driver-class dependent channel expression.

expr.list is an arbitrary number of comma separated expressions or variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

Refer to the dL4 Files and Devices reference manual for information on a specific driver.
Examples

Set #1,0,0,0;CustRec.Name$, "Name"

Set #1,0,1,0;CustRec.Address1$, "Address1"

Set #1,0,3,0;CustRec.City$, "City"

Set #1,0,4,0;CustRec.State$, "State"

Set #1,0,5,0;CustRec.Zip, "Zip"

See also
GET

 Statements 204

dL4 Language Reference Guide©

SETFP
Synopsis

Set file position for next access.
Syntax

SETFP chan.expr
Parameters

chan.expr is a driver-class dependent channel expression.
Executable From Keyboard?

Yes.
Remarks

A semicolon must terminate the chan.expr.

SETFP specifies a new file position on a channel for the next sequential access READ, WRITE, etc. not
specifying a record or byte displacement. If the next transfer specifies its own record and byte
displacement position, the former position is overridden. The byte displacement specification is optional
and, if not included, will default to byte zero of the selected record.

SETFP to record 0, byte displacement 0 is identical in operation to a REWIND.
Examples

Setfp #6,R,I;

Setfp #5,0,0; ! Same as REWIND #5;

See also
REWIND, READ, WRITE

 Statements 205

dL4 Language Reference Guide©

SIGNAL 1 | 2
Synopsis

Transmit/Receive a message.
Syntax1

SIGNAL 1, num.expr1, [str.expr | [num.expr2, num.expr3]]
Syntax2

SIGNAL 2, num.var1, [str.var | [num.var2, num.var3]] {, num.expr4}
Parameters

num.expr1 is an expression yielding a number specifying the destination port number.

str.expr is an expression yielding a string specifying the destination message.

num.expr2 and num.expr3 are expressions yielding numbers specifying the destination message.

num.var1 is a variable of numeric data type receiving the sender's port number.

num.var2 and num.var3 are variables of numeric data types to contain the receive message.

num.expr4 is an expression yielding a number specifying a maximum wait period.
Executable From Keyboard?

No.
Remarks

Syntax1:

The string expression or 2 num.expr values are placed into the communication buffer for transmission to
the selected port. Messages may be transmitted to your current port number, or any port number that is
logged on. An error 153 is returned if the destination port is invalid.

Messages are FIFO (First in, First out). Messages include those transmitted using SEND, SIGNAL 1, and
CALL $TRXCO.

If numeric data is transmitted, full floating point precision is transmitted. When numeric values are
received with SIGNAL 2, they are converted to the precision of the supplied value1 and value2 num.vars.

An error is generated if the communication file is full, or an illegal port number is specified. Messages
transmitted to a port not signed into a dL4 process are discarded, and no error is generated.

Messages awaiting a port are deleted when that port ends its session.

Syntax2:

The optional delay for SIGNAL 2 is any num.expr which, after evaluation is truncated to an integer to
specify a delay period (in tenth-seconds) during which the program awaits a message. If zero, or not
included, no pause is invoked, but any currently waiting message is received. Any message appearing
during a specified delay allows SIGNAL to accept the transmitted data and resume program execution
immediately. If no message appears during the entire delay, port is set to -1.

A scan is performed for the oldest SIGNAL 1 or SEND message transmitted to your port number. If
found, port is set to the port number of the sender. If no messages are waiting, port is set to -1.

The received message is copied into string or value1 and value2 as specified. It is the programs'
responsibility to select the same format (str.var or 2 num.vars) used by the sender. The sender's port
number is returned in the supplied port variable. Typically, an application designer chooses one format for
all message transmission and reception.

If delay is specified and no message is waiting, the program is paused for the specified number of tenth-
seconds. If any message is transmitted during the delay, the pause is terminated allowing immediate
reception. A -1 is returned in port if no message is received within the delay period.

 Statements 206

dL4 Language Reference Guide©

The [SIGNAL] input character (usually CTRL B) transmits a message of 2 numeric zeros or a null string
to your current port which may be retrieved using SIGNAL 2.

All messages may be cleared by performing repeated SIGNAL 2 statements until port is returned with -1,
or by issuing a SIGNAL 6.

If the program has an INTSET in effect, transmission of a message by another port or [SIGNAL]
character performs an interrupt branch.

Messages awaiting a port number are deleted when that port number ends its session.
Examples

Signal 1,P,A,B*100

Signal 2,P,A,B,300 !Wait 30 seconds

See also
RECV, SEND

 Statements 207

dL4 Language Reference Guide©

SIGNAL 3
Synopsis

Suspend program operation.
Syntax

SIGNAL 3, num.expr
Parameters

num.expr is an expression yielding tenth-seconds pause time.
Executable From Keyboard?

No.
Remarks

The program is unconditionally suspended for the number of tenth-seconds specified in delay. An
[ESCAPE] without ESCape branching or [ABORT] terminates a pause. If the application has an
INTSET defined, the [INTERRUPT] or [SIGNAL] will terminate the pause and perform the branch.

If delay is zero, the statement is ignored and no pause is performed.
Examples

Signal 3,30 !Pause 3 seconds

See also
PAUSE

 Statements 208

dL4 Language Reference Guide©

SIGNAL 5
Synopsis

Receive system signal.
Syntax

SIGNAL 5, num.var1, num.var2, num.var3 {, num.expr4 }
Parameters

num.var1 is an expression yielding the transmitter's port number.

num.var2 is a variables of numeric data type receiving the type of system message.

num.var3 is a variables of numeric data type receiving specific system message.

num.expr4 is an expression yielding a number specifying a maximum wait period.
Executable From Keyboard?

No.
Remarks

A scan is made for the oldest system message directed to your port number. If no system message is
waiting, port is set to -1.

If a system message is waiting, port is set to -2, value1 is set to the type of system message, and value2
returns specific information.

The only system message currently implemented is for INPUT timed-out. This occurs when an application
performs an INPUT TIM, and the input times-out without response from the keyboard. port is set to -2,
value1 is set to 0, and value2 is set to the number of characters entered prior to time-out.

Unless OPTION INPUT TIMEOUT SIGNAL OFF is used, programs performing an INPUT TIM
should immediately follow with a SIGNAL 5 to check the sense of the timed input and prevent
overflowing communication resources. If port returns -1, a response was entered within the prescribed
time limit.

Examples
Signal 5,P,A,B,300 !Wait 30 seconds

See also
SIGNAL 6

 Statements 209

dL4 Language Reference Guide©

SIGNAL 6
Synopsis

Clear outstanding signals.
Syntax

SIGNAL 6, num.expr1, num.var2, num.var2
Parameters

num.expr1 is an expression yielding a number to specify a signal type.

num.var2 are variables of numeric data type used for syntax only.
Executable From Keyboard?

No.
Remarks

All user messages, system messages or both may be cleared using SIGNAL 6. The type selects the
messages to be cleared from the system:

type Function Performed

-1 Remove all user messages; SIGNAL 1, SEND.

-2 Remove all system messages.

-3 Remove both user and system messages.

SIGNAL 6 may be used to clear the message queue for this port number . Messages are automatically
deleted when a port ends its session (BYE, SYSTEM 0, or terminated SPAWN commands).

Examples
Signal 6,-3,A,A

See also
SIGNAL 5

 Statements 210

dL4 Language Reference Guide©

SIZE
Synopsis

Select the size of a window component.
Syntax

SIZE { chan.expr } w,h
Parameters

chan.expr is a driver-class dependent channel expression.

w,h are the width and height for the window component.
Executable From Keyboard?

Yes.
Remarks

Depending on the driver, it is possible to change the size of the window on the screen or control which part
of the window is displayed. Refer to the dL4 Files and Devices reference manual for more information
about windows.

Examples
! This is an example of the Size statement
Dim S$[1]
Print 'CS'
W = 41 \ H = 12
Open #1,{" Windows ","TITL",W,H} As "Window"
For I=1 TO 5
 Print #1;"1234567890123456789012345678901234567890"
 Size #1; W - (I * 2), H - (I * 2)
 Read #1;S$
 Erase #1
Next I

See also
MOVE, WINDOW

 Statements 211

dL4 Language Reference Guide©

SPAWN
Synopsis

Launch a background BASIC program.
Syntax

SPAWN filename {, num.var }
Parameters

filename is a string literal or expression containing a name which is optionally preceded by a relative or
absolute directory pathname.

num.var is a numeric variable in which the program's port number is returned.
Executable From Keyboard?

No.
Remarks

SPAWN creates another process to run the BASIC program. This child process inherits the current
environment and current working directory. All channels are closed, and no COM or CHAIN WRITE
variables may be passed.

SPAWN is simpler than the PORT or CALL TRXCO() functions to launch a phantom port into a BASIC
program. It is especially suited for launching background reports, spoolers and other programs
communicated with using SEND, RECV or SIGNAL.

When the program terminates to command mode or BASIC program mode from STOP, non-trapped error,
END, CHAIN "", or SYSTEM 0/1, the process terminates releasing the port.

SPAWN locates an unused port number scanning backward from the value of the runtime parameter
MAXPORT.

The optional port num.var is returned with the port number assigned to the background program. SEND
and SIGNAL, as well as CALL TRXCO() and PORT statements may be used to communicate with a
port initiated by SPAWN.

Examples
Spawn "1/SPOOLER"

Spawn A$,K ! Start program, get port number

See also
PORT, SIGNAL, SYSTEM

 Statements 212

dL4 Language Reference Guide©

STOP
Synopsis

Abnormally terminate a program.
Syntax

STOP {str.expr}
Parameters

str.expr is an expression yielding a string value.
Executable From Keyboard?

No.
Remarks

The STOP statement terminates a running program and is functionally identical to the SUSPEND state-
ment.

str.expr is an optional string expression to be displayed.

If the program was executed from the SCOPE Interactive Development Environment (IDE) a STOP
statement causes program execution to cease, and returns the user to debug mode.

The STOP statement is usually used to indicate an error condition or some other abnormal mode of
program termination. A STOP statement, non-trapped [ESCAPE] or [ABORT] causes program execution
to cease. The program is left in the partition , channels remain open, and variables retain their values. The
user is returned to debug mode with the display:

--> [0] program:stmt.no;sub-stmt.no
program - Root program
STOP = str.expr

STOP at program:stmt.no statement

Type ? for help
dbg>

program is the filename of the current BASIC program, stmt.no is the statement number containing the
STOP, sub-stmt.no is the statement within the line, and statement is the actual BASIC statement.

If the running program was started by SWAP, the various levels are displayed:
--> [1] program2:80;1
 program2 - SWAPed
 [0] 60;1

STOP = in program2

STOP at program2:80 STOP "in program2"

Type ? for help
dbg>

This example indicates that a STOP occurred in program2, which was swapped to from a program at line
60;1 in that program.

If the program was executed from another environment, such as the Operating System prompt, via the
applicable RUN filename command, the user is returned to that environment with a display:

STOP at program:stmt.no;sub-stmt.no
str.expr
prompt

program is the filename of the current BASIC program, stmt.no is the statement number containing the
STOP, sub-stmt.no is the statement within the line, and prompt is the environment prompt.

 Statements 213

dL4 Language Reference Guide©

If the running program was started by SWAP, the various levels are displayed:
STOP at program2:80;1
SWAP at program1:60;1
in program2
$

Other statements may follow a STOP in the program.
Examples

100 Stop

220 Stop "Irrecoverable error, contact support"

See also
SUSPEND

 Statements 214

dL4 Language Reference Guide©

SUB
Synopsis

Define a subroutine.
Syntax

SUB proc.name ({parm.list })
Parameters

proc.name is the procedure name.

parm.list is a list of variables associated with parameters passed, optionally followed by three dots ("...").
Executable From Keyboard?

No.
Remarks

SUB declares a subroutine which operates as a separate program block within a program unit. A
subroutine operates upon, and return values through, supplied parameters passed by reference.

A proc.name may be from one-to-thirty-two characters in length. Structures may be passed and operated
upon.

Whenever a subroutine is to be used before its definition within the current program unit or program, or
physically resides in another program, a DECLARE statement must occur before its first use.

Subroutines may be written to allow the caller to pass other than a fixed list of parameters. Parameter types
and number are not checked by the compiler or interpreter. Rather, it is left to the subroutine to process
each of the arguments passed by a caller.

To define a subroutine of this type, the following general forms are supported:

Sub name (...)

The definition of the subroutine itself specifies '...' informing the compiler and interpreter to leave the
parameter type and number checking to the subroutine.

It is also permitted to define a subroutine which has a known (required) list of parameters, followed by
additional optional parameters. Optional parameters must be the last parameters in the function definition.
The following example requires a numeric parameter and a string parameter, followed by an optional
number of parameters.

Sub proc.name (parameter1, parameter2$, ... }

Subroutines of this type utilize the ENTER statement to accept optional parameters.
Examples

Sub VerifyDate(D$, ...)

See also
FUNCTION

 Statements 215

dL4 Language Reference Guide©

SUSPEND
Synopsis

Abnormally terminate a program.
Syntax

SUSPEND {str.expr}
Parameters

str.expr is an expression yielding a string value.
Executable From Keyboard?

No.
Remarks

The SUSPEND statement is functionally identical to the STOP statement.

str.expr is an optional string expression to be displayed.

If the program was executed from the SCOPE Interactive Development Environment (IDE) a SUSPEND
statement causes program execution to cease, and returns the user to debug mode.

The SUSPEND statement is usually used to indicate an error condition or some other abnormal mode of
program termination. A SUSPEND statement, non-trapped [ESCAPE] or [ABORT] causes program
execution to cease. The program is left in the partition , channels remain open, and variables retain their
values. The user is returned to debug mode with the display:

--> [0] program:stmt.no;sub-stmt.no

program - Root program

STOP = str.expr

STOP at program:stmt.no statement

 Type ? for help

dbg>

program is the filename of the current BASIC program, stmt.no is the statement number containing the
SUSPEND, sub-stmt.no is the statement within the line, and statement is the actual BASIC statement.

If the running program was started by SWAP, the various levels are displayed:
--> [1] program2:80;1

 program2 - SWAPed

 [0] 80;1

STOP = in program2

STOP at program2:60 SUSPEND "in program2"

Type ? for help

dbg>

This example indicates that a SUSPEND occurred in program2, which was swapped to from a program at
line 60;1 in that program.

If the program was executed from another environment, such as the Operating System prompt, via the
applicable RUN filename command, the user is returned to that environment with a display:

 Statements 216

dL4 Language Reference Guide©

STOP at program:stmt.no;sub-stmt.no

str.expr

prompt

program is the filename of the current BASIC program, stmt.no is the statement number containing the
SUSPEND, sub-stmt.no is the statement within the line, and prompt is the environment prompt.

If the running program was started by SWAP, the various levels are displayed:
STOP at program2:80;1

SWAP at program1:60;1

in program2

$

Other statements may follow a SUSPEND in the program.
Examples

100 Suspend

220 Suspend "Irrecoverable error, contact support"

See also
STOP

 Statements 217

dL4 Language Reference Guide©

SWAP
Synopsis

Suspend current program and execute another BASIC program.
Syntax

SWAP { num.expr,} filename
Parameters

num.expr selects whether channels and common variables are to be passed to the SWAPped program.

filename is a string literal or expression containing a dL4 BASIC program filename which is optionally
preceded by a relative or absolute directory pathname.

Executable From Keyboard?
No.

Remarks
num.exp is a mode which, after evaluation is truncated to an integer to select channel and common variable
pass-along into the SWAP program. If mode is omitted, mode 2 is assumed.

SWAP suspends execution of the current program, saves all open channels and variables, and then
executes the child program. This child (swapped) program inherits the current environment, variables,
open channels, and current working directory from the parent (calling program).

The selected filename.expr is loaded following the same rules as CHAIN. Common variables declared
using COM or CHAIN WRITE statements following the SWAP statement, and open channels passed to
the child process are processed according to the mode as follows:

mode Function Performed

0 Close all open files in the child. Do not pass any common variables, i.e. ignore COM and CHAIN
WRITE.

1 Pass all open channels to the child, and process the common variables according to the rules for COM
or CHAIN WRITE.

2 (default) Close all open files for the child, but process any common variables according to the rules for
COM or CHAIN WRITE.

The parent is the initial program that executed the SWAP statement.

The child is each program executed by the SWAP statement . The parent is suspended while the child
runs. When a child terminates, the parent continues automatically, unaware of the events of the child.

A child can itself be considered a parent if it performs a SWAP statement. SWAP statements may nest
until memory is exhausted. A unique relationship exists between the parent and child programs. Variables
and File Positions all flow forward from parent to child, however no information is passed back to the
parent upon termination of a child.

When a child inherits open files, the Operating System uses the same entries in the dL4 channel table. A
child can change its copy of the current pointers as well as add or remove locks on records. These
operations may confuse the parent.

When the SWAP program terminates using END, SYSTEM, or CHAIN "", the calling program resumes
execution at the statement immediately following the SWAP. To the caller, it appears as if the SWAP
statement never occurred.

If a non-trapped [ESCAPE], [ABORT] or STOP statement occurs, the swapped program is terminated to
BASIC debug mode to allow debugging. Execution of a termination statement while in debug mode
(END, SYSTEM, or CHAIN ""), terminates the swap level and resumes execution in the calling program.

 Statements 218

dL4 Language Reference Guide©

Data may be passed from a swapped program back to the calling program using temporary files, or by
placing it into the type-ahead buffer using CALL $INPBUF. Data may not be transferred to the calling
program using common variables.

Important: a child program can communicate with other ports using CALL 98, etc., and assumes the same
port # as the parent.

Examples
Swap "23/PROGRAM3"

Swap 0,A$

See also
CHAIN, SPAWN

 Statements 219

dL4 Language Reference Guide©

SYSTEM
Synopsis

Execute operating system specific commands.
Syntax1

SYSTEM str.expr [,num.var]
Syntax2

SYSTEM num.expr {, expr} { ; num.expr {, expr}} ...
Parameters

str.expr is a command passed to the native operating system.

num.var is a variable of numeric data type to return the status.

num.expr is an expression yielding an operation to be performed.

expr is a numeric or a string expression, or a variable, yielding a parameter.
Executable From Keyboard?

Yes.
Remarks

num.expr may be a mode which, after evaluation is truncated to an integer and used to specify the operation
to be performed. Some modes require a second parameter which is any num.expr which, after evaluation
is truncated to an integer. The parameters are separated by the mode using a comma.

Multiple SYSTEM modes may be invoked separating each with a semicolon.

str.expr is passed directly to the Operating System. This command can be used to launch another
application, or perform a system command. If an optional num.var follows, the status that is returned from
the Operating System is stored.

Following execution of the system command by the operating system, the program resumes operation.

If the system command performs any output, your screen will be compromised unless a new Window was
opened prior to, and closed after, the SYSTEM command.

mode Operation Performed

0 Terminate a session (BYE command). You may also terminate other users by including a port
number as an additional parameter. The general form: SYSTEM 0,N terminates port N.

1 Clear the port's program partition (issue a NEW command), and stop the program.

4 Un-assign all non-common variables. This allows re-dimensioning of partition space as long as
all variables to be used are re-assigned.

5 Un-assign all variables. Same effect as SYSTEM 4, except common variables (COM and
CHAIN WRITE) are also affected.

8 Enable terminal echo. Each character input will be echoed by the system to the terminal.

9 Disable terminal echo. Each character input is received by the system, but not echoed to the
terminal. This feature allows for password or other secretive input.

14 Enable Binary Input mode. All characters input are directly accepted as data. This includes
end-of-line, requiring the use of character limited INPUT.

15 Disable Binary Input mode. Normal character processing is resumed.

16 Enable Binary Output mode.

17 Disable Binary Output mode.

 Statements 220

dL4 Language Reference Guide©

20 Enable Trace mode. See Trace Mode.

21 Disable Trace mode.

26 Automatic limited input. Causes character limited input to terminate when the specified number
of characters have been entered. Affects INPUT statement.

27 Disable Automatic limited input. Causes character limited input to require an [ENTER] (usually
return) to be entered, even after the specified limit has been reached. Entry of each extra character
sounds the terminal bell until end-of-line is entered.

28 Get value of Environment Variable. This function requires the special form: SYSTEM 28,
str.var where str.var initially contains the name of an environment variable. If found, its value is
overwritten in the string, otherwise the str.var is set to “”. If SYSTEM 29 has been used to set an
alternate source and the value is not found in the environment, then the alternate source will be
searched.

29 Set alternate sources of Environment Variables. This function requires a special form: SYSTEM
29, str.var where str.var contains an alternate source path for variables that are not defined in the
environment. On Windows systems, this path is an application registry key within the user or
system software keys. This mode is not supported on Unix systems.

30 Execute the native operating system command specified by the subsequent string parameter and,
optionally, return the command status in a numeric parameter. This function requires one of two
special forms: SYSTEM 30,str.expr or SYSTEM 30,str.expr,num.var. The operating system
command is not permitted to perform input or output to the user terminal and thus the command
execution is invisible to the user.

31 Execute the client operating system command specified by the subsequent string parameter, wait
for the command to complete, and, optionally, return the command status in a numeric parameter.
This function requires one of two special forms: SYSTEM 31,str.expr or SYSTEM
31,str.expr,num.var. If the application is running remotely, the command will be executed on the
local system. For example, if a user is connecting to the application system via the dL4Term
terminal emulator, the command will be executed on the user’s Windows system on which
dL4Term is running. If the application is running under dL4 for Windows, this mode is identical
to ‘SYSTEM “command”,status’. This mode can only be used with supported terminal emulators
and may require configuration of the client system software to enable local command execution.

32 Get the amount of available space on a file system in units of 512 bytes. This mode requires a
special form: SYSTEM 32, str.expr,num.var where str.expr is the path of a directory or file on
the file system and num.var is a variable that receives the number of available 512 byte blocks.

33 Start the client operating system command specified by the subsequent string parameter and,
optionally, return the initialization status in a numeric parameter. Unlike SYSTEM 31, the
statement does not wait for the completion of the command. This function requires one of two
special forms: SYSTEM 33,str.expr or SYSTEM 33,str.expr,num.var. If the application is
running remotely, the command will be executed on the local system. For example, if a user is
connecting to the application system via the dL4Term terminal emulator, the command will be
executed on the user’s Windows system on which dL4Term is running. If the application is
running under dL4 for Windows, the command will run on the same system as the application.
This mode can only be used with supported terminal emulators and may require configuration of
the client system software to enable local command execution.

Each port is returned to its normal operational modes (8, 15, 17, 19, 21, and 26) when a program is
completed or aborted.

Examples
System 14;16;

See also

 Statements 221

dL4 Language Reference Guide©

TRACE
Synopsis

Control non-interactive statement tracing.
Syntax

TRACE [OFF | [ON { chan.no }]]
Parameters

chan.no is a valid channel number.
Executable From Keyboard?

Yes.
Remarks

Trace mode is used when it is desirable to observe the statement number program flow without performing
single steps. SYSTEM 20 or TRACE ON enables tracing; SYSTEM 21 or TRACE OFF turns trace off.
These statements may be used in immediate mode, or imbedded within specific code segments of a
program. For each statement executed, the statement number stmt.no and sub-statement number sub-
stmt.no (statements on the same BASIC line) is printed. The current program and procedure names will be
printed if the names are available.

The TRACE ON statement can be followed by an optional channel number for redirecting trace output to
a file or driver.

The channel number that is given must be opened prior to executing the TRACE statement. If the channel
is subsequently closed, trace output defaults to the terminal. The following information is output during
trace mode:
 [statement number; sub-statement number]

Tracing is automatically disabled when another program is loaded using CHAIN, SWAP, or SPAWN.
Examples

Trace On

Trace Off

Trace On #5

See also
SYSTEM 20, SYSTEM 21

 Statements 222

dL4 Language Reference Guide©

TRY
Synopsis

Specify a statement/block to execute when an error occurs in a specific statement/block.
Syntax1

TRY stmt1 ELSE stmt2
Syntax2

TRY
 stmts
ELSE IF bool.expr
 stmts
ELSE
 stmts
END TRY

Parameters
stmt1 and stmt2 are any valid dL4 BASIC statements.

bool.expr is an expression evaluated to produce a boolean value.

stmts is any block of dL4 BASIC statements.
Executable From Keyboard?

No.
Remarks

TRY provides for the temporarily redirection of error branching within a block. If any program error
branching is in effect, it is temporarily suspended for any error other than ESCAPE for the duration of the
TRY statement or block. Error branching is restored upon the completion of the line or block.

Examples
Try
 Open #2,"cust.master"
 Print "Opened cust.master on channel 2"
Else
 Print "Unexpected Error: ";Spc(8); " at line ";Spc(10)
End Try
Print "Terminating program"
Close

See also
RETRY

 Statements 223

dL4 Language Reference Guide©

UNLOCK
Synopsis

Unlock current locked record.
Syntax

UNLOCK chan.no{, chan.no} ...
Parameters

chan.no is any valid channel number.
Executable From Keyboard?

Yes.
Remarks

Any record locked by your program on the specified channel becomes unlocked. For most drivers, no
error is generated if no record has been locked. A record locked by another user cannot be unlocked.

Generally, UNLOCK is only used in special circumstances, such as having one file open on two channels.
In this case, UNLOCK can be used to prevent the program from locking itself out of a record.

The statement WRITE # channel ;; is identical to UNLOCK.
Examples

Unlock #5, #K, #K+1

See also
READ, WRITE

 Statements 224

dL4 Language Reference Guide©

WEND
Synopsis

End a WHILE block.
Syntax

WEND
Parameters

None.
Executable From Keyboard?

No.
Remarks

Each WEND statement must match exactly one previous WHILE statement. The compiler ensures that all
loops are properly matched.

Examples
Print 'CS'
Counter = 5

While Counter
 Print Counter,
 Counter = Counter - 1
Wend
Print

See also
DO, ENDIF, LOOP, NEXT

 Statements 225

dL4 Language Reference Guide©

WHILE
Synopsis

Begin a loop to be performed as long as the expression is true.
Syntax

WHILE bool.expr
Parameters

bool.expr is an expression evaluated to produce a boolean value.
Executable From Keyboard?

Yes.
Remarks

Program loops may be established using the WHILE and WEND statements as a means of blocking a set
of repeated statements. WHILE and WEND statements provide additional flexibility and looping control
beyond the simple FOR / NEXT.

WHILE provides for looping as long as the bool.expr remains true. The bool.expr is tested prior to
performing each loop. The loop is terminated once the bool.expr is false.

WHILE is identical in behavior to DO WHILE ... LOOP.

Unlike FOR, WHILE loops may nest indefinitely. In addition, each WHILE loop must contain exactly
one matching WEND statement. The compiler ensures that all loops are properly matched. Although not
recommended, branching from outside to inside a WHILE loop will not cause an error, rather the program
will remain in the loop until it terminates. The WHILE statement itself need not be executed to commence
looping.

Goto Label
While Value > 100
 Print Value;
 Label: Value = Value + 1
Wend

Examples
Print 'CS'
Counter = 5
While Counter
 Print Counter,
 Counter = Counter - 1
Wend
Print

See also
DO, DO LOOP, DO WHILE , FOR, LOOP

 Statements 226

dL4 Language Reference Guide©

WINDOW CLEAR
Synopsis

Clear all Dynamic Windows and screen.
Syntax

WINDOW CLEAR
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver as
described in the Window driver section of the dL4 Files and Devices reference manual. The WINDOW
statements are provided for compatibility and programmer convenience.

WINDOW CLEAR clears all Windows back to Window Zero and clears the screen.
Examples

Window Clear

See also
WINDOW CLOSE

 Statements 227

dL4 Language Reference Guide©

WINDOW CLOSE
Synopsis

Delete current Dynamic Window and repaint the original underlying data.
Syntax

WINDOW CLOSE
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver as
described in the Window driver section of the dL4 Files and Devices reference manual. The WINDOW
statements are provided for compatibility and programmer convenience.

WINDOW CLOSE deletes the current Window repainting the original underlying data. MSC(33) and
MSC(34) now reflect the size of the previous Window and MSC(42) is decremented. A Window must
always be deleted at the same parent / child SWAP level it was created. For example, you perform a
WINDOW OPEN in program A, then CHAIN to program B, which in turn performs a SWAP or [Hot-
Key] swap to program C (a child of B). If program C opens any windows, then WINDOW CLOSE
should be performed before returning control to program B. A WINDOW CLOSE will be performed
automatically for any windows that program C opened, but did not close.

Examples
Window Close
See also

WINDOW CLEAR

 Statements 228

dL4 Language Reference Guide©

WINDOW MODIFY
Synopsis

Change the size or position of the current Dynamic Window.
Syntax

WINDOW MODIFY @x1,yl; [SIZE w,h; | TO @x2,y2;] {USING str.expr}
Parameters

 x1,y1 are the column, row coordinates of the upper left corner.

w,h identify the width and height.

x2,y2 are the lower right column, row coordinates.

str.expr is a string expression yielding a window title.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver as
described in the Window driver section of the dL4 Files and Devices reference manual. The WINDOW
statements are provided for compatibility and programmer convenience.

WINDOW MODIFY is used to change the size of the current Window based upon the supplied
parameters. Functions MSC(33) and MSC(34) are updated to reflect the current size. The size of a
Window may be changed as many times as desired but it cannot extend beyond the original parameters
specified to WINDOW OPEN. If the Window must be enlarged, perform a WINDOW CLOSE,
followed by another WINDOW OPEN. WINDOW MODIFY may be used to create your own borders,
to modify the border created by WINDOW OPEN, or implement a series of panes inside a Window that
can be accessed randomly.

WINDOW MODIFY merely redefines the writable region inside a window. The window itself is not
actually closed and re-opened. No underlying data is revealed or hidden by this statement.

Examples
Window Modify @7,7 To @62,18;

Window Modify @7,7; Size 80,24; Using "Help"

See also
WINDOW OPEN

 Statements 229

dL4 Language Reference Guide©

WINDOW OFF
Synopsis

Redirect screen I/O from Dynamic Window to root window.
Syntax

WINDOW OFF
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver as
described in the Window driver section of the dL4 Files and Devices reference manual. The WINDOW
statements are provided for compatibility and programmer convenience.

WINDOW OFF temporarily redirects output to the root window channel. Further screen operations are
not output to the current window and access outside the current Window is allowed. If Dynamic Window
was previously on and protected fields were used, they won't be protected.

WINDOW OFF and ON may also be used when secondary Windows (other than the first full-screen) are
opened, and access to the full screen is desired. When Dynamic Windows is turned off, cursor access is to
the full screen. When Dynamic Windows is again turned on, the cursor is logically re-positioned to the last
tracked position. Turning Dynamic Windows off to modify data outside the screen should be limited to the
display of errors or messages in a common area. The Dynamic Window system is unaware of any changes
to the screen.

Examples
Window Off

See also
WINDOW ON

 Statements 230

dL4 Language Reference Guide©

WINDOW ON
Synopsis

Redirect screen I/O to current Dynamic Window.
Syntax

WINDOW ON
Parameters

None.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver as
described in the Window driver section of the dL4 Files and Devices reference manual. The WINDOW
statements are provided for compatibility and programmer convenience.

WINDOW ON enables Dynamic Windows and should precede any other WINDOW function. The
Dynamic Window system is initialized by clearing the screen. Subsequent WINDOW ON statements are
ignored.

WINDOW OFF and ON may also be used when secondary Windows (other than the first full-screen) are
opened, and access to the full screen is desired. When Dynamic Windows is turned off, cursor access is to
the full screen. When Dynamic Windows is again turned on, the cursor is logically re-positioned to the last
tracked position. Turning Dynamic Windows off to modify data outside the screen should be limited to the
display of errors or messages in a common area. The Dynamic Window system is unaware of any changes
to the screen.

Examples
Window On

See also
WINDOW OFF

 Statements 231

dL4 Language Reference Guide©

WINDOW OPEN
Synopsis

Create a new Dynamic Window.
Syntax

WINDOW OPEN @x1,yl; [SIZE w,h; | TO @x2,y2;] {USING str.expr}
Parameters

 x1,y1 are the column, row coordinates of the upper left corner of the Window.

w,h identify the Window width and height.

x2,y2 are the lower right column, row coordinates of the Window.

str.expr is a string expression yielding a Window title.
Executable From Keyboard?

Yes.
Remarks

The recommended method for using Windows under dL4 is to open a channel to the Window driver as
described in the Window driver section of the dL4 Files and Devices reference manual. The WINDOW
statements are provided for compatibility and programmer convenience.

@ specifies a crt.expr in the form of a Cursor Address. x1 is any num.expr which, after evaluation is
truncated to an integer to select the Upper Left Column for the Window. y1 is any num.expr which, after
evaluation is truncated to an integer to select the Upper Left Row. Following the crt.expr must be a
semicolon.

SIZE selects the size of a Window in columns and rows. TO specifies the size using a crt.expr in the form
of a Cursor Address of the last character position in the Window. Either form may be used. If SIZE is
used, w is any num.expr which, after evaluation is truncated to an integer to select the number of columns.
h is any num.expr which, after evaluation is truncated to an integer to select the number of rows. If TO is
specified, x2 is any num.expr which, after evaluation is truncated to an integer to select the Lower Right
Column for the Window. y2 is any num.expr which, after evaluation is truncated to an integer to select the
Lower Right Row. Following the crt.expr must be a semicolon.

The optional USING str.expr is any string expression to be centered and printed as the title of a Window.
The size must be less than the number of columns in the Window, or it is truncated. The inclusion of
USING specifies that a graphical border is to be placed around the Window. The str.expr may be a null-
string for a box without heading. The specification of a graphical border reduces the usable space in the
Window by one row, and column on the top, bottom and each side.

Whenever a program terminates, Dynamic Windows is turned off. If a program is terminated by
[ESCAPE], [ABORT], STOP, or Breakpoint, debugging is permitted and Windows remain open,
otherwise all Windows are cleared.

Examples
Window Open @5,5; To @60,20; Using "Help"

Window Open @0,0; Size 80,24;

See also
WINDOW MODIFY

 Statements 232

dL4 Language Reference Guide©

WOPEN
Synopsis

Open an existing file for Write-Only access.
Syntax1

WOPEN chan.no, file.spec.str {AS driver-class | driver-name } {, {chan.no,} file.spec.str {AS
driver-class | driver-name}} ...

Syntax2
WOPEN chan.no, file.spec.items AS driver-class | driver-name {, {chan.no,} file.spec.items AS
driver-class | driver-name} ...

Parameters
chan.no identifies a valid channel number, which the program uses for subsequent references to the file.

file.spec.str, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file specification
used to open a file.

driver-class specifies the driver-class, instead of using a default driver-class derived from the file.spec.

driver-name specifies the driver-name, instead of using a default driver-class derived from the file.spec.

file.spec.items, which is described in detail in Chapter 9 of this guide, identifies a valid dL4 file
specification used to open a file.

Executable From Keyboard?
Yes.

Remarks
Similar to the OPEN statement except access is write-only.

Examples
Wopen #2,"cust.masterfi" AS "Full-ISAM"

See also
BUILD, CLOSE, EOPEN, OPEN, ROPEN

 Statements 233

dL4 Language Reference Guide©

WRITE
Synopsis

Write variables to a channel.
Syntax

WRITE chan.expr var.list {;}
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.

";" unlocks the record after a successful WRITE.
Executable From Keyboard?

No.
Remarks

WRITE transfers data from any dL4 data type to the file opened on the selected chan.expr.

If the variable in the list is an array.var or mat.var, only the first element is written. Subscripts may be
used to select any individual element to be transferred. The number of bytes transferred is based upon the
variable DIMensioned size. The transfer is performed according the rules for the array element type.

If the variable in the list is a simple num.var or date.var, the transfer size is controlled by the DIMensioned
size and precision.

If the variable in the list is a str.var, its size may be controlled by subscripts. Refer to the dL4 Files and
Devices reference manual for a description of how each specific file type and driver transfer data.

The optional semicolon (;) terminator is used to release the automatic record-lock applied to the supplied
record in the chan.expr.

Examples
Write #3,R1,100;A,B$,C[12]

Write #C,R;A$

See also
READ, READ RECORD, MAT WRITE, WRITE RECORD, WRLOCK

 Statements 234

dL4 Language Reference Guide©

WRITE RECORD
Synopsis

Write an entire structure.
Syntax

WRITE RECORD chan.expr struct.var {;}
Parameters

chan.expr is a driver-class dependent channel expression.

struct.var is a variable of structure data type.

";" unlocks the record after a successful WRITE.
Executable From Keyboard?

Yes.
Remarks

The WRITE RECORD statement is similar to normal WRITE of a record except that item numbers may
be supplied by the ITEM option of the MEMBER statement.

The example illustrates the use of structures and the new statements on an old-style existing Indexed or
Contiguous file.

Def Struct DRCR
 Member 3%, Debit : Item 0 !Note item displacement is
 Member 3%, Credit : Item 6 !relative to where we begin a
 !transfer
End Def

Def Struct Cust
 Member Number$[8] : Item 0
 Member Name$[30] : Item 10
 Member Addr$[30] : Item 42
 Member Balance. As DRCR : Item 74
 Member 1%,LastOrderNumb# : Item 86
End Def

Dim Customer. As Cust

Write Record #c,r,b,t;Customer.

is identical to:
Write #c,r,b+0,t;Customer.Number$
Write #c,r,b+10,t;Customer.Name$
Write #c,r,b+42,t;Customer.Addr$
Write #c,r,b+74+0,t;Customer.Balance.Debit
Write #c,r,b+74+6,t;Customer.Balance.Credit

The starting (or supplied) byte displacement is incremented by any ITEM declaration within the structure.
Since the structure Customer contains the structure DRCR as Balance beginning at offset 74, the original
definition of the structure DRCR has starting offsets of zero. If one were to transfer a DRCR structure
separately, a starting offset of 74 would have to be supplied in the transfer statement itself.

Examples
Write Record #2, -2;CustRec.

See also
READ RECORD

 Statements 235

dL4 Language Reference Guide©

WRLOCK
Synopsis

Write record and keep record locked.
Syntax

WRLOCK chan.expr var.list
Parameters

chan.expr is a driver-class dependent channel expression.

var.list is a list of comma separated variables of any dL4 data types.
Executable From Keyboard?

Yes.
Remarks

WRLOCK # transfers data from any dL4 data type into the file opened on chan.expr.

If the variable in the list is an array.var, optional subscripts may be specified. If given, these are
evaluated, truncated to integer and used to select a single element. If no subscripts are supplied, only the
first element is transferred.

If the variable in the list is a simple num.var or date.var, the transfer size is controlled by the DIMensioned
size and precision.

If the variable in the list is a string or binary variable, its size may be controlled by subscripts. All
characters are transferred including zero-bytes.

WRLOCK transfers data and unconditionally locks the record. The data record remains locked until a
non-locking operation is performed by that same program to the same channel. While a record is locked,
other users will be unable to access the record.

WRLOCK is identical to WRITE omitting the trailing semicolon.

See the WRITE statement for additional details.
Examples

Wrlock #3,R1,100;A

Wrlock #C,R;A$

See also
RDLOCK, WRITE

 Intrinsic CALLS 236

dL4 Language Reference Guide©

Chapter 8 - Intrinsic CALLs and Functions

Introduction
This chapter presents the standard user defined CALLs and functions included with dL4. These
procedures and functions must be DECLAREd before used in a BASIC program, i.e.:

Declare Intrinsic Sub TrxCo, Logic, InpBuf

Declare Intrinsic Function FmtOf

This chapter does not describe the CALLs, such as DXOpen and DXGET, that are specific to
dynamicXport applications. Please see the dynamicXport manuals for information concerning those
CALLs.

 Intrinsic CALLS 237

dL4 Language Reference Guide©

FUNCTION ADDMD5?
Synopsis

Calculate intermediate MD5 checksum for multiple string or binary values.
Syntax

ADDMD5? (expr, {, bin.expr})
Parameters

expr is a string or binary expression which specifies the value on which to calculate the MD5 checksum.

bin.expr is an optional expression which is the result of a previous ADDMD5? calculation.
Remarks

ADDMD5? calculates and returns as a 128 byte binary value an intermediate value of the MD5 checksum
of expr. This intermediate value must be passed to a subsequent call to the MD5? function to generate a
final MD5 checksum. The optional binary argument bin.expr can be used to pass the intermediate MD5
result value from a previous call to ADDMD5? to calculate a combined checksum of several variables. The
checksum is calculated against the dimensioned size of strings so that null characters can be included in the
checksum. Subscripts can be used to limit the number of characters included in the checksum. So that
string values will produce the same checksum values on all platforms, each UNICODE character of a string
is forced into a most-significant-byte-first ordering for checksum calculation. An error will be generated if
an illegal number of parameters, parameter type, or parameter value is used.

Examples

Dim CheckSum?[16], Temp?[128]
Temp? = AddMD5?(C$)
CheckSum? = MD5?(X$[1,Len(X$)],Temp?) !Calculate checksum of C$+X$

See also
CRC32, MD5?

 Intrinsic CALLS 238

dL4 Language Reference Guide©

CALL ASC2EBCDIC
Synopsis

Convert string between Unicode and EBCDIC character sets.
Syntax

CALL ASC2EBCDIC (str.var { ,num.expr})
Parameters

str.var is a string variable containing the string to translate to or from EBCDIC.

num.expr is an optional expression select the translation mode.
Remarks

The string is translated from EBCDIC to Unicode if num.expr is zero or not specified. If num.expr is non-
zero, then the string is translated from Unicode to EBCDIC. An error 38 is generated if str.expr contains
any characters that cannot be translated. This procedure is compatible with UniBasic CALL 53.

Examples
Call Asc2EBCDIC(Rec$)

See also
CALL, CALL ATOE, CALL ETOA

 Intrinsic CALLS 239

dL4 Language Reference Guide©

CALL ATOE
Synopsis

Convert string from Unicode to the EBCDIC character set.
Syntax

CALL ATOE (str.var)
Parameters

str.var is the string to translate.
Remarks

An error 38 is generated if str.var contains any characters that cannot be translated. This procedure is
compatible with UniBasic CALL $ATOE.

Examples
Call AtoE(Value$)

See also
CALL, CALL ETOA, CALL ASC2EBCDIC

 Intrinsic CALLS 240

dL4 Language Reference Guide©

CALL AVAILBLKS
Synopsis

Get amount of available file space
Syntax

CALL AVAILBLKS(num.expr, num.var)
Parameters

num.expr is an expression which specifies the logical unit to check.

num.var is a variable that receives the amount of available space, in 512 byte blocks, on the file system that
contains the logical unit specifed by num.expr.

Remarks
This procedure is compatible with UniBasic CALL 117. The SYSTEM 32 statement provides a more
general method of checking for available file space.

Examples
Call AvailBlks(LU,NBLKS)

See also
CALL, SYSTEM 32

 Intrinsic CALLS 241

dL4 Language Reference Guide©

CALL AVPORT
Synopsis

Find available port number.
Syntax

CALL AVPORT (num.var {,num.expr1 {,num.expr2}})
Parameters

num.var is a variable which is set to the first available port number in the specified port number range or -1
if no port is available.

num.expr1is an optional expression which specifies the beginning of the port number range.

num.expr2 is an optional expression which specifies the end of the port number range.
Remarks

If num.expr2 is not specified, the end of the port number range is assumed to be the maximum port
number. If num.expr1 is not specified, the beginning of the port number range is assumed to be zero. If the
end of the port number range is less than the beginning, then the port number search will be performed
downwards from the end of the range.

Examples
Call AvPort(P)

Call AvPort(PortNum, 100)

Call AvPOrt(PortNum, 1000, 900)

See also
CALL, PORT, CALL TRXCO

 Intrinsic CALLS 242

dL4 Language Reference Guide©

FUNCTION BASE64$
Synopsis

Encode binary value as a printable base 64 value.
Syntax

BASE64$ (bin.expr)
Parameters

bin.expr is a binary string expression.
Remarks

BASE64$ encodes the binary string bin.expr as a printable base 64 character string. Base 64 is used for
some forms of MIME encoding. An error will be generated if an illegal number of parameters, parameter
type, or parameter value is used.

Examples

C$ = Base64$(C?)
See also

BASE64?

 Intrinsic CALLS 243

dL4 Language Reference Guide©

FUNCTION BASE64?
Synopsis

Decode base 64 string into a binary string.
Syntax

BASE64? (str.expr)
Parameters

str.expr is a string expression which is a binary string encoded in base 64.
Remarks

BASE64? decodes the base 64 string str.expr into a binary string. Base 64 is used for some forms of
MIME encoding. An error will be generated if an illegal number of parameters, parameter type, or
parameter value is used.

Examples

C? = Base64?(C$)
See also

Base64$

 Intrinsic CALLS 244

dL4 Language Reference Guide©

CALL BITMANIP
Synopsis

Manipulate Numeric BIT.
Syntax

CALL BITMANIP (num.expr, num.var1, num.var2 {, num.var3})
Parameters

num.expr is a mode which, after evaluation, is truncated to an integer to specify one of the following
operations: Reset, Set, Test, AND, OR, XOR, Complement.

num.var1 is used to select one binary argument to the CALL.

num.var2 is used to select a second binary argument to the CALL.

The optional num.var3 is used to return information from the CALL.
Remarks

mode is any num.expr which, after evaluation, is truncated to an integer to specify one of the following
operations:

 mode Operation Selected

0 Reset (zero) bit number num.var1 in variable num.var2. num.var3 returns bit num.var1
before reset.

1 Set bit number num.var1 in variable num.var2 to one. num.var3 returns bit num.var1
before set.

2 Test bit number num.var1 in variable num.var2. num.var3 returns zero if the bit is
zero or
 2 15-num.var1 if the bit is one.

3 AND variable num.var1 to variable num.var2 and store result in num.var2 . A logical
AND produces a one in each bit position set in both num.var1 and num.var2.

4 OR variable num.var1 to variable num.var2 and store result in num.var2. A logical OR
produces a one in each bit position set in either num.var1 or num.var2 or both.

5 XOR variable num.var1 to variable num.var2 and store result in num.var2. A logical
XOR (exclusive OR) produces a one in each bit position set in either num.var1 or
num.var2 but not in both.

6 Complement (NOT) variable num.var1 and store result in variable num.var2. Each one
bit is set to zero and vice-versa.

CALL BITMANIP provides bit manipulation on integer variables in the range 0 thru 65535 (1777778).
One-word arithmetic and logical operations are also provided.

The following table illustrates the effect of the logical operations:

X Y X AND Y X OR Y X XOR Y NOT Y

0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1
1 1 1 1 0

Examples
Call Bitmanip(M,A,B,F)

See also
CALL, CALL LOGIC

 Intrinsic CALLS 245

dL4 Language Reference Guide©

CALL BITSNUMSTR
Synopsis

Store/Load BITS representation of a number.
Syntax1

CALL BITSNUMSTR (num.expr1, num.expr2, bin.var)
Syntax2

CALL BITSNUMSTR (num.expr1, num.expr2, str.var)
Syntax3

CALL BITSNUMSTR (num.expr1, bin.expr, num.var)
Syntax4

CALL BITSNUMSTR (num.expr1, str.expr, num.var)

Parameters

num.expr1 is a numeric expression yielding an index into bin.var or bin.expr at which to copy num.expr2
or num.var.

num.expr2 is a numeric expression yielding a value to copy into bin.var.

bin.var is a binary variable into which the value of num.expr2 is copied.

str.var is a string variable into which the value of num.expr2 is copied.

bin.expr is a binary expression yielding a binary string from which a value is copied to num.var.

str.expr is a string expression yielding a binary string from which a value is copied to num.var.

num.var is a numeric variable into which a value is copied from bin.expr.
Remarks

CALL BITSNUMSTR may be used to convert between BITS numeric data and binary data.

Syntax1 converts a number to its BITS binary representation and stores it at the index position in the binary
string variable.

Syntax2converts a number to its BITS string representation and stores it at the index position in the string
variable.

Syntax3 converts a BITS binary representation at the index position to a number and stores it in a variable.

Syntax4 converts a BITS string representation at the index position to a number and stores it in a variable.

The precision of the numeric variable determines the storage requirements.
Examples

Declare Intrinsic Sub BitsNumStr
Dim b?[20]
Dim %1,a1
a1 = 3
i = 1
Call bitsnumstr(i,a1,b?)
Print Hex$(b?)
Call bitsnumstr(i,b?,a1)
Print "The magic number was ";a1
End

See also
CALL

 Intrinsic CALLS 246

dL4 Language Reference Guide©

CALL BYTECOPY
Synopsis

Copy bytes from source to destination up to shorter of the two variables.
Syntax

CALL BYTECOPY (destination.var.name, source.var.name)
Parameters

destination.var.name is the destination variable name of any dL4 data type.

source.var.name is the source variable name of any dL4 data type.
Remarks

The BYTECOPY call may be used for low level manipulations, but should not be used by the BASIC
programmer except in special situations, as it will frequently cause a program or its files to become non-
portable.

Examples
! Demonstration of danger using BYTECOPY
Declare Intrinsic Sub ByteCopy
Dim %1,a1,%2,a2
a2 = 32767
Print 'CS'
For i=1 to 3
 Try
 a1 = a2 ! PRECISION PROBLEM
 Else
 Print a2;" too large for assignment to %1 variable "
 Print " Will use BYTECOPY to force assignment. "
 Call ByteCopy(a1,a2) ! FORCE THE ASSIGNMENT
 End Try
 Print
 Print " Variable a2 is ";a2;" copied to variable a1 as ";a1
 Print
 a2 = a2 + 1
 If i = 2 then a2 = 50000
Next I
End

See also
CALL, Declare Intrinsic Function FmtOf

 Intrinsic CALLS 247

dL4 Language Reference Guide©

CALL CALLSTAT
Synopsis

Get CALL subprogram level information
Syntax

CALL CALLSTAT (num.var1, str.var, num.var2)
Parameters

num.var1 receives the current CALL subprogram level (zero if in the main program).

str.var receives the name of the parent (CALLing) program.

num.var2 receives the line number of the CALL statement in the parent program.
Remarks

The arguments are optional and can be placed in various orders with the returned information determined
by the variable type and the preceding arguments. An error 38 is generated if the arguments are ilegal.

Examples
Call CallStat(level,parentname$,parentline)

See also
CALL

 Intrinsic CALLS 248

dL4 Language Reference Guide©

FUNCTION CALLSTAT$
Synopsis

Return description of the current program position at a specified level
Syntax

CALLSTAT$ (num.expr, str.var)
Parameters

num.expr specifies the procedure level to describe.

str.var receives the level type such as “Swap” or “ExtFunc”.
Remarks

The current level is specified as zero, the parent procedure is specified as one, and so on. An error 38 is
generated if a non-existent level is specified or it the arguments are ilegal.

Examples
Print CallStat$(1, Type$)

See also
CALL CALLSTAT

 Intrinsic CALLS 249

dL4 Language Reference Guide©

CALL CHECKDIGITS
Synopsis

Validate numeric field.
Syntax

CALL CHECKDIGITS (str.expr)
Parameters

str.expr is an expression which specifies the string to validate.
Remarks

An error 38 is generated if str.expr contains any non-numeric characters or if the parameter is not a string.
A null string (“”) is accepted as valid. This procedure is compatible with UniBasic CALL 22.

Examples
Call CheckDigits(Cost$)

See also
CALL, CALL CHECKNUMBER

 Intrinsic CALLS 250

dL4 Language Reference Guide©

CALL CHECKNUMBER
Synopsis

Validate numeric field.
Syntax

CALL CHECKNUMBER (str.expr)
Parameters

str.expr is an expression which specifies the string to validate.
Remarks

An error 38 is generated if str.expr contains any characters other than digits (0 - 9), plus signs (“+”), minus
signs (“-“), or more than one decimal point (“.”). This procedure is compatible with UniBasic CALL 23.

Examples
Call CheckNumber(Cost$)

See also
CALL, CALL CHECKDIGIT

 Intrinsic CALLS 251

dL4 Language Reference Guide©

CALL CHSTAT
Synopsis

Get SWAP level information
Syntax

CALL CHSTAT (num.var1, str.var, num.var2)
Parameters

num.var1 receives the current SWAP subprogram level (zero if in the main program).

str.var receives the name of the parent (SWAPing) program.

num.var2 receives the line number of the SWAP statement in the parent program.
Remarks

The arguments are optional and can be placed in various orders with the returned information determined
by the variable type and the preceding arguments. An error 38 is generated if the arguments are ilegal.

Examples
Call ChStat(level,parentname$,parentline)

See also
CALL, SWAP

 Intrinsic CALLS 252

dL4 Language Reference Guide©

CALL CKSUM
Synopsis

Calculate file checksum.
Syntax

CALL CKSUM ({num.expr1, } str.expr , num.expr2, num.expr3, var, num.var)
Parameters

num.expr1 is an optional expression selecting the type of checksum.

str.expr is the file path.

num.expr2 is the 16-bit word starting offset of the file area to checksum.

num.expr3 is the 16-bit word ending offset of the file area to checksum. Use -1 to checksum the entire file.

var is a numeric or binary variable that receives the calculated checksum.

num.var is an optional variable that receives the operation status.
Remarks

The checksum algorithm is selected by num.expr1 as follows:

omitted UniBasic compatible 16-bit checksum (var must be numeric)

0 UniBasic compatible 16-bit checksum (var must be numeric)

1 32-bit CRC checksum (var must be numeric)

2 16 byte MD5 checksum (var must be binary)

If num.var is specified, then the following operation status is returned in the variable:

0 Successful

1 str.expr is not a string

3 num.expr1 (start offset) is negative

5 num.expr2 (end offset) is negative

6 num.expr1 (start) is greater than num.expr2 (end)

7 File not found

If num.var is not specified and the final status would have been non-zero, an error 38 will occur.

This procedure is compatible with UniBasic CALL $CKSUM.
Examples

Call Cksum(Filename$,Start,End,Checksum,Status)

See also
CALL, CRC32, MD5?

 Intrinsic CALLS 253

dL4 Language Reference Guide©

CALL CLEARSTR
Synopsis

Fill string variable with nulls
Syntax

CALL CLEARSTR (str.var)
Parameters

Str.var is the string to clear.
Remarks

This procedure is compatible with UniBasic CALL 57. String variables can also be initialized to nulls by
the CLEAR statement.

Examples
Call ClearStr(X$)

See also
CALL, CLEAR

 Intrinsic CALLS 254

dL4 Language Reference Guide©

CALL CLOSEALL
Synopsis

Close all channels
Syntax

CALL CLOSEALL (expr)
Parameters

expr is an expression of any type. The expression value is not used by this CALL.
Remarks

This procedure is compatible with UniBasic CALL 116. All channels can also be closed by the following
statement:

 CLOSE
Examples

Call CloseAll(0)

See also
CALL, CLOSE

 Intrinsic CALLS 255

dL4 Language Reference Guide©

CALL CLU
Synopsis

Change current logical unit.
Syntax

CALL CLU (num.expr { , num.var})
Parameters

num.expr is an expression which specifies the new logical unit number or -1 to return to the default
working directory.

num.var is a numeric variable that receives the operation status. A status of 0 is successful, a status of 1
indicates an invalid logical unit number, and a status of 2 occurs if the logical unit was not found.

Remarks
An error 38 is generated if the type or number of parameters is incorrect This procedure is compatible with
UniBasic CALL $CLU. The CHDIR statement provides a more general method of changing the current
directory.

Examples
Call CLU(5)

See also
CALL, CHDIR

 Intrinsic CALLS 256

dL4 Language Reference Guide©

CALL CONVERTCASE
Synopsis

Convert selected characters to upper or lower case.
Syntax

CALL CONVERTCASE (num.expr1, str.expr {, num.expr2})
Parameters

num.expr1 is an expression which selects the function to be performed

str.var is a string variable to be converted.

num.expr2 is an optional expression which specifies the index (origin 0) in str.var at which to begin
converting.

Remarks
The value of num.expr1 selects one of the following conversion modes:

Mode Function

1 Convert all letters to upper case.

2 Convert first letter only to upper case.

3 Convert first letter of each word to upper case.

4 Convert all letters to lower case.

5 Convert first letter and any single “I” to upper case.

6 Convert all letters to lower case and any single “I” to upper case.

This procedure is compatible with UniBasic CALL 43.
Examples

Call ConvertCase(1,C$)

See also
CALL, LCASE$, UCASE$

 Intrinsic CALLS 257

dL4 Language Reference Guide©

CALL COPYSTR
Synopsis

Copy string to specified position
Syntax

CALL COPYSTR (str.var, num.expr, str.expr)
Parameters

str.var is the destination string.

num.expr is the index value in str.var at which the copy is performed. A value of one starts the copy at the
first character in str.var.

str.expr is the string value to copy.
Remarks

If the source string is longer than the destination area, the copy will be truncated. If num.expr is negative or
exceeds the size of str.var, nothing will be copied, but no error will occur. This procedure is compatible
with UniBasic CALL 30.

Examples
Call CopyStr(Dest$,DestIdx,Src$)

See also
CALL

 Intrinsic CALLS 258

dL4 Language Reference Guide©

FUNCTION CRC16
Synopsis

Calculate 16 bit cyclic reduncancy code of string or binary value.
Syntax

CRC16 (num.expr1, num.expr2, str.expr, num.expr3)
Parameters

num.expr1 is an expression which selects the type of CRC calculation.

num.expr2 is an expression which specifies the CRC polynomial.

Str.expr is a string expression which specifies the value on which to calculate the 16 bit CRC.

num.expr3 is an expression which is the result of a previous CRC calculation.
Remarks

CRC16 calculates and returns as a number the 16-bit CRC checksum of str.expr which must be a string
value. If num.expr1 is zero, a simple 8 bit sum is calculated. If num.expr1 is equal to one, a 16 bit CRC is
calculated using num.expr2 as the CRC polynomial. The numeric argument num.expr3 can be used to pass
the CRC value from a previous call to calculate a combined CRC of several variables. The CRC value is
calculated against the DIMed size of strings so that null characters can be included in the CRC value.
Subscripts can be used to limit the number of characters included in the CRC. So that string values will
produce the same CRC values on all platforms, each UNICODE character of a string is forced into a most-
significant-byte-first ordering for CRC calculation. An error will be generated if an illegal number of
parameters, parameter type, or parameter value is used.

Examples

CheckSum = CRC16(1,4129,Blk$,0) !Calculate XMODEM CRC of Blk$

See also
ADDMD5?, CRC32, MD5?, NCRC32

 Intrinsic CALLS 259

dL4 Language Reference Guide©

FUNCTION CRC32
Synopsis

Calculate 32 bit cyclic reduncancy code of string or binary value.
Syntax

CRC32 (expr {, num.expr})
Parameters

expr is a string or binary expression which specifies the value on which to calculate the 32 bit CRC

num.expr is an optional expression which is the result of a previous CRC calculation.
Remarks

CRC32 calculates and returns as a number the 32-bit CRC checksum of expr which must be either a string
or a binary value. The optional numeric argument num.expr can be used to pass the CRC value from a
previous call to calculate a combined CRC of several variables. The CRC value is calculated against the
DIMed size of strings so that null characters can be included in the CRC value. Subscripts can be used to
limit the number of characters included in the CRC. So that string values will produce the same CRC
values on all platforms, each UNICODE character of a string is forced into a most-significant-byte-first
ordering for CRC calculation. An error will be generated if an illegal number of parameters, parameter
type, or parameter value is used.

Examples

CheckSum = CRC32(C$) !Calculate CRC of C$ alone

CheckSum = CRC32(X$[1,Len(X$)],CheckSum) !Calculate CRC of C$+X$

See also
ADDMD5?, MD5?, NCRC32

 Intrinsic CALLS 260

dL4 Language Reference Guide©

CALL CUSTOMCHARACTERSET
Synopsis

Create custom character sets.
Syntax

CALL CUSTOMCHARACTERSET (num.expr,str.expr{,num.var})
Parameters

num.expr is a numeric variable or expression specifying the various call functions.

str.expr is a string variable or expression that contains the path of a dL4 profile text file.

num.var is a numeric variable specifying the status returned by the call.
Remarks

The intrinsic CALL, CustomCharacterSet, allows dL4 programs to create their own custom character sets.
These characters sets can be used with the OPEN and BUILD "charset=name" option to read or write data
in the custom character set. The character set must support a single byte character set: each character in the
character set must consist of a single byte (multibyte codes like UTF-8 can not created).

The call requires a num.expr "mode" and a str.expr "filename" argument. In addition, the call may receive
an optional num.expr "status" variable argument.

The num.expr "mode" argument represents the various call functions. The available modes or functions
are:

Mode Functions

0 Register or modify a user-defined character set.

1 Register a user-defined character set, but do not modify an existing character set. Return an error
if the character set was previously registered.

2 Register a user-defined character set, but do not modify an existing character set. Do not return an
error if the character set was previously registered.

Note that a character set can modified, but it can not be deleted. The character set will be available until
dL4 is exited.

The call will return an error if it is called with an invalid number of arguments or with an invalid argument
type.

 Intrinsic CALLS 261

dL4 Language Reference Guide©

The str.expr argument contains the path of a dL4 profile text file. This text file must contain three sections:
a "CharacterSetName" section, a "ToUnicode" table section, and a "FromUnicode" table section.

 [CharacterSetName]

 Name=

 Name=

 Name=

 .

 .

 .

 [ToUnicode]

 .

 .

 .

 [FromUnicode]

 .

 .

 .

The "CharacterSetName" section consists of one or more names for the character set. Both the
"ToUnicode" and "FromUnicode" sections consist of zero or more lines in the following format:

<StartingUnicodeValue>-<EndingUnicodeValue>=<Custom Character Set Value>

An example of the profile file, using an imaginary character set follows:

 [Character Set Name]
 Name=Imaginary Character Set
 Name=Synonym Character Set

 [ToUnicode]
 0x0020-0x007e=0x20
 0x00a0-0x00a0=0xff
 0x00a1-0x00a1=0xad
 0x00a2-0x00a2=0xbd

 [FromUnicode]
 0x0020-0x007e=0x20
 0x00a0-0x00a0=0xff
 0x00a1-0x00a1=0xad
 0x00a2-0x00a2=0xbd

The optional status variable num.var represents the status returned by the call. If the status variable is not
used, the call will return a BASIC error if it detects an error. If the status variable is specified, then it will
be set to either zero, indicating success, or a positive value indicating a specific error status. The status
values are:

Status Value Meaning

0 No Error

1 Profile file does not exist or cannot be opened

2 Invalid CharacterSetName section

 Intrinsic CALLS 262

dL4 Language Reference Guide©

3 Invalid ToUnicode section

4 Invalid FromUnicode section

5 Character set already registered

6 Memory overflow

7 Character set is too complex (this shouldn't occur for any real character set)

8 Unexpected system error (such an I/O error reading the profile file)

9 Unknown error (catchall for any other unexpected error)
Examples

Call CustomCharacterSet(0,"chardir/custom")

Call CustomCharacterSet(Mode,CharFn$,Error)

See also
CALL

 Intrinsic CALLS 263

dL4 Language Reference Guide©

CALL DATE
Synopsis

Verify and reformat a date.
Syntax

CALL DATE (str.expr, str.var, num.expr, num.var)
Parameters

str.expr is an expression which specifies the string to validate and reformat

str.var is a string variable that receives the reformatted date.

num.expr is the length of formatted output.

num.var is a numeric variable that receives the operation status.
Remarks

The source date in str.expr must have the format MMYY, MMDDYY, or MMDDYYYY. The reformatted
date in str.var will have the format YYMM, YYMMDD, or YYYYMMDD selected by the length
num.expr. If OPTION DATE FORMAT NATIVE is used, the current locale will be used for date
ordering. If the date is valid and reformatted successfully, a zero will be returned in num.var, otherwise an
error status of one will be returned. This procedure is compatible with UniBasic CALL $DATE.

Examples
Call Date(srcdate$,destdate$,8,status)

See also
CALL, CALL VERIFYDATE

 Intrinsic CALLS 264

dL4 Language Reference Guide©

CALL DATETOJULIAN
Synopsis

Convert date string to julian date string.
Syntax

CALL DATETOJULIAN ({num.expr,} str.expr {,str.var {,num.var}})
Parameters

num.expr is an optional expression selecting the input and output date formats.

str.expr is an expression which specifies the string to convert.

str.var is an optional variable which receives the converted date string.

num.var is an optional variable that receives the status of the conversion (0 for success, 1 for illegal date).
Remarks

Conversion modes:

 num.expr Input Date Output Date Comment

 0 yymmdd yyddd year and day of year; e.g. 98365

 1 yymmdd ddddd days since January 1, 1968

 2 yymmdd yyyyddd 4 digit year and day of year; e.g. 1998365

 4 yyyymmdd yyddd 2 digit year and day of year; e.g. 98365

 5 yyyymmdd ddddd days since January 1, 1968

 6 yyyymmdd yyyyddd 4 digit year and day of year; e.g. 1998365

If num.expr is not specified, a conversion mode of 0 is assumed.

If str.var is not specified, then str.expr must be a string variable into which the converted date is stored.

If num.var is not specified, then an illegal date will cause an error 38 to occur.

This procedure is compatible with UniBasic CALL 25.
Examples

Call DateToJulian(S$)

See also
CALL, CALL JULIANTODATE

 Intrinsic CALLS 265

dL4 Language Reference Guide©

FUNCTION DATEUSING$
Synopsis

Convert date to string using a mask.
Syntax

DATEUSING$ (date.expr, str.expr)
Parameters

date.expr is a date expression which specifies the date value to convert to a character string.

str.expr is a string expression that controls the formatting of the date value.
Remarks

The DATEUSING function parses the format mask str.expr replacing the date codes with the values,
derived from date.expr, shown in the table below. Any characters in the format mask that are not part of a
date code are left unchanged. The final string is returned as the function value.

Code Replacement value

D Numeric day of week (0 - 6, 0 is Sunday)

d Numeric day of week (0 - 6, 0 is Sunday)

DAY Day name in upper case (SUNDAY, MONDAY, ...)

day Day name in mixed case (Sunday, Monday, ...)

Day Day name in mixed case (Sunday, Monday, ...)

DY Abbreviated day name in upper case (SUN, MON, ...)

dy Abbreviated day name in mixed case (Sun, Mon, ...)

Dy Abbreviated day name in mixed case (Sun, Mon, ...)

DD Numeric day of month zero filled ("01" - "31")

Dd Numeric day of month space filled (" 1" - "31")

dD Numeric day of month space filled ("01" - "31")

dd Numeric day of month ("1" - "31")

DDD Numeric day of year zero filled ("001" - "366")

Ddd Numeric day of year space filled (" 1" - "366")

ddd Numeric day of year ("1" - "366")

HH Numeric hour of day zero filled ("00" - "23")

Hh Numeric hour of day space filled (" 0" - "23")

hH Numeric hour of day space filled (" 0" - "23")

hh Numeric hour of day ("0" - "23")

MM Numeric month of year zero filled ("01" - "12")

Mm Numeric month of year space filled (" 1" - "12")

 Intrinsic CALLS 266

dL4 Language Reference Guide©

mm Numeric month of year ("1" - "12")

MONTH Month name in upper case (JANUARY, FEBRUARY, ...)

Month Month name in mixed case (January, February, ...)

month Month name in mixed case (January, February, ...)

MON Abbreviated month name in upper case (JAN, FEB, ...)

Mon Abbreviated day name in mixed case (Jan, Feb, ...)

mon Abbreviated day name in mixed case (Jan, Feb, ...)

NN Numeric minute of hour zero filled ("00" - "59")

Nn Numeric minute of hour space filled (" 0" - "59")

nN Numeric minute of hour space filled (" 0" - "59")

nn Numeric minute of hour ("0" - "59")

PM "AM" for time before noon, "PM" for time afterward

pm "am" for time before noon, "pm" for time afterward

P "A" for time before noon, "P" for time afterward

p "a" for time before noon, "p" for time afterward

Q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)

q Numeric quarter of year ("1" - "4", 1 is Oct - Dec)

SS Numeric second of minute zero filled ("00" - "59")

Ss Numeric second of minute space filled (" 0" - "59")

sS Numeric second of minute space filled (" 0" - "59")

ss Numeric second of minute ("0" - "59")

TH Ordinal number in upper case ("1ST", "2ND", ...)

th Ordinal number in lower case ("1st", "2nd", ...)

WW Numeric week of year zero filled ("01" - "53")

Ww Numeric week of year space filled (" 1" - "53")

wW Numeric week of year space filled (" 1" - "53")

ww Numeric week of year ("1" - "53")

YYYY Four digit year

YY Two digit year

Examples

Print DateUsing$(Tim#(0),”MM/DD/YY HH:NN:SS”)

See also
CALL, CALL DATETOJULIAN

 Intrinsic CALLS 267

dL4 Language Reference Guide©

CALL DBASE
Synopsis

Access a dBase file.
Syntax0

CALL DBASE (num.expr, str.expr1, num.var)
Syntax1

CALL DBASE (num.expr, str.expr2, str.expr3, num.var)
Syntax2

CALL DBASE (num.expr, str.expr2, str.var, num.var)
Syntax3

CALL DBASE (num.expr)

Parameters

num.expr is an expression which specifies the mode (0 – 5).

str.expr1 is the path of a dBase file.

str.expr2 is a field name from the dBase file.

str.expr3 is a field value.

str.var is a string variable that receives a field value from the dBase file.

num.var is a numeric variable that receives the status of the operation (0 if successful, 1 if the operation
failed).

Remarks
CALL DBASE is provided for compatibility with existing applications. New applications should access
dBase files using the OPEN, SEARCH, READ, and CLOSE statements.

The modes specified by num.expr are as follows:

0 Open a dBase file using syntax 0

1 Search the currently open dBase file using syntax 1 to find a record in which the field specified by
str.expr2 has the value specified by str.expr3. The search starts at the beginning of the file.

2 Read a value from the current record using syntax 2. The value of the field specified by str.expr2
is copied into str.var.

3 Close the currently open dBase file using syntax 3.

4 Search the currently open dBase file using syntax 1 to find a record in which the field specified by
str.expr2 has the value specified by str.expr3. The search starts at the current record.

5 Reposition the currently open dBase file to the first record using syntax 3.
Examples

Call Dbase(0,”test.dbf”,status)

See also
CALL, OPEN, READ, SEARCH, CLOSE

 Intrinsic CALLS 268

dL4 Language Reference Guide©

CALL DECTOOCT
Synopsis

Convert decimal to octal.
Syntax

CALL DECTOOCT (num.expr, var)
Parameters

num.expr is an expression which specifies the number to convert to octal format.

var is a numeric or string variable that receives the converted octal value.
Remarks

The value of num.expr must be between -231 and 231 - 1 inclusive.

If var is a string variable, it should be dimensioned to at least 12 characters. The octal value will be right
justified to twelve characters, space filled, and, if negative, prefixed with a minus sign.

If var is numeric, each octal digit of num.expr will become a decimal digit in var. For example, if num.expr
is 25, then 31 will be stored in var.

This procedure is compatible with UniBasic CALL 126.
Examples

Call DecToOct(value,octalvalue)

Call DecToOct(value,octalstring$)

See also
BSTR$, CALL

 Intrinsic CALLS 269

dL4 Language Reference Guide©

CALL DEVCLOSE
Synopsis

Close DEVxxxx pseudo-channels.
Syntax

CALL DEVCLOSE ({num.expr})
Parameters

num.expr is an optional expression which specifies the pseudo-channel number to close.
Remarks

CALL DEVCLOSE closes the specified pseudo-channel or, if num.expr wasn’t specified, all pseudo-
channels. A pseudo-channel is a hidden channel number opened via CALL DEVOPEN. This procedure is
compatible with UniBasic CALL $DEVCLOSE. New applications should use the OPEN, READ,
WRITE, and CLOSE statements to access devices.

Examples
Call DevClose(5)

See also
CALL, CALL DEVOPEN

 Intrinsic CALLS 270

dL4 Language Reference Guide©

CALL DEVOPEN
Synopsis

Open a DEVxxxx pseudo-channel.
Syntax

CALL DEVOPEN (num.expr, str.expr { expr … })
Parameters

num.expr is an expression that selects the pseudo-channel number to open.

str.expr is an expression which specifies the device or driver to open.

expr is one of one or more optional driver arguments.
Remarks

This procedure is compatible with UniBasic CALL $DEVOPEN. New applications should use the OPEN,
READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevOpen(Cost$)

See also
CALL, CALL DEVCLOSE, CALL DEVREAD, CALL DEVWRITE, CALL DEVPRINT

 Intrinsic CALLS 271

dL4 Language Reference Guide©

CALL DEVPRINT
Synopsis

Print to a DEVxxxx pseudo-channel.
Syntax

CALL DEVPRINT (num.expr1, num.expr2, num.expr3, num.expr4 { , expr …})
Parameters

num.expr1 is the pseudo-channel number to print to.

num.expr2 is the record number to print to.

num.expr3 is the item number or record offset to print to.

num.expr4 is a timeout value in tenths of a seconds or -1 for no timeout.

expr is one of one or more optional values to print as defined by the driver.
Remarks

This procedure is compatible with UniBasic CALL $DEVPRINT. New applications should use the
OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples

Call DevPrint(5, -1, -1, 100, “Hello.”)

See also
CALL, CALL DEVOPEN, CALL DEVCLOSE, CALL DEVREAD, CALL DEVWRITE

 Intrinsic CALLS 272

dL4 Language Reference Guide©

CALL DEVREAD
Synopsis

Read from a DEVxxxx pseudo-channel.
Syntax

CALL DEVREAD (num.expr1, num.expr2, num.expr3, num.expr4 { , var …})
Parameters

num.expr1 is the pseudo-channel number to read from.

num.expr2 is the record number to read from.

num.expr3 is the item number or record offset to read from.

num.expr4 is a timeout value in tenths of a seconds or -1 for no timeout.

var is one of one or more variables to read into as defined by the driver.
Remarks

This procedure is compatible with UniBasic CALL $DEVREAD. New applications should use the
OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples

Call DevRead(7, -1, -1, 100, Rec$)

See also
CALL, CALL DEVOPEN, CALL DEVCLOSE, CALL DEVWRITE, CALL DEVPRINT

 Intrinsic CALLS 273

dL4 Language Reference Guide©

CALL DEVWRITE
Synopsis

Write to a DEVxxxx pseudo-channel.
Syntax

CALL DEVWRITE (num.expr1, num.expr2, num.expr3, num.expr4 { , expr …})
Parameters

num.expr1 is the pseudo-channel number to write to.

num.expr2 is the record number to write to.

num.expr3 is the item number or record offset to write to.

num.expr4 is a timeout value in tenths of a seconds or -1 for no timeout.

expr is one of one or more optional values to write as defined by the driver.
Remarks

This procedure is compatible with UniBasic CALL $DEVWRITE. New applications should use the
OPEN, READ, WRITE, and CLOSE statements to access devices.

Examples
Call DevWrite(5, -1, -1, 100, “Hello.”)

See also
CALL, CALL DEVOPEN, CALL DEVCLOSE, CALL DEVREAD, CALL DEVPRINT

 Intrinsic CALLS 274

dL4 Language Reference Guide©

CALL DRAWIMAGE
Synopsis

Draw image file on screen or printer.
Syntax0

CALL DRAWIMAGE (num.expr1,str.expr,num.expr2,num.expr3,num.expr4,num.expr5)
Parameters

num.expr1 is an optional numeric variable or expression specifying a user channel (0 - 99) open to a
window or printer. An error will be generated if num.expr1 specifies a channel that is closed.

str.expr1 is a string expression containg the path of a JPEG, BMP, or other image file to be drawn.

num.expr2 and num.expr3 are numeric variables or expressions that specify the horizontal and vertical
coordinates of the upper left corner of a rectangle in which the image will be drawn.

num.expr4 and num.expr5 are numeric variables or expressions that specify the horizontal and vertical
coordinates of the lower right corner of a rectangle in which the image will be drawn.

Remarks
DRAWIMAGE draws image files such as JPEG or BMP files on a window or a printer. The window or
printer must support drawing images. Currently, drawing images is supported by dL4 for Windows, the
dL4Term terminal emulator, and the dL4/dL4Term Windows Printer driver. The image will be drawn as
large as possible within the specified rectangle while preserving the aspect ratio of the image.

Examples
Call DrawImage(“pictures/product.jpg”,10,5,20,30)

Call DrawImage(printerchannel,”signature.jpg”,0,55,80,58)

See also
CALL

 Intrinsic CALLS 275

dL4 Language Reference Guide©

CALL DUPCHANNEL
Synopsis

Duplicate existing open channels onto closed user channel numbers.
Syntax

CALL DUPCHANNEL (num.expr1,num.expr2)
Parameters

num.expr1 is a numeric variable or expression specifying a closed user channel (0 - 99), i.e. new channel,
onto which an open channel will be duplicated. An error will be generated if num.expr1 specifies a
channel that is already open.

num.expr2 is a numeric variable or expression that selects the channel to duplicate. The value must be an
open user channel (0 - 99, i.e. old channel), standard input channel (-1), standard output channel (-2),
Dynamic Window standard input channel (-3), or Dynamic Window standard output channel (-4). The
standard input and output channels are the original base channels and not the window channels used by
Dynamic Windows. An error will be generated if num.expr2 specifies a channel that is not open.

Remarks
Duplicate channels can be used to perform I/O in the same way as the original channels. The primary use
of DUPCHANNEL is to duplicate the standard input and output channels that are used by INPUT and
PRINT when a channel isn't specified. By duplicating the standard input or output channel onto a user
channel number, a program can apply channel oriented statements such as SET to a standard channel.
Because DUPCHANNEL duplicates the base standard input and output channels, it can also be used to
avoid window tracking when Dynamic Windows are active. Closing the duplicate or original channel has
no effect other than freeing the channel number unless all copies of the original channel are closed.

The following program uses DUPCHANNEL to change the title of a window.
External Function ChangeWinTitle(oldchannel,NewName$)
 Declare Intrinsic Sub DupChannel
 Call DupChannel(99, oldchannel)
 Set #99,-1073;NewName$
 Clear #99
End Function 0

Open #1,{"--------","TITL",70,23} As "Window"
Input A
B = ChangeWinTitle(1," Test Win Name ")
Input A
Stop

Examples
Call DupChannel(1,2)

Call DupChannel(newchannel,oldchannel)

See also
CALL

 Intrinsic CALLS 276

dL4 Language Reference Guide©

CALL ECHO
Synopsis

Enable, disable, or toggle echo.
Syntax

CALL ECHO (num.expr)
Parameters

num.expr specifies how the echo mode is to be changed.
Remarks

Echo mode on the standard input channel is disabled if num.expr is zero, enabled if num.expr is one, and
toggled if num.expr is two. This procedure is compatible with UniBasic CALL ECHO.

Examples
Call Echo(0)

See also
Mnemonics, CALL

 Intrinsic CALLS 277

dL4 Language Reference Guide©

CALL EDITFIELD
Synopsis

Verify and format a string according to a format mask.
Syntax

CALL EDITFIELD(str.expr1, str.expr2, str.var)
Parameters

str.expr1 is a string expression which is verified and formatted according to the mask str.expr2.

str.expr2 is string expression containing a format mask.

str.var is a string variable that receives the formatted result.
Remarks

The mask str.expr2 may consist of any combination of the following characters:

A Fixed length alphabetic (A-Z). The current source character must be alphabetic.

N Fixed length numeric (0-9). The current source character must be numeric.

X Variable length alpha-numeric (any character). The current source character may be any
character.

V Variable length alphabetic. The current source character can be alphabetic. If not,
comparison continues with the next mask character.

Z Variable length numeric. The current source character can be numeric. If not,
comparison continues with the next mask character.

/ Field separator. The current source character may be any one of “/”, “.”, or “-”.

. Decimal point. The current source character must be a “.”, unless followed by “V” or
“Z” in the mask.

- Minus sign. The current source character must be “-”, unless this is the first character of
the mask. If so, comparison continues with the next mask character.

Any other character that appears in the mask must appear in the source string in the corresponding position.

CALL EDITFIELD verifies that a given string conforms to the specifications of another string, termed a
mask. The edit is performed by comparing the string with the mask , character by character.

The following table illustrates some typical editing examples:

MASK EFFECT

-ZZZ.ZZ Allows a number between -999.99 and 999.99 with a maximum of 2 fractional digits.

ANA NAN This mask is used for the Canadian Postal Code. The source string length must be 7
characters, with a space in the fourth position. Each letter and digit must be in its fixed
place.

NZZZ.NZ Allows a minimum of 1 digit before and after the decimal, and a maximum of 4 before
and 2 after. The decimal point must exist. Note that “0.0” is allowed.

VVVNZZ Source “A45” results in edit of “A045”.

In a sequence of fixed and variable length numeric edit characters (“N” and “Z”), the fixed length character
must appear before the variable length character. In numeric fields, an edit results in left zero-filling of the
field.

An error will occur if:

 Intrinsic CALLS 278

dL4 Language Reference Guide©

o Any parameter is not a string variable.

o Source does not conform to mask.

o Destination string dimension is too small.

o Same string used for source and destination.

This procedure is compatible with UniBasic CALL 29.
Examples

Call EditField(TelNo$, “(NNN)NNN-NNNN”, Result$)

See also
CALL

 Intrinsic CALLS 279

dL4 Language Reference Guide©

CALL ENV
Synopsis

Change or retrieve the value of an environment variable.
Syntax

CALL ENV ({num.expr,}str.expr1,str.expr2)
Parameters

num.expr is a numeric expression specifying whether the environment variable should be changed
(num.expr is two or not specified) or retrieved into str.expr2 (num.expr is one and str.expr2 is a string
variable).

str.expr1 is a string variable or string expression specifying the name of the environment variable to be
changed.

str.expr2 is a string variable or string expression specifying the new value to be given to the environment
variable named by str.expr1.

Remarks
CALL ENV places the definition “str.expr1 = str.expr2” into the environment of your process or returns
the value of the environment variable str.expr1 in the string variable str.expr2.

The effect of using CALL ENV to change the value of dL4 runtime parameters is undefined for the
running process: the change may or may not effect the value used by the running process. Applications
must not depend on the current treatment of environment variables by dL4 because that behavior may
change in future releases. Applications should only change environment variables defined by the
application itself.

When using mode 1 to retrieve environment variable values, the following special environment variable
names will be recognized and will return predefined values:

“PID” – Unix or Windows process id

“GID” – Unix group id (Unix only)

“UID” – Unix user id (Unix only)
Examples

Call Env("PATH","@")

Call Env(E$,V$)

See also
CALL

 Intrinsic CALLS 280

dL4 Language Reference Guide©

FUNCTION ERRMSG$
Synopsis

Return specified message string.
Syntax

ERRMSG$(num.expr)
Parameters

num.expr is the message number of the message string to be returned.
Remarks

ERRMSG$ return message number num.expr from the message file initialized by CALL INITERRMSG.
If CALL INITERRMSG was not used or if the specified message does not exist, an empty string (“”) will
be returned..

Examples
Msg$ = ErrMsg$(n)

See also
ERM$, CALL INITERRMSG

 Intrinsic CALLS 281

dL4 Language Reference Guide©

CALL ETOA
Synopsis

Convert string from EBCDIC to the Unicode character set.
Syntax

CALL ETOA (str.var)
Parameters

str.var is the string to translate.
Remarks

An error 38 is generated if str.var contains any characters that cannot be translated. This procedure is
compatible with UniBasic CALL $ETOA.

Examples
Call EToA(Value$)

See also
CALL, CALL ATOE, CALL ASC2EBCDIC

 Intrinsic CALLS 282

dL4 Language Reference Guide©

CALL FILEINFO
Synopsis

Get file information.
Syntax

CALL FILEINFO (dir.expr, info.var, filename.var { , mode.expr { , index.var }})
Parameters

dir.expr is a string expression used when mode.expr is zero or omitted.

info.var is a numeric array.

filename.var is a string variable that specifies the file path if mode.expr is one and receives the filename
and some file attributes in both modes.

mode.expr is an optional numeric expression that specifies the CALL mode.

index.var is a numeric array.
Remarks

If mode.expr is omitted or zero, then the string expression dir.expr must be at least 14 bytes long and
contain a BITS directory.

Most of the file information is returned in info.var which is a one dimensional numeric array of at least 25
elements with precision 2% or larger. Information returned is accessed by the elements:

[0] Account group (0-255).

[1] Account user (0-255).

[2] Attribute word as a numeric value Mode 0 only.

[3] File type (0-9), represents “O$BACTSI”.

[4] First disk address.

[5] Record length in bytes. For A[3]=0, returns 512 for text files and 65534 for non-text file.

[6] File size in 512 byte blocks (represents both halves of an indexed file).

[7] Creation date in the form MMDDYY.

[8] Last access date in the form MMDDYY.

[9] Relative sector offset; Mode 0 only.

[10] Size of record map in sectors (INDX files Mode 0 only).

[11] Number of indices (Index files only).

[12] System time at last access in hours.

[13] Secondary attribute word as a numeric value; Mode 0 only.

[14] Logical unit number, as currently installed; Mode 0 only.

[15] DIRECTORY sector number; Mode 0 only.

[16] Word displacement into DIRECTORY sector; Mode 0 only.

[17] Unix style protection bits; Mode 1 only.

[18] Number of items per record; Mode 1 only.

[19] Revision of UniBasic at time file was created; Mode 1 only.

 Intrinsic CALLS 283

dL4 Language Reference Guide©

[20] First Real Data Record as built; Mode 1 only.

[21] Byte offset to Record 0; size of header; Mode 1 only.

[22] Returns the files creation time in hours-since-BASEDATE.

Record length in element A[5] is 512 bytes for a text file and 65534 for a non-dL4 file of type A[3]=0.
The first block of the file is examined and is only considered text if all bytes are <0x80.

In mode 1, filename.var provides the path of the file to examine The variable filename.var should be
DIMensioned to at least 31 characters. Returned in filename.var is a 14-character name, truncated if
necessary. Supplemental attributes are returned in characters 15-29; <PRWdsEOxFQUgabKY>. Lower-
case letters refer to BITS attributes which are only returned when Mode 0 is used on a BITS directory
unpack.

The expression mode.expr is truncated to an integer and used to specify the operational mode for the
CALL. If omitted or 0, then a BITS DIRECTORY entry in directory is unpacked. Mode 1 is used to
locate and return information about the file contained in filename.var.

Additional information for Indexed-Contiguous or Formatted files is returned in index.var, a numeric array.
The array should be DIMensioned as index.var[128,1].

If the file is an Indexed-Contiguous file, the following information is returned:

 index.var[0,0] Record length in bytes for file.

 index.var [0,1] Current actual active record count.

 index.var [X,0] Key length for Directory X.

 index.var [X,1] Active Keys in Directory X or zero, if not available.

If the file is a Formatted file, the following item information is returned:

 index.var [X,0] Item Type

 index.var [X,1] Item length in bytes.

This procedure is compatible with UniBasic CALL 127. The information returned by mode 1 can also be
obtained using the CHF functions, the SEARCH statement, and the GET statement.

Examples
Call FileInfo(Dir$,Info[],Path$,1,IdxInfo[])

See also
CALL

 Intrinsic CALLS 284

dL4 Language Reference Guide©

FUNCTION FINDCHANNEL
Synopsis

Find available (closed) channel number.
Syntax

FINDCHANNEL({num.expr1, num.expr2})
Parameters

num.expr1 is an optional expression that specifies the beginning of the channel number range.

num.expr2 is an optional expression that specifies the end of the channel number range.
Remarks

FINDCHANNEL returns the channel number of the first closed channel in the specified channel number
range. If the start of the range is less than the end of the range, then the channel numbers will be checked
in descending order. The default channel number range is 99 to 0 (descending).

Examples

Chan = FindChannel()

Chan = FindChannel(80,99)

See also
OPEN, BUILD

 Intrinsic CALLS 285

dL4 Language Reference Guide©

CALL FINDF
Synopsis

Determine if file exists.
Syntax

CALL FINDF (str.expr,num.var {, str.var})
Parameters

str.expr specifies the path of the file to check.

num.var receives the status of the file lookup (0 if the file is not found, 1 if the file is found)

str.var is an optional string variable that receives the absolute path of the file if it is found.
Remarks

This procedure is compatible with UniBasic CALL FINDF.
Examples

Call FindF(filename$,status)

See also
CALL

 Intrinsic CALLS 286

dL4 Language Reference Guide©

CALL FLUSHALLCHANNELS
Synopsis

Flush all buffered file data to permanent storage.
Syntax

CALL FLUSHALLCHANNELS ()
Parameters

None.
Remarks

FLUSHALLCHANNELS issues a DCC_SYNC command to each open channel to request the driver to
flush all modified data to permanent storage. This CALL is operating system dependent and may not do
anything on some operating systems.

Examples
Call FlushAllChannels()

See also
CALL

 Intrinsic CALLS 287

dL4 Language Reference Guide©

FUNCTION FMTOF
Synopsis

Return precison or dimension of variable.
Syntax

FMTOF(var)
Parameters

var is any non-structure variable.
Remarks

If var is a numeric or date variable, FMTOF returns the actual precision (“%n”) of the variable. If var is a
string, binary, or array variable, then FMTOF returns the dimensioned size of the variable.

Examples

prec = FmtOf(X)

maxsize = FmtOf(T$)

See also
UBOUND, DIM

 Intrinsic CALLS 288

dL4 Language Reference Guide©

CALL FORCEPORTDUMP
Synopsis

Generate program dump on selected port number.
Syntax

CALL FORCEPORTDUMP (num.expr1, num.expr2, num.var)
Parameters

num.expr1 is the dump mode.

num.expr2 is the port number on which the dump is to be generated.

num.var is the status of the dump request.
Remarks

The FORCEPORTDUMP intrinsic CALL causes the port number selected by num.expr2 to produce a
dump listing file. The dump format is identical to that of the ProgramDump() intrinsic CALL and lists the
current execution location of the target program, the CALL stack, current variable values, the status of
open channels, and various other values. If num.expr1 is zero, the selected port will exit dL4 after
producing the dump file. If num.expr1 is equal to one, the selected port will resume execution after
producing the dump. Because producing the dump interrupts and possibly interferes with program
execution, FORCEPORTDUMP should only be used for debugging purposes.

FORCEPORTDUMP sets num.var to zero if the dump request was successfully sent to the selected port.
Sending the request does not guarantee that the dump will actually be produced. If an error occurs while
sending the request, num.var will be set to one. On some operating systems, such as Unix, the caller of
ForcePortDump() must either be the same user as that of the target port or be a privileged user (such as root
on Unix)

Because the contents of the program dump could reveal passwords and other restricted data, dump output
is controlled by the DL4PORTDUMP runtime parameter. If DL4PORTDUMP is not defined for the
selected port, then ForcePortDump() will not generate a dump. On Unix, DL4PORTDUMP is an
environment variable that must be set in each users environment (perhaps set by the .profile script). Under
Windows, the DL4PORTDUMP value can be supplied either as an environment variable or as a string
value in the registry:

 HKEY_CURRENT_USER\Software\DynamicConcepts\dL4\Environment\dL4PortDump

 HKEY_LOCAL_MACHINE\Software\DynamicConcepts\dL4\Environment\dL4PortDump

In any form, DL4PORTDUMP is the filename to which the dump will be written. DL4PORTDUMP must
be an absolute path. For example, under Windows, DL4PORTDUMP might be defined as
"D:\Dumps\DumpFile.txt". The following macro values can be used in a DL4PORTDUMP path string:

 %PORT% Port number of target port

 %DATE% Current date ("YYMMDD")

 %TIME% Current time ("HHMMSS")

 %name% Value of environment variable "name"

 Intrinsic CALLS 289

dL4 Language Reference Guide©

These macro values, if used in the DL4PORTDUMP path, will be replaced by their current values. For
example, if DL4PORTDUMP was defined with the value "D:\Dumps\%PORT%.txt" and a dump was
triggered on port 15, then the dump would be written to the file "D:\Dumps\15.txt".

Examples
Call ForcePortDump(0,PortNum,Status)

See also
CALL, PORT, CALL PROGRAMDUMP

 Intrinsic CALLS 290

dL4 Language Reference Guide©

CALL FORMATDATE
Synopsis

Format date string.
Syntax

CALL FORMATDATE (str.expr {,str.var {,num.var {,num.expr}}})
Parameters

str.expr supplies the input date and, if str.var is not specified, receives the formatted date.

str.var is an optional variable that receives the formatted date.

num.var is an optional variable that receives the status of the conversion (0 for success, 1 for illegal date).

num.expr is an expression that selects the input and output date formats.
Remarks

Conversion modes:

 num.expr Input Date Output Date

 0 yymmdd mm/dd/yy

 1 yyyymmdd mm/dd/yy

 4 yymmdd mm/dd/yyyy

 5 yyyymmdd mm/dd/yyyy

If num.expr is not specified, a conversion mode of 0 is assumed.

If str.var is not specified, then str.expr must be a string variable into which the converted date is stored.

If num.var is not specified, then an illegal date will cause an error 38 to occur.

If OPTION DATE FORMAT NATIVE is used, the output date will use day-month-year ordering and the
native date separator if specified by the current locale.

This procedure is compatible with UniBasic CALL 28.
Examples

Call FormatDate(S$)

See also
CALL, CALL VERIFYDATE

 Intrinsic CALLS 291

dL4 Language Reference Guide©

CALL GATHER
Synopsis

Pack data into a string.
Syntax

CALL GATHER (str.var, expr …)
Parameters

str.var is a string variable into which the values from expr will be placed.

expr is one of one or more variables or expressions whose values are placed in str.var.
Remarks

The values of the expr expressions are sequentially copied into str.var. The expression expr may be of
numeric, string, or date type. Numeric values are always stored in BITS formats. This procedure is
compatible with UniBasic CALL 72.

Examples
Call Gather(E$,A,B,C$,D)

See also
CALL, CALL SCATTER

 Intrinsic CALLS 292

dL4 Language Reference Guide©

CALL GETGLOBALS
Synopsis

Retrieve session global values.
Syntax

CALL GETGLOBALS({str.expr,}num.expr {,var.list})
Parameters

str.expr supplies the name of the global set. If str.expr is not specified, the default set (named “”) is used.

num.expr specifies the starting global item number.

var.list is a list of one or more variables of any type except for array or structure. The type of each
variable in the list must match that of the global item copied into to the variable.

Remarks
GETGLOBALS copies global values from the selected global set starting with global item num.expr and
continuing sequentially through the list of global values. An error 38 will occur if one or more of the
values do not exist or do not match the variable type.

Examples
Call GetGlobals(3,S$,X,User$)

See also
CALL, CALL SETGLOBALS

 Intrinsic CALLS 293

dL4 Language Reference Guide©

CALL GETREGISTRY
Synopsis

Retrieve Windows registry values.
Syntax

CALL GETREGISTRY(str.expr, var))
Parameters

str.expr is the name of the registry key and value to retrieve.

var is a numeric, string, or binary variable.
Remarks

GETREGISTRY copies a Windows registry value from the registry key and value name specified in
str.expr. An error 38 will occur if the value does not exist or if it does not match the variable type. This
CALL always returns an error 38 if used on a Unix system. The value of str.expr must begin with one of
the following root key names:

HKEY_CLASSES_ROOT\ (or HKCR\)

HKEY_CURRENT_CONFIG\ (or HKCC\)

HKEY_CURRENT_USER\ (or HKCU\)

HKEY_LOCAL_MACHINE\ (or HKLM\)

HKEY_USERS\ (or HKUS\)

HKEY_PERFORMANCE_DATA\ (or HKPD\)

HKEY_DYN_DATA\ (or HKDD\)

Examples

Call GetRegistry(“HKEY_CURRENT_USER\\Software\\MyCompany\\Value”,S$)

See also
CALL, CALL SETREGISTRY

 Intrinsic CALLS 294

dL4 Language Reference Guide©

CALL IMSMEMCOPY
Synopsis

Copy bytes from source to destination variable.
Syntax

CALL IMSMEMCOPY (destination.var, source.var, num.expr)
Parameters

destination.var is the destination variable of any dL4 data type.

source.var is the source variable of any dL4 data type.

num.expr is the number of bytes to copy.
Remarks

The IMSMEMCOPY CALLcan be used to copy data between any two variables, but it is best used to
quickly copy portions of one array to another array. If used to copy data between arrays, the arrays must be
identical in layout, data types, and data precisions. When copying between two string variables, num.expr
will be treated as the number of Unicode characters to copy rather than the number of bytes. This CALL
may overwrite memory if num.expr is incorrect.

Examples
Call IMSMemCopy(D$,S$,20)

See also
CALL

 Intrinsic CALLS 295

dL4 Language Reference Guide©

CALL IMSPACK
Synopsis

Pack or unpack radix 50 data.
Syntax0

CALL IMSPACK(0, str.expr, str.var)
Syntax1

CALL IMSPACK(1, str.var, str.expr)
Parameters

str.expr is the source string expression.

str.var is the destination string variable.
Remarks

The IMSPACK CALL packs character data from str.expr into str.var (syntax 0) or unpacks data from
str.expr to str.var(syntax 1). The packed data is in a radix 50 format. The IMSPACK CALL is compatible
with CALL $PACK in IMS BASIC.

Examples
Call IMSPack(0, S$, D$)

See also
CALL PKRDX5018, CALL PKRDX5048

 Intrinsic CALLS 296

dL4 Language Reference Guide©

CALL INITERRMSG
Synopsis

Initialize the error message file for ERRMSG$.
Syntax

CALL INITERRMSG (num.expr, str.expr)
Parameters

num.expr must be a numeric expression, but is otherwise ignored.

str.expr is an expression which specifies the path of the error message text file.
Remarks

The error message file must be a text file in which each line begins with an message number, followed by a
colon, and ending with the message text. This procedure is compatible with UniBasic CALL 40.

Examples
Call InitErrMsg(0, Filename$)

See also
CALL, ERRMSG$

 Intrinsic CALLS 297

dL4 Language Reference Guide©

CALL INPBUF
Synopsis

Place data into type-ahead buffer.
Syntax

CALL INPBUF (str.expr)
Parameters

str.expr is copied (appended) to the contents of the current type-ahead buffer.
Remarks

INPBUF may be used to pass data from a child process back to the parent when using SWAP statements
or [Hot-Key] swapping.

If the window driver receives a 'Begin' mnemonic character, the cursor will be moved to the first character
of the current input line ("Home" action) and then a special input mode will be entered for the next input
character. If the next input character is an edit action (such as "Forward"), the user is allowed to edit the
current input line. If the next character is a data character, the current input line is deleted and the data
character becomes the first input character. If the next character is an "enter" action, the current input line
is returned to the program. A dL4 program uses the "Begin" action by calling the INPBUF procedure with
a string consisting of a default input value followed by the 'Begin' mnemonic character. The next input by
the program will then treat the default input as described above.

Examples
Call Inpbuf(A$) !Copy data to type-ahead

Call Inpbuf(A$ + "\215\")

See also
CALL, WINDOW, SWAP

CALL

 Intrinsic CALLS 298

dL4 Language Reference Guide©

CALL IRISOS95
Synopsis

Satisfy references to IRIS CALL 95.
Syntax

CALL IRISOS95 (expr …)
Parameters

expr is one of zero or more expressions of any type.
Remarks

This procedure is compatible with UniBasic CALL 95. As in UniBasic, this procedure has no actual
function and is provided simply to satisfy any references to CALL 95.

Examples
Call IRISOS95()

See also
CALL

 Intrinsic CALLS 299

dL4 Language Reference Guide©

FUNCTION ISSQLNULL
Synopsis

Determine if a value is an SQL driver NULL value.
Syntax

ISSQLNULL (expr)
Parameters

expr is an expression of any type.
Remarks

ISSQLNULL returns 1 if expr is an SQL driver NULL value and 0 if it is not a NULL value. An error will
be generated if an illegal number of parameters, parameter type, or parameter value is used.

Examples

If IsSQLNull(Rec.Value) Print “Value is NULL”
See also

SQLNULL, SQLNULL$, SQLNULL#

 Intrinsic CALLS 300

dL4 Language Reference Guide©

CALL JULIANTODATE
Synopsis

Convert julian date string to formatted date.
Syntax

CALL JULIANTODATE ({num.expr,} str.expr {,str.var {,num.var}})
Parameters

num.expr is an optional expression selecting the input and output date formats.

str.expr is an expression which specifies the string to convert.

str.var is an optional variable which receives the converted date string.

num.var is a optional variable that receives the status of the conversion (0 for success, 1 for illegal date).
Remarks

Conversion modes:

 num.expr Input Date Output Date Comment

 0 yyddd mm/dd/yy year and day of year; e.g. 98365

 1 ddddd mm/dd/yy days since January 1, 1968

 2 yyyyddd mm/dd/yy 4 digit year and day of year; e.g. 1998365

 4 yyddd mm/dd/yyyy 2 digit year and day of year; e.g. 98365

 5 ddddd mm/dd/yyyy days since January 1, 1968

 6 yyyyddd mm/dd/yyyy 4 digit year and day of year; e.g. 1998365

If num.expr is not specified, a conversion mode of 0 is assumed.

If str.var is not specified, then str.expr must be a string variable into which the converted date is stored.

If OPTION DATE FORMAT NATIVE is used, the output date will use day-month-year ordering and the
native date separator if specified by the current locale.

If num.var is not specified, then an illegal date will cause an error 38 to occur.

This procedure is compatible with UniBasic CALL 27.
Examples

Call JulianToDate(S$)

See also
CALL, CALL DATETOJULIAN

 Intrinsic CALLS 301

dL4 Language Reference Guide©

CALL LOCK
Synopsis

Change exclusive/shared open mode on an open file.
Syntax

CALL LOCK (num.expr1, num.expr2, num.var)
Parameters

num.expr1 is an expression which specifies the channel number of an open file.

num.expr2 is an expression which selects the new open mode: 0 for shared open, non-zero for exclusive
open.

num.var is a variable which receives the operation status.
Remarks

The status value returned in num.var is defined as follows:

0 Operation successful

1 Illegal Channel Number

2 Channel not open

6 File is already Locked

7 File is not locked

This procedure is compatible with UniBasic CALL $LOCK.
Examples

Call Lock(5, 1, status)

See also
CALL, EOPEN

 Intrinsic CALLS 302

dL4 Language Reference Guide©

CALL LOGIC
Synopsis

Perform logical operations.
Syntax

CALL LOGIC (num.expr, var1, var2, var3)
Parameters

num.expr is any operator which, after evaluation, is truncated to an integer and used to specify the
operation for LOGIC: 1 = AND; 2 = OR; 3 = XOR; 4 = NOT.

var1 and var2 select two identical types of variables (numeric, string, or binary) to perform an operation
upon.

var3, the result, must be the same type as the supplied var1 and var2, and will hold the resulting data from
the operation.

Remarks
If the supplied variables are numeric, they are truncated to unsigned integers (shorts) to perform the
operation. String and binary variables are processed a byte at a time until the DIMensioned length of the
shortest argument passed is reached.

An AND operation results in a 1 bit when the corresponding bit of both variables is 1.

An OR operation results in a 1 bit when either of the corresponding bits is 1, or when both are 1.

An XOR (exclusive OR) results in a 1 bit when only one of the corresponding bits of both variables is 1.

A NOT operation only requires variable1. variable2 must be specified for syntactical reasons (use the
same variable), but is not used. NOT results in a 1 bit if the bit of variable1 is zero, and results in 0 if the
bit is 1.

Entire strings (including zero bytes) can be operated upon using LOGIC. To copy a string in its entirety,
AND the string to itself. To fully zero fill (zero byte) a string, XOR it with itself.
X Y X AND Y X OR Y X XOR Y NOT Y

0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1
1 1 1 1 0

Examples
Call Logic(1,A$,B$,C$) ! AND 2 strings

Call Logic(1,A[0],32768,J) ! Is value negative

Call Logic(1,A$,A$,B$) ! Copy string A$ to B$

See also

 Intrinsic CALLS 303

dL4 Language Reference Guide©

FUNCTION MD5?
Synopsis

Calculate MD5 checksum of string or binary value.
Syntax

MD5? (expr, {, bin.expr})
Parameters

expr is a string or binary expression which specifies the value on which to calculate the MD5 checksum.

bin.expr is an optional expression which is the result of a previous ADDMD5? calculation.
Remarks

MD5? calculates and returns as a 16 byte binary value the MD5 checksum of expr which must be either a
string or a binary value. The optional binary argument bin.expr can be used to pass the intermediate MD5
result value from a call to ADDMD5? to calculate a combined checksum of several variables. The
checksum is calculated against the dimensioned size of strings so that null characters can be included in the
checksum. Subscripts can be used to limit the number of characters included in the checksum. So that
string values will produce the same checksum values on all platforms, each UNICODE character of a string
is forced into a most-significant-byte-first ordering for checksum calculation. An error will be generated if
an illegal number of parameters, parameter type, or parameter value is used.

 Examples
Dim CheckSum?[16], Temp?[128]
CheckSum? = MD5?(C$) !Calculate checksum of C$ alone
Temp? = AddMD5?(C$)
CheckSum? = MD5?(X$[1,Len(X$)],Temp?) !Calculate checksum of C$+X$

See also
ADDMD5?, CRC32

 Intrinsic CALLS 304

dL4 Language Reference Guide©

CALL MEMCMP
Synopsis

Compare strings.
Syntax

CALL MEMCMP (str.expr1, str.expr2, num.var)
Parameters

str.expr1 is an expression which specifies a string to compare.

str.expr2 is an expression which specifies a string to compare.

num.var is a variable that receives the result of the string comparison.
Remarks

CALL MEMCMP performs a character by character comparison of str.expr1 and str.expr2 including all
characters in the DIMensioned length of the strings. The result is returned in num.var as follows:

 Relation Result

 str.expr1 < str.expr2 -1

 str.expr1 = str.expr2 0

 str.expr1 > str.expr2 1

This procedure is compatible with UniBasic CALL $MEMCMP.
Examples

Call MemCmp(A$,B$,Result)

See also
CALL

 Intrinsic CALLS 305

dL4 Language Reference Guide©

CALL MEMCOPY
Synopsis

Copy 16 bit words between variables
Syntax

CALL MEMCOPY (expr, var, num.expr)
Parameters

expr is an expression of any type.

var is a variable of any type.

num.expr is a numeric expression specifying the number of 16 bit words to copy.
Remarks

CALL MEMCOPY moves num.expr 16 bit (2 byte) words from the value expr to the variable var.
Because the original IRIS CALL used 8-bit strings in which ASCII characters had their most significant
bit inverted and dL4 uses 16-bit Unicode characters, the rules for compatible copying are complex. If both
expr and var are not strings, the copy is performed as a memory image without any conversion. If expr is a
string and var is not a string, then only the lower 8 bits of each Unicode character from expr are copied, the
most significant bit of each 8 bit value is inverted, and two Unicode characters from expr are processed for
each 16 bit word. If expr is not a string and var is a string, then an 8 bit byte from expr is expanded to a
Unicode character in var, the most significant bit in each byte is inverted, and two Unicode characters in
var are modified for each 16 bit word copied. If both expr and var are strings, then num.expr times two
characters are copied from expr to var without any conversion. This procedure is compatible with UniBasic
CALL 5.

Examples
Call MemCopy(Cost$)

See also
CALL

 Intrinsic CALLS 306

dL4 Language Reference Guide©

CALL MISC47
Synopsis

Perform miscellaneous operations.
Syntax

CALL MISC47 (num.expr, num.var)
Parameters

num.expr is an expression which specifies the operation to perform.

num.var is a variable that receives the operation result, if any.
Remarks

CALL MISC47 performs the following operations as specified by num.expr:

Num.expr Operation

0 Pop top of GOSUB stack and return the line number in num.var

3 Return current terminal type (SPC(13)) in num.var

4 Disable terminal echo

5 Enable terminal echo

An error 38 will occur if num.expr is an unsupported operation number. This procedure is compatible with
UniBasic CALL 47.

Examples
Call Misc47(4,Status) ! disable echo

See also
CALL

 Intrinsic CALLS 307

dL4 Language Reference Guide©

CALL MISCSTR
Synopsis

Miscellaneous string functions.
Syntax

CALL MISCSTR({num.expr,} str.var {,{num.expr},str.var }...)
Parameters

num.expr is an optional expression selecting the function to be performed.

str.var is a string on which to perform the current function.
Remarks

Conversion modes:

 num.expr Function

 0 Convert the string to lower case.

 1 Replace all characters with nulls.

 2 Zero bit 7 of each character (AND each character with 0FF7F16)

 3 Toggle bit 7 of each non-null character (XOR each character with 0008016)

If num.expr is not specified, a conversion mode of 0 is assumed. If num.expr is specified, it sets the
function to be performed on all following strings until the next num.expr.

This procedure is compatible with UniBasic CALL 60.
Examples

Call MiscStr(S$)

Call MiscStr(1,S$)

Call MiscStr(S$,3,D$)

See also
LCASE$, CALL, CALL LOGIC, CALL BITMANIP

 Intrinsic CALLS 308

dL4 Language Reference Guide©

CALL NCRC32
Synopsis

Calculate 32 bit cyclic redundancy code of a string or binary value.
Syntax

CALL NCRC32 (num.var, expr, {, num.expr})
Parameters

Num.var is a numeric variable that receives the calculate CRC value.

expr is a string or binary expression which specifies the value on which to calculate the 32 bit CRC

num.expr is an optional expression which is the result of a previous CRC calculation.
Remarks

NCRC32 calculates and returns as a number the 32-bit CRC checksum of expr which must be either a
string or a binary value. The optional numeric argument num.expr can be used to pass the CRC value from
a previous call to calculate a combined CRC of several variables. The CRC value is calculated against the
DIMed size of strings so that null characters can be included in the CRC value. Subscripts can be used to
limit the number of characters included in the CRC. So that string values will produce the same CRC
values on all platforms, each UNICODE character of a string is forced into a most-significant-byte-first
ordering for CRC calculation. An error will be generated if an illegal number of parameters, parameter
type, or parameter value is used.

Examples

Call CRC32(CheckSum,C$) !Calculate CRC of C$ alone

Call CRC32(CheckSum,X$[1,Len(X$)],CheckSum) !Calculate CRC of C$+X$

See also
ADDMD5?, CRC32, MD5?

 Intrinsic CALLS 309

dL4 Language Reference Guide©

CALL NEXTAVPORT
Synopsis

Find available port number.
Syntax

CALL NEXTAVPORT (num.var)
Parameters

Num.var is a numeric variable that receives the lowest available port number.
Remarks

An error 38 will occur if there are no available port numbers. This procedure is compatible with UniBasic
CALL 118.

Examples
Call NextAvPort(PortNum)

See also
CALL, CALL AVPORT

 Intrinsic CALLS 310

dL4 Language Reference Guide©

CALL PKDEC20
Synopsis

Pack numeric data.
Syntax

CALL PKDEC20 (str.expr, str.var)
Parameters

str.expr is an expression which specifies the string to pack.

str.var is a string variable that receives the packed data.
Remarks

CALL PKDEC20 packs each pair of characters in str.expr, which is a string of decimal digits, into a
character in str.var. Each digit is stored as a 4 bit nibble with the value of the digit plus one (thus 0 is
stored as the nibble 1). If the length of str.expr is odd, a zero nibble will fill the final character. An error 38
is generated if str.expr contains any characters other than digits (0 – 9). This procedure is compatible with
UniBasic CALL 20.

Examples
Call PkDec20(Number$,PackedNumber$)

See also
CALL, CALL UNPKDEC21, CALL PKDEC45

 Intrinsic CALLS 311

dL4 Language Reference Guide©

CALL PKDEC45
Synopsis

Pack or unpack numeric data.
Syntax

CALL PKDEC45({num.expr, } str.expr, str.var {, num.var})
Parameters

num.expr is an optional expression that specifies whether to pack (0 or omitted) or unpack (non-zero).

str.expr is the source expression string.

str.var is the destination string variable.

num.var is an optional numeric variable that receives the operation status (0 if successful, 1 if failed).
Remarks

If num.expr is omitted or zero, CALL PKDEC45 sequentially packs each pair of characters from str.expr
into a character in str.var. Each character is stored as a 4 bit nibble with the character translated as shown
in the table below. If the length of str.expr is odd, a zero nibble will fill the final character. If str.expr
contains an unsupported character, then an error status will be report in num.var or, if num.var was
omitted, an error 38 will occur.

If num.expr is non-zero, CALL PKDEC45 sequentially unpacks each character from str.expr into two
characters in str.var. Each character in str.expr is treated as a pair of nibbles which are translated into
characters as shown in the table below.

This procedure is compatible with UniBasic CALL 45.

Characte
r

Nibbl
e

Characte
r

Nibbl
e

Space 0001 3 1001

, 0010 4 1010

- 0011 5 1011

. 0100 6 1100

/ 0101 7 1101

0 0110 8 1110

1 0111 9 1111

2 1000

Examples

Call PkDec45(data$, packeddata$)

See also
CALL, CALL UNPKDEC46, CALL PKDEC20

 Intrinsic CALLS 312

dL4 Language Reference Guide©

CALL PKRDX5018
Synopsis

Pack characters into radix 50 .
Syntax

CALL PKRDX5018 (str.expr, str.var)
Parameters

str.expr is an expression which specifies the string to pack.

str.var is a string variable that receives the packed string.
Remarks

CALL PKRDX5018 packs character triplets from str.expr into radix 50 character pairs in str.var. Each
character from str.expr is translated to radix 50 values as shown in the table below and then a character
triplet value is calculated as (Char1 * 40 + Char2) * 40 + Char3. The upper 8 bits of this triplet value is
then stored as a character in str.var followed by a character containing the lower 8 bits. The resulting string
is approximately one third smaller than the original string. An error 38 is generated if str.expr contains
untranslatable characters. This procedure is compatible with UniBasic CALL 18.

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

0 01 A 11 K 21 U 31

1 02 B 12 L 22 V 32

2 03 C 13 M 23 W 33

3 04 D 14 N 24 X 34

4 05 E 15 O 25 Y 35

5 06 F 16 P 26 Z 36

6 07 G 17 Q 27 , 37

7 08 H 18 R 28 - 38

8 09 I 19 S 29 . 39

9 10 J 20 T 30 Space 00

Examples

Call PkRdx5018(src$,packed$)

See also
CALL, CALL UNPKRDX5019, CALL PKRDX5048

 Intrinsic CALLS 313

dL4 Language Reference Guide©

CALL PKRDX5048
Synopsis

Pack characters into radix 50 .
Syntax

CALL PKRDX5048 (str.expr, str.var)
Parameters

str.expr is an expression which specifies the string to pack.

str.var is a string variable that receives the packed string.
Remarks

CALL PKRDX5048 packs character triplets from str.expr into radix 50 character pairs in str.var. Each
character from str.expr is translated to radix 50 values as shown in the table below and then a character
triplet value is calculated as (Char1 * 40 + Char2) * 40 + Char3. The upper 8 bits of this triplet value is
then stored as a character in str.var followed by a character containing the lower 8 bits. The resulting string
is approximately one third smaller than the original string. An error 38 is generated if str.expr contains
untranslatable characters. This procedure is compatible with UniBasic CALL 48.

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

, 01 7 11 H 21 R 31
- 02 8 12 I 22 S 32
. 03 9 13 J 23 T 33
0 04 A 14 K 24 U 34
1 05 B 15 L 25 V 35
2 06 C 16 M 26 W 36
3 07 D 17 N 27 X 37
4 08 E 18 O 28 Y 38
5 09 F 19 P 29 Z 39
6 10 G 20 Q 30 Space 00

Examples

Call PkRdx5048(src$,packed$)

See also
CALL, CALL UNPKRDX5049, CALL PKRDX5018

 Intrinsic CALLS 314

dL4 Language Reference Guide©

CALL PKUNPKDEC
Synopsis

Pack or unpack numeric data.
Syntax

CALL PKUNPKDEC(src.str, dest.str)
Parameters

src.str is the source expression string.

dest.str is the destination string variable.
Remarks

If src.str is dimensioned larger than dest.str, CALL PKUNPKDEC sequentially packs each pair of
characters from src.str into a character in dest.str. Each character is stored as a 4 bit nibble with the
character translated as shown in the table below. If the length of src.str is odd, a zero nibble will fill the
final character. If src.str contains an unsupported character, then an error 38 will occur.

If src.str is dimensioned smaller than or equal to dest.str, CALL PKUNPKDEC sequentially unpacks
each character from src.str into two characters in dest.str. Each character in src.str is treated as a pair of
nibbles which are translated into characters as shown in the table below.

This procedure is compatible with UniBasic CALL 15.

Characte
r

Nibbl
e

Characte
r

Nibbl
e

+ 0001 3 1001

, 0010 4 1010

- 0011 5 1011

. 0100 6 1100

Space 0101 7 1101

0 0110 8 1110

1 0111 9 1111

2 1000

Examples

Call PkUnPkDec(data$, packeddata$)

Call PkUnPkDec(packeddata$, data$)

See also
CALL, CALL PKDEC20, CALL PKDEC45

 Intrinsic CALLS 315

dL4 Language Reference Guide©

CALL PROGRAMCACHE
Synopsis

Manipulate and/or read status of the current shared program cache.
Syntax0

CALL PROGRAMCACHE (0, num.var1, num.var2, str.var1, num.var3)
Syntax1

CALL PROGRAMCACHE (1, num.var1, str.expr)
Syntax2

CALL PROGRAMCACHE (2, num.var1)
Syntax3

CALL PROGRAMCACHE (3, num.var1, str.var2)
Parameters

num.var1 is a numeric variable to contain the return code.

num.var2 is a numeric variable that determines which cache entry (starting at 0) is read.

str.var1 is a string variable that will receive a program file path.

str.expr is a string expression that will supply a program file path.

num.var3 is a numeric variable set to the number of users of the program.

str.var2 is a string variable that will receive the cache error message.
Remarks

The intrinsic procedure ProgramCache() is used to read the current shared program cache status and to
manipulate the cache. An error will be generated if improper arguments or argument values are passed to
ProgramCache(). Any error that occurs while processing the operation will be reported by setting the
error code argument to a non-zero dL4 error code.

The first parameter to the ProgramCache function specifies the mode of operation as:

mode Operation

0 Read next entry in cache.

1 Load program into cache as a permanent entry.

2 Delete cache when the current process exits.

3 Get cache error status message, if any

The return code in num.var1 will be set to 0 if the operation is successful or to a standard dL4 error code if
not. For example, if the cache is not available, the statement Call ProgramCache(0,e,p,f$,c) will set the
variable "e" to 42 (file not found).

num.var2 should be set to zero to read the first entry. Each mode 0 call will update the value of num.var2
so that the next call will read the next cache entry. The precision of num.var2 must be such that it can
contain any value between 0 and 232-1 without any loss of precision (a 3% variable is adequate). The caller
should only pass num.var2 values of zero or those returned by the previous mode 0 call to
ProgramCache().

num.var3 is a usage count and if set to -1 indicates that the program has been added to the cache as a
permanent entry.

 Intrinsic CALLS 316

dL4 Language Reference Guide©

 Examples

Example 1: Adding a program to the cache as a permanent entry
Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode
Call ProgramCache(1, ErrorCode, "MenuLibrary.lib")

Users in static cache mode can only use cached programs and libraries that have been added as permanent
entries. These permanent entries must be created by a user in dynamic cache mode using mode 1 of
ProgramCache(). Once made, permanent entries cannot be individually deleted because there is no way
to determine whether or not a static mode user is currently executing the program or library. See the
program cache description in the dL4 Installation and Configuration Guide for more information on
dynamic and static cache modes.

Example 2: List entries in cache
Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode, 3%, CachePos, File$[200], Usage
CachePos = 0
Do
 Call ProgramCache(0, ErrorCode, CachePos, File$, Usage)
 If ErrorCode Exit Do
 If Usage < 0
 Print "Permanent ";
 Else
 Print Using "######### ";Usage;
 End If
 Print File$
Loop
If ErrorCode = 73 Print "The program cache is not enabled"

Example 3: Deleting the program cache
Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode
Call ProgramCache(2, ErrorCode)

This example will delete the program cache when the current user exits dL4. The program cache should be
deleted if it is desired to increase the size of the cache or if the cache has become corrupted. The cache can
be deleted only by the owner of the cache or by the root user. Since the cache cannot be deleted until the
user exits, no error is returned if the caller lacks delete permission. All other users should exit dL4 before
the cache is deleted.

Example 4: Printing the cache error message
Declare Intrinsic Sub ProgramCache
Dim 1%, ErrorCode, ErrorMsg$[200]
Call ProgramCache(3, ErrorCode, ErrorMsg$)
If ErrorMsg$ Print “Cache initialization error: “;ErrorMsg$

Configuration errors can prevent the program cache from being successfully initialized. If this happens,
dL4 will run, but with reduced performance. This example determines whether such an error has occurred
and prints a message describing the error.

See also
CALL

 Intrinsic CALLS 317

dL4 Language Reference Guide©

CALL PROGRAMDUMP
Synopsis

Print stack, variables, open channels and other miscellaneous information.
Syntax

CALL PROGRAMDUMP ({str.expr1 {,str.expr2}})
Parameters

str.expr1is the path of the text file in which to write the dump information.

str.expr2 is a string containing dump options.
Remarks

The intrinsic procedure PROGRAMDUMP is called by an application to dump the current program
status, variable values, and channel information to a text file. If str.expr1 is specified, then it is used as the
filename of text file and the optional str.expr2 is treated as an option list. If str.expr2 contains the option
“append”, the dump will be appended to the end of the dump text file. If str.expr1 is not specified, the
current value of the DL4PORTDUMP runtime parameter determines the filename (see CALL
FORCEPORTDUMP for a description of the DL4PORTDUMP parameter). In the example below, any
unexpected error will cause PROGRAMDUMP to be called and the dump information written to the text
file "dumpfile" in the directory "dumpdir":

Declare Intrinsic Sub ProgramDump
If Err 0 Goto UnexpectedError
Dim InFile$[40], 3%, X
InFile$ = "TestFile"
Build #1,+InFile$+"!"
X = 17
X = 4 / 0 ! Divide-by-zero error which will trigger a dump
Close #1
Chain ""
UnexpectedError: Call ProgramDump("dumpdir/dumpfile!")
Print "Unexpected error";Spc(8);"at line";Spc(10)
Chain ""

Note that, in this example, the directory "dumpdir" must exist in the current working directory or the call to
PROGRAMDUMP will fail.

Formatting options can be specified in either str.expr2 or in the options (“(xxx)”) portion of the filename.
The “COLUMNS=n” option specifies the output width (default 78 columns). The “NULLS=TRUE”
option is used to enable printing null characters in strings as “\0\”. The “BYNAME=TRUE” option sorts
variables only by name instead of by type and name.

The PROGRAMDUMP intrinsic CALL will print repeated array values on a single line using an array
slice notation. For example, if the array V had 10 elements and all of the elements were zero except for
V[4]=7 and V[8]=9, then PROGRAMDUMP would produce the following output:

 * V[0;3],%13 = 0

 V[4],%13 = 7

 * V[5;7],%13 = 0

 V[8],%13 = 9

 V[9],%13 = 0

Note that all lines with repeated data are prefixed with an asterisk.
Examples

Call ProgramDump(d$)

 Intrinsic CALLS 318

dL4 Language Reference Guide©

Call ProgramDump("dumpdir/dumpfile")

Call ProgramDump(“dumpdir/dumpfile”,”append”)

See also
CALL, CALL FORCEPORTDUMP

 Intrinsic CALLS 319

dL4 Language Reference Guide©

CALL RDFHD
Synopsis

Read file directory.
Syntax

CALL RDFHD(dir.expr, fileno.var, name.var, acnt.var, type.var, size.var, stat.var, cost.var,
income.var, create.var, lastaccess.var, fileid.var)

Parameters
dir.expr is a string or numeric expression which specifies the directory path or the logical unit number.

fileno.var is a numeric variable which selects which file entry to examine in the directory.

name.var is a string variable which receives the file name.

acnt.var is a numeric variable that receives the file owner user id (-1 if there is no numeric id).

type.var is a numeric variable that receives the file type code (see below).

size.var is a numeric variable that receives the file size in 512 byte blocks.

stat.var is a numeric variable that receives the file status code (see below).

cost.var is a numeric variable that receives the file access cost (always zero).

income.var is a numeric variable that receives the file income (always zero).

create.var is a numeric variable that receives the file creation date in hours since the SPC(20) base year.

lastaccess.var is a numeric variable that receives the file last access date in hours since the SPC(20) base
year.

fileid.var is a numeric variable that receives an operating system dependent file identification number
Remarks

CALL RDFHD is used to read file directories and returns information about a selected file in the directory
specified by dir.expr. The file is selected by fileno.var which is the entry number in the file directory. Each
call to RDFHD increments fileno.var to the next entry or to -1 if there are no more entries. The value of
fileno.var should be initialized to zero before the first call to RDFHD for a given directory. This procedure
is compatible with UniBasic CALL 97 and CALL $RDFHD.

Type.var Meaning

0 Not a unrecognized file type

2 dL4 program file

24 Text file

25 Formatted file

26 Indexed-Contiguous file

Stat.var Meaning

0 Other

2 Indexed-Contiguous file

4096 Formatted file

 Intrinsic CALLS 320

dL4 Language Reference Guide©

Examples

Call RdFhd(dir$,fileno,f$,acnt,type,fsz,stat,c,i,create,access,fid)

See also
CALL, CALL FILEINFO

 Intrinsic CALLS 321

dL4 Language Reference Guide©

CALL READREF
Synopsis

Change channel access mode.
Syntax

CALL READREF(num.expr1, num.expr2)
Parameters

num.expr1 selects the new access mode

num.expr2 is the number of the channel to modify.
Remarks

If num.expr1 is zero, the channel access mode is changed to read/write with record locking enabled. If
num.expr1 is non-zero, the access mode is changed to read-only with record locking disabled.

If a channel was originally opened for read-only access, it may not be possible to change the access mode
to read/write.

The effect of READREF on record locking is driver and operating system dependent. New programs
should use the ROPEN statement and avoid dependence on disabling record locking.

This procedure is compatible with UniBasic CALL $READREF.
Examples

Call ReadRef(1,10)

See also
CALL, OPEN, ROPEN

 Intrinsic CALLS 322

dL4 Language Reference Guide©

CALL RMVSPACES
Synopsis

Copy string and remove spaces.
Syntax

CALL RMVSPACES(str.expr, str.var, num.expr)
Parameters

str.expr is the source string.

str.var is the destination string.

num.expr is the copy mode (0 or 1)
Remarks

If num.expr is not equal to one, str.expr1 is copied to str.var with all leading and trailing spaces removed.

If num.expr is equal to one, then str.expr is copied to str.var with all spaces removed except those in
quoted strings. If an exclamation mark (“!”) appears outside of a quoted string, then the exclamation mark
and all characters after it will be removed and a linefeed character will be appended.

This procedure is compatible with UniBasic CALL $RSPCS.
Examples

Call RmvSpaces(A$,B$,0)

See also
CALL, CALL RMVSPACESI, LTRIM$, RTRIM$, TRIM$

 Intrinsic CALLS 323

dL4 Language Reference Guide©

CALL RMVSPACESI
Synopsis

Copy string and remove spaces.
Syntax

CALL RMVSPACESI(str.expr, str.var, num.expr)
Parameters

str.expris the source string.

str.var is the destination string.

num.expr is the copy mode (0 or 1)
Remarks

If num.expr is zero, str.expr1 is copied to str.var with all leading and trailing spaces removed.

If num.expr is equal to one, then str.expr is copied to str.var with all spaces removed except those in
quoted strings. If an exclamation mark (“!”) appears outside of a quoted string, then the exclamation mark
and all characters after it will be removed. A linefeed character will be appended to the end of str.var.

If num.expr is not equal to zero or one, then an error 38 will occur.
Examples

Call RmvSpacesI(A$,B$,0)

See also
CALL, CALL RMVSPACES, LTRIM$, RTRIM$, TRIM$

 Intrinsic CALLS 324

dL4 Language Reference Guide©

CALL RENAME
Synopsis

Rename a file.
Syntax

CALL RENAME(num.expr1, str.expr1, str.expr2, num.expr2, num.var)
Parameters

num.expr1 specifies the logical unit number to prefix the old and new filenames.

str.expr1 is the old filename.

str.expr2 is the new filename.

num.expr2 is a channel number (ignored).

num.var is a variable which will be set to 0 if operation succeeds or to 1 if it fails.
Remarks

If num.expr1 is negative, it is ignored.

This procedure is compatible with UniBasic CALL $RENAME.
Examples

Call Rename(1,”A”,”B”,0,S) ! Rename 1/A to 1/B

See also
CALL, MODIFY

 Intrinsic CALLS 325

dL4 Language Reference Guide©

FUNCTION REPLACE
Synopsis

Change occurences of a target string to a replacement string.
Syntax

REPLACE$ (str.expr1, str.expr2, str.exp3 {, num.expr})
Parameters

str.expr1 is the original string value to be modified.

str.expr2 is the string value to find and replace in str.expr1.

str.expr3 is the replacement string value.

num.expr is an optional number of occurences of str.expr2 to be replaced.
Remarks

The REPLACE$ function returns the modified value of str.expr1 without changing the value in str.expr1.
If num.expr is not specified, then all occurences of str.expr2 in str.expr1 will be replaced by str.expr3. If
num.expr is zero, then str.expr1 will be returned without any modifications.

Examples
A$ = Replace$(C$, “old”, “new”) ! replace all “old“ with “new”

See also
REPLACECI$, POS

 Intrinsic CALLS 326

dL4 Language Reference Guide©

FUNCTION REPLACECI
Synopsis

Change occurences of a target string to a replacement string ignoring case.
Syntax

REPLACECI$ (str.expr1, str.expr2, str.exp3 {, num.expr})
Parameters

str.expr1 is the original string value to be modified.

str.expr2 is the string value to find and replace in str.expr1.

str.expr3 is the replacement string value.

num.expr is an optional number of occurences of str.expr2 to be replaced.
Remarks

The REPLACECI$ function returns the modified value of str.expr1 without changing the value in
str.expr1. When searching str.expr1, the case of characters in str.expr1 and str.expr2 is ignored. If
num.expr is not specified, then all occurences of str.expr2 in str.expr1 will be replaced by str.expr3. If
num.expr is zero, then str.expr1 will be returned without any modifications.

Examples
! Change all occurences of “No”, “no”, “NO”, or “nO” with “yes”
A$ = ReplaceCI$(C$, “No”, “yes”)

See also
REPLACE$, POS

 Intrinsic CALLS 327

dL4 Language Reference Guide©

CALL SCATTER
Synopsis

Unpack data from a string.
Syntax

CALL SCATTER (str.expr, var …)
Parameters

str.expr is a string expression containing values from a previous CALL GATHER.

var is one of one or more variables that will receive values from str.expr.
Remarks

The value of str.expr must be the result of a previous CALL GATHER or in a compatible format. The
packed values from str.expr are sequentially unpacked and copied to the variables var. The variables var
must be of the numeric, string, or date type and match the data type packed in str.expr. Numeric values are
always stored in BITS formats. This procedure is compatible with UniBasic CALL 73.

Examples
Call SCATTER(E$,A,B,C$,D)

See also
CALL, CALL GATHER

 Intrinsic CALLS 328

dL4 Language Reference Guide©

CALL SETECHO
Synopsis

Enable or disable terminal echo.
Syntax

CALL SETECHO (expr)
Parameters

expr is a string or numeric expression.
Remarks

CALL SETECHO disables echo if expr is a string and enables echo if expr is numeric. This procedure is
compatible with UniBasic CALL 7.

Examples
Call SetEcho(C$)

See also
CALL, CALL ECHO

 Intrinsic CALLS 329

dL4 Language Reference Guide©

CALL SETGLOBALS
Synopsis

Set session global values.
Syntax0

CALL SETGLOBALS({str.expr,}num.expr,var.list)
Syntax1

CALL SETGLOBALS({str.expr,}num.expr)
Syntax2

CALL SETGLOBALS(str.expr)
Parameters

str.expr supplies the name of the global set. If str.expr is not specified, the default set (named “”) is used.

num.expr specifies the starting global item number.

var.list is a list of one or more variables of any type except for array or structure.
Remarks

When using syntax 0, SETGLOBALS copies values to session global variables in the selected global set
starting with global item num.expr and continuing sequentially through the list of values. The values can be
retrieved by using CALL GETGLOBALS. Unless they are explicitly deleted (see below), the values
persist throughout a dL4 session until dL4 exits. The values types do not need to match any existing type
for the specified global item number. Global item numbers do not need to be sequential; setting item
num.expr does not require setting values for item num.expr – 1 or for item num.expr + 1. Global item
numbers must be in the range 0 through 999. Global set names cannot be longer than 32 characters. An
error 38 will occur if there is insufficient memory available to store the value.

To delete a value, use syntax 1. To delete an entire global set, use syntax 2. Deleting a non-existent value
or global set is not an error.

Examples
Call SetGlobals(3,S$,X)

See also
CALL, CALL GETGLOBALS

 Intrinsic CALLS 330

dL4 Language Reference Guide©

CALL SETREGISTRY
Synopsis

Set Windows registry values.
Syntax

CALL SETREGISTRY(str.expr, expr))
Parameters

str.expr is the name of the registry key and value to set.

expr is a numeric, string, or binary expression.
Remarks

SETREGISTRY set the Windows registry value selected by the registry key and value name specified in
str.expr. If the registry value already exists, an error 38 will occur if the value does not match the variable
type. This CALL always returns an error 38 if used on a Unix system. The value of str.expr must begin
with one of the following root key names:

HKEY_CLASSES_ROOT\ (or HKCR\)

HKEY_CURRENT_CONFIG\ (or HKCC\)

HKEY_CURRENT_USER\ (or HKCU\)

HKEY_LOCAL_MACHINE\ (or HKLM\)

HKEY_USERS\ (or HKUS\)

HKEY_PERFORMANCE_DATA\ (or HKPD\)

HKEY_DYN_DATA\ (or HKDD\)

Examples

Call SetRegistry(“HKEY_CURRENT_USER\\Software\\MyCompany\\Value”,S$)

See also
CALL, CALL GETREGISTRY

 Intrinsic CALLS 331

dL4 Language Reference Guide©

CALL SORTINSTRING
Synopsis

Sort Keys in a String or elements in an array.
Syntax0

CALL SORTINSTRING (num.var, num.expr1, num.expr2, str.var1, str.var2)
Syntax1

CALL SORTINSTRING (num.var, num.expr1, num.expr2, str.array.var, str.var2)
Syntax2

CALL SORTINSTRING (num.var, num.expr1, num.expr2, struct.array.var, struct.var)
Parameters

num.var is a numeric variable to receive a return status from the sort operation.

num.expr1 is a numeric variable or expression which, after evaluation , is truncated to an integer to specify
the number of strings to be sorted.

num.expr2 is a numeric variable or expression which, after evaluation , is truncated to an integer to specify
the length of each string. For string or structure arrays, this is the number of significant characters in each
string array element or the first structure member.

str.var1 is a string variable containing the keys to be sorted. It may contain any number of fixed-length
binary fields to be sorted. Sorting is based upon the supplied length (num.expr2) of each item, up to
number (num.expr1) of items.

str.var2 is any temporary work string DIMensioned to a minimum of length +8.

str.array.var is a string array variable containing the keys to be sorted. If num.expr2 is less than the
dimensioned size of the array elements, then only the first num.expr2 characters will be significant when
sorting.

struct.array.var is an array of structures. The first member of the structure must be a string and sorting will
be performed using the first num.expr2 characters of that structure member.

struct.var is a structure variable identical to the members of struct.array.var.
Remarks

The meaning of the return status value from the sort operation:

status Description

0 Successful sort operation.

1 Parameter Error.

2 number or length was passed as zero.

3 sort string is too small; less than number * length

4 work string is too small; less than length + 8.

The resulting sorted string is returned in str.var1.
Examples

Call SortInString(E, 100, 10, A$, W$)

See also
CALL

 Intrinsic CALLS 332

dL4 Language Reference Guide©

FUNCTION SQLNULL
Synopsis

Return numeric SQL NULL value for SQL driver I/O.
Syntax

SQLNULL ()
Parameters

None.
Remarks

SQLNULL returns a numeric value that is recognized by SQL drivers as an SQL NULL. The function
currently returns the value –1E62, but, for future compatibility, this function should always be used instead
of the literal value. An error will be generated if an illegal number of parameters, parameter type, or
parameter value is used.

Examples

Rec.Value = SQLNull()
See also

ISSQLNULL, SQLNULL#, SQLNULL$

 Intrinsic CALLS 333

dL4 Language Reference Guide©

FUNCTION SQLNULL#
Synopsis

Return date SQL NULL value for SQL driver I/O.
Syntax

SQLNULL# ()
Parameters

None.
Remarks

SQLNULL# returns a date value that is recognized by SQL drivers as an SQL NULL. The function
currently returns the value “January 1, 0001”, but, for future compatibility, this function should always be
used instead of the literal value. An error will be generated if an illegal number of parameters, parameter
type, or parameter value is used.

Examples

Rec.Value# = SQLNull#()
See also

ISSQLNULL, SQLNULL, SQLNULL$

 Intrinsic CALLS 334

dL4 Language Reference Guide©

FUNCTION SQLNULL$
Synopsis

Return string SQL NULL value for SQL driver I/O.
Syntax

SQLNULL$ ()
Parameters

None.
Remarks

SQLNULL returns a string value that is recognized by SQL drivers as an SQL NULL. The function
currently returns the value “\xffff\”, but, for future compatibility, this function should always be used
instead of the literal value. An error will be generated if an illegal number of parameters, parameter type, or
parameter value is used.

Examples

Rec.Name$ = SQLNull$()
See also

ISSQLNULL, SQLNULL, SQLNULL#

 Intrinsic CALLS 335

dL4 Language Reference Guide©

CALL STRING
Synopsis

Perform miscellaneous string functions.
Syntax0

CALL STRING (num.expr1, str.var)
Syntax1

CALL STRING(num.expr1, str.expr, num.var)
Syntax2

CALL STRING(num.expr1, num.expr2, str.var)
Parameters

num.expr1 specifies the function to be performed.

str.var is a variable on which to perform a function or into which to return the result.

num.expr2 is a value to be converted into characters.

num.var is a variable into which a converted character value is stored.
Remarks

 num.expr1 Syntax Function

 1 0 Convert characters in str.var to upper-case.

 2 0 Convert all characters in str.var to lower-case.

 3 1 Store value of the first character of str.expr into num.var.

 4 2 Store value of num.expr2 as a character into the first character of
str.var.

 5 0 Copy the command line into str.var.

 6 1 Store value of the first two characters of str.expr into num.var. The
value is formed by multiplying the value of the first character by 256
and adding the value of the second character.

 7 2 Store value of num.expr2 divided by 256 into the first character of
str.var and store the value of num.var modulo 256 into the second
character of str.var.

This procedure is compatible with UniBasic CALL $STRING.
Examples

Call String(1,A$)

See also
ASC, INT, LCASE$, UCASE$, CALL, CALL UBSTRING, CONV

 Intrinsic CALLS 336

dL4 Language Reference Guide©

CALL STRINGSEARCH
Synopsis

Perform string search.
Syntax

CALL STRING ({num.expr1,} str.expr1 {,num.expr2} ,str.expr2, num.var {,num.expr3 {,num.expr4
{,num.expr5}})

Parameters
num.expr1 controls whether the search end at the first null in str.expr1. If num.expr, truncated to an integer
is non-zero, then the search is performed on all characters in the dimensioned length of str.expr1. Default
value 0..

str.expr1 is the string which is searched for str.expr2.

num.expr2 is a starting index in str.expr1 at which to begin the search. If num.expr2 is negative, the search
is performed backwards from the end of str.expr1. Default value: 1.

str.expr2 is the string to search for in str.expr1.

num.var is a variable into which the relative index of the matching substring is stored. num.var is set to -1
if no match is found.

num.expr3 is the number of the match to search for. If num.expr3 is positive, str.expr1 is searched for the
Nth occurrence of str.expr2. If num.expr3 is negative, str.expr1 is searched for the Nth non-occurrence of
str.expr2. Default value: 1.

num.expr4 is source step value. If specified, str.expr1 is tested only at positions that are multiples of
num.expr4.

num.expr5 is the target step value. If specified, str.expr2 is treated as multiple strings of num.expr5
characters each and each step in str.expr1 is searched for each substring.

Remarks
This procedure is compatible with UniBasic CALL 56.

Examples
Call StringSearch(S$,”dog”,P)

See also
POS, CALL

 Intrinsic CALLS 337

dL4 Language Reference Guide©

CALL STRSRCH1
Synopsis

Search string.
Syntax

CALL STRSRCH1 (num.expr, str.expr1, str.expr2, num.var)
Parameters

num.expr is a numeric expression controlling the search mode. Only mode 2 is supported.

str.expr1 is the string to search for.

str.expr2 is the string to search.

num.var is a numeric variable which contains the start position for the search and receives the matching
position.

Remarks
If a substring that matches str.expr1 is found in str.expr2, then num.var is set to the starting index of that
substring. If a match is not found, num.var is set to zero. The search starts at index num.var minus one in
str.expr2 (zero based indexing) This procedure is compatible with UniBasic CALL 1.

Examples
Call StrSrch1(2,T$,S$,P)

See also
CALL, POS

 Intrinsic CALLS 338

dL4 Language Reference Guide©

CALL STRSRCH44
Synopsis

Search string.
Syntax

CALL STRSRCH44(num.expr1 {, str.expr1, str.expr2, num.var {, num.expr2}})
Parameters

num.expr1 is the CALL mode (see below).

str.expr1 is the optional string to search for or to swap.

str.expr2 is the optional string to search.

num.var is an optional numeric variable that supplies the search start position and receives the result.

num.expr2 is an optional expression that controls the search step value.
Remarks

Num.expr1 Operation Performed

0 Compare str.expr1 to str.expr2.

1 Search str.expr2 for the first occurrence of str.expr1.

2 Search str.expr2 for the first non-occurrence of str.expr1.

3 Swap target. Reverses position of all characters in str.expr1.

4 Disable terminal echo.

5 Enable terminal echo.

If num.expr1 is zero, the comparison status is returned in num.var as follows:

-2 = str.expr2 is logically less than str.expr1

 -1 = str.expr2 is shorter than str.expr1

 0 = str.expr1 and str.expr2 are exactly equal

 1 = str.expr1 is shorter than str.expr2

 2 = str.expr1 is logically less than str.expr2

If num.expr1 is 1 or 2, then num.var supplies the starting position for the search and receives the matching
position. If there is no matching position, then num.var is set to zero. If num.expr2 is supplied, it is used as
a step value in str.expr2 between each search.

If num.expr1 is 3, then str.expr1 must be a string variable.

This procedure is compatible with UniBasic CALL 44.
Examples

Call StrSrch44(4) ! Disable echo

Call StrSrch44(1,T$,S$,P)

See also
CALL, POS

 Intrinsic CALLS 339

dL4 Language Reference Guide©

CALL STRSRCH81
Synopsis

String Search.
Syntax

CALL STRSRCH81(num.expr, str.expr1, str.expr2, num.var)
Parameters

num.expr is an expression that controls the search type.

str.expr1 is the string to search for..

str.expr2 is the string to be searched.

num.var supplies the starting search position and receives the search result.
Remarks

If num.expr is zero, a search is performed to match the first character of str.expr1. If num.expr is one, a
search is performed to match the entire str.expr1 string. The start position for a search if supplied by
num.var using zero based indexing. If a match is found, the match position is returned in num.var. If a
match is not found, num.var is set to zero. This procedure is compatible with UniBasic CALL 81.

Examples
Call StrSrch81(1,T$,S$,P)

See also
CALL, POS

 Intrinsic CALLS 340

dL4 Language Reference Guide©

CALL SWAPF
Synopsis

Control hot-key swapping.
Syntax

CALL SWAPF (num.expr {, str.expr})
Parameters

num.expr is the mode, which selects the function performed whenever the [Hot-Key] is pressed during
INPUT.

The optional str.expr is the program file path defining a program to SWAP to whenever the [Hot-Key] is
pressed, and the mode is non-zero. This can be any BASIC program pathname.

Remarks
num.expr is any mode which, after evaluation, is truncated to an integer to select the function performed
whenever the [Hot-Key] is pressed during INPUT. Depending on the operating system, pressing a
[Hot-Key] may have no effect until an INPUT statement is reached.

mode Description

0 Disable the [Hot-Key] operation.

1 SWAP on [Hot-Key] with channels OPEN with normal common variables as contained in COM
statements.

2 SWAP on [Hot-Key] with normal common variables as contained in COM statements.

3 SWAP on [Hot-Key] with channels OPEN and no common variables.

An error is generated if a [Hot-Key] is pressed and the specified program name does not exist.
Examples

Call Swapf(0) ! Disable Hot-key for this program

Call Swapf(2,"AR.CUST") ! To Cust maint, no files

See also
CALL, WINDOW

 Intrinsic CALLS 341

dL4 Language Reference Guide©

CALL SYSRC
Synopsis

Return status of the last SYSTEM statement command.
Syntax

CALL SYSRC (num.var)
Parameters

num.var is a variable that receives the operating system dependent status of the last SYSTEM statement
command.

Remarks
The command status value can also be obtained directly in the SYSTEM statement by using the optional
status variable (‘SYSTEM “command”,status’).

Examples
Call SysRC(status)

See also
CALL, SYSTEM

 Intrinsic CALLS 342

dL4 Language Reference Guide©

CALL TIME
Synopsis

Get date and time.
Syntax

CALL TIME(str.var)
Parameters

str.var is a variable into which the current date and time is returned.
Remarks

An error will occur if str.var is dimensioned to less than 22 characters.

The format of the returned string is “Mon dd, year HH:MM:SS”.

This procedure is compatible with UniBasic CALL $TIME and CALL 99.
Examples

Call Time(T$)

See also
CALL, TIM#

 Intrinsic CALLS 343

dL4 Language Reference Guide©

CALL TRANSLATE
Synopsis

Translate characters to or from a byte string
Syntax0

CALL TRANSLATE(num.var1, str.var, num.var2, bin.expr, str.expr1)
Syntax1

CALL TRANSLATE(num.var1, bin.var, num.var2, str.expr2, str.expr1)
Parameters

num.var1 is a variable which receives the number of characters or bytes stored.

str.var is a variable that receives characters translated from bin.expr.

num.var2 is a variable which receives the number of source bytes or characters translated.

bin.expr is a binary expression that supplies bytes to be translated.

str.expr1 is a string expression that specifies the character set name (such as EBCDIC or UTF-8).

bin.var is a variable that receives bytes translated from str.expr2.

str.expr2 is a string expression that supplies characters to be translated.
Remarks

CALL TRANSLATE is used to convert between a string of bytes and a string of Unicode characters. The
number of bytes or characters to be translated is controlled by the size or double subscripting of the source
expression (bin.expr or str.expr2). Null characters in the source expression will be translated as data.
Translation will stop at the end of the source expression or at the first byte or character that cannot be
translated.

Examples
Call Translate(DestCnt,Dest$,NumXltd,Src?[1,40],”EBCDIC”)

See also
CALL

 Intrinsic CALLS 344

dL4 Language Reference Guide©

FUNCTION TRIM$
Synopsis

Delete leading and trailing spaces from a string value.
Syntax

TRIM$(str.expr)
Parameters

str.expr is the string expression to be trimmed.
Remarks

TRIM$ returns str.expr with all leading and trailing spaces removed.
Examples

X$ = Trim$(X$)

See also
CALL, LTRIM$, RTRIM$

 Intrinsic CALLS 345

dL4 Language Reference Guide©

CALL TRXCO
Synopsis

Control phantom port.
Syntax

CALL TRXCO (num.expr, str.expr, {, num.lit {, num.expr}})
Parameters

num.expr is the port, which is used to select the port number for this operation.

str.expr is the command, which selects a command to be sent to the specified port. The supplied command
is copied into the specified ports' type-ahead buffer to be processed the next time port is awaiting input.
The command may be any system command or prompt response for a running program. Multiple
commands, separated by \15\ may be included in the command string.

The optional num.lit is the status, an exception value returned to the caller providing completion status of
the desired operation.

The optional num.expr is the port execution priority, which, after evaluation is truncated to an integer. The
valid range is from a low of 1 to a high of 7. The exact effect, if any, of port priority is operating system
dependent.

Remarks
For UNIX users, in order to use CALL TRXCO or the PORT statement, the executable file "scope" must
be within one of the directories in your PATH. Otherwise, the environment variable SCOPE must be set
to the path of the "scope" executable, e.g.:

SCOPE=/usr/bin/scope
export SCOPE

The status returned to the caller providing completion status of the desired operation:

Status Description

0 Successful operation; command transmitted.

1 port is not a numeric expression.

2 Specified port is out of range 0 to 1023.

3 Specified port is not running Basic.

4 Specified port is the user's own port.

5 command is not a valid str.expr.

6 unix fork() operation failed, or port is not ready for input.

7 Specified port has input already in progress.

TRXCO begins by attempting to attach the port. If the port is already running Basic, the command is
copied into the ports' type-ahead buffer. A carriage return is appended to the string supplied.

If the port is not currently running a Basic process, a background process is created as the supplied port
number. It assumes the callers identity, environment and current working directory. It then becomes a
unique process linked to the supplied port number. This port is then available for CALL TRXCO
commands, PORT, SEND, RECV, and SIGNAL statements from any other Basic user as well as the
program performing the initial CALL TRXCO.

When sending commands to a port which is connected to a terminal and keyboard, you must ensure that
port is within Basic before sending commands. Otherwise, a phantom port is created for the supplied port
number. If a user later attempts entry into Basic on a terminal designated as the same port, entry will be
rejected.

 Intrinsic CALLS 346

dL4 Language Reference Guide©

Always pause at least 2 seconds between subsequent TRXCO calls to the same or different ports. This
permits the receiving port time to respond.

Examples
A$="Run hello" ! dL4 saved program hello
Call Trxco(10,A$,E,2) ! Low priority
If E Stop ! Error trying to start

See also
CALL, PORT

 Intrinsic CALLS 347

dL4 Language Reference Guide©

FUNCTION UBASC
Synopsis

Emulate the UniBasic ASC function.
Syntax

UBASC(strexpr)
Parameters

str.expr is an expression that specifies a single character to be converted to its UniBasic integer value.
Remarks

This procedure is compatible with the UniBasic ASC(n) function and always returns values between 0 and
255. ASCII characters are converted to integers between 128 and 255. UniBasic compatible mnemonics are
converted to integers between 0 and 127. All other character values are truncated to 8-bits before
conversion.

Examples
X = UBASC(S$)

See also
ASC, CALL, DECLARE

 Intrinsic CALLS 348

dL4 Language Reference Guide©

FUNCTION UBCHR$
Synopsis

Emulate the UniBasic CHR function.
Syntax

UBCHR$(num.expr)
Parameters

num.expr is an expression that specifies the character value.
Remarks

This procedure is compatible with the UniBasic CHR(n) function. Values between 128 and 255 are
converted to ASCII values. Values between 0 and 127 are converted to UniBasic compatible mnemonics.
All other values are converted to “\177777\”.

Examples
X$ = UBChr$(193)

See also
CHR$, CALL, DECLARE

 Intrinsic CALLS 349

dL4 Language Reference Guide©

FUNCTION UBMEM
Synopsis

Emulate the UniBasic MEM function.
Syntax

UBMEM(num.expr)
Parameters

num.expr is an expression that specifies the memory location.
Remarks

This procedure is compatible with the UniBasic MEM(n) function and always returns zero.
Examples

X = UBMem(6)

See also
CALL, DECLARE

 Intrinsic CALLS 350

dL4 Language Reference Guide©

CALL UBSTRING
Synopsis

Perform miscellaneous string functions.
Syntax0

CALL UBSTRING (num.expr1, str.var)
Syntax1

CALL UBSTRING(num.expr1, str.expr, num.var)
Syntax2

CALL UBSTRING(num.expr1, num.expr2, str.var)
Parameters

num.expr1 specifies the function to be performed.

str.var is a variable on which to perform a function or into which to return the result.

num.expr2 is a value to be converted into characters.

num.var is a variable into which a converted character value is stored.
Remarks
 For modes 3, 4, 6, and 7, ASCII characters are treated as having integer values between 128

and 255. UniBasic compatible mnemonic characters are treated as having integer values
between 1 and 127. For modes 3 and 6, Unicode characters outside of the ASCII or UniBasic
mnemonic subsets will be truncated to 8-bit values. For modes 4 and 7, integer values outside of
the ASCII and UniBasic mnemonic subsets will be translated to “\177777\”.

 num.expr1 Syntax Function

 1 0 Convert characters in str.var to upper-case.

 2 0 Convert all characters in str.var to lower-case.

 3 1 Store value of the first character of str.expr into num.var.

 4 2 Store value of num.expr2 as a character into the first character of
str.var.

 5 0 Copy the command line into str.var.

 6 1 Store value of the first two characters of str.expr into num.var. The
value is formed by multiplying the value of the first character by 256
and adding the value of the second character.

 7 2 Store value of num.expr2 divided by 256 into the first character of
str.var and store the value of num.var modulo 256 into the second
character of str.var.

This procedure is compatible with UniBasic CALL $STRING.
Examples

Call UBString(1,A$)

See also
ASC, INT, LCASE$, UCASE$, CALL, CALL STRING, CONV

 Intrinsic CALLS 351

dL4 Language Reference Guide©

CALL UNPKDEC21
Synopsis

Unpack numeric data.
Syntax

CALL UNPKDEC21 (str.expr, str.var)
Parameters

str.expr is an expression which specifies the string to unpack.

str.var is a string variable that receives the unpacked data.
Remarks

CALL UNPKDEC21 unpacks each character in str.expr as a pair of 4 bit nibbles into two characters in
str.var. Each 4 bit nibble is translated to the equivalent Unicode digit minus one(thus the nibble 0001 is
stored as the Unicode character “0”). This procedure is compatible with UniBasic CALL 21.

Examples
Call PkDec21(PackedNumber$,Number$)

See also
CALL, CALL PKDEC20, CALL UNPKDEC46

 Intrinsic CALLS 352

dL4 Language Reference Guide©

CALL UNPKDEC46
Synopsis

Unpack numeric data.
Syntax

CALL UNPKDEC46 (str.expr, str.var)
Parameters

str.expr is the source expression string.

str.var is the destination string variable.
Remarks

CALL UNPKDEC45 sequentially unpacks each character from str.expr into two characters in str.var.
Each character in str.expr is treated as a pair of nibbles which are translated into characters as shown in the
table below.

This procedure is compatible with UniBasic CALL 46.

Characte
r

Nibbl
e

Characte
r

Nibbl
e

Space 0001 3 1001

, 0010 4 1010

- 0011 5 1011

. 0100 6 1100

/ 0101 7 1101

0 0110 8 1110

1 0111 9 1111

2 1000

Examples

Call PkDec46(packeddata$, data$)

See also
CALL, CALL PKDEC45, CALL UNPKDEC21

 Intrinsic CALLS 353

dL4 Language Reference Guide©

CALL UNPKRDX5019
Synopsis

Unpack characters from radix 50 .
Syntax

CALL UNPKRDX5019 (str.expr, str.var {,num.expr})
Parameters

str.expr is an expression which specifies the string to unpack.

str.var is a string variable that receives the unpacked string.

num.expr is an expression that controls space filling of the str.var.
Remarks

CALL PKRDX5019 unpacks character triplets from str.expr into str.var. Each character pair from str.expr
forms a 16 bit value by taking the upper 8 bits from the first character and the lower 8 bits from the second
character. The 16 bit value contains three radix 50 characters as the sum (Char1 * 40 + Char2) * 40 +
Char3. The values of CharN are translated to Unicode as shown in the table below. If num.expr is zero or
omitted, str.var will be space filled. If num.expr is one, trailing spaces will be removed. This procedure is
compatible with UniBasic CALL 19.

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

0 01 A 11 K 21 U 31

1 02 B 12 L 22 V 32

2 03 C 13 M 23 W 33

3 04 D 14 N 24 X 34

4 05 E 15 O 25 Y 35

5 06 F 16 P 26 Z 36

6 07 G 17 Q 27 , 37

7 08 H 18 R 28 - 38

8 09 I 19 S 29 . 39

9 10 J 20 T 30 Space 00

Examples

Call PkRdx5019(packed$,unpacked$)

See also
CALL, CALL PKRDX5018, CALL UNPKRDX5049

 Intrinsic CALLS 354

dL4 Language Reference Guide©

CALL UNPKRDX5049
Synopsis

Unpack characters from radix 50 .
Syntax

CALL UNPKRDX5049 (str.expr, str.var)
Parameters

str.expr is an expression which specifies the string to unpack.

str.var is a string variable that receives the unpacked string.
Remarks

CALL PKRDX5049 unpacks character triplets from str.expr into str.var. Each character pair from str.expr
forms a 16 bit value by taking the upper 8 bits from the first character and the lower 8 bits from the second
character. The 16 bit value contains three radix 50 characters as the sum (Char1 * 40 + Char2) * 40 +
Char3. The values of CharN are translated to Unicode as shown in the table below. This procedure is
compatible with UniBasic CALL 49.

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

Characte
r

Radix
50

, 01 7 11 H 21 R 31
- 02 8 12 I 22 S 32
. 03 9 13 J 23 T 33
0 04 A 14 K 24 U 34
1 05 B 15 L 25 V 35
2 06 C 16 M 26 W 36
3 07 D 17 N 27 X 37
4 08 E 18 O 28 Y 38
5 09 F 19 P 29 Z 39
6 10 G 20 Q 30 Space 00

Examples

Call PkRdx5049(packed$,unpacked$)

See also
CALL, CALL PKRDX5048, CALL UNPKRDX5019

 Intrinsic CALLS 355

dL4 Language Reference Guide©

CALL VERIFYDATE
Synopsis

Verify date and convert to standard format.
Syntax

CALL VERIFYDATE(str.expr {,str.var {,num.var {,num.expr}}})
Parameters

str.expr is an expression which specifies the string to verify and convert.

str.var is an optional variable which receives the converted date string.

num.var is an optional variable that receives the status of the conversion (0 for success, 1 for illegal date).

num.expr is an optional expression that specifies the output format.
Remarks

The input formatof str.expr must be one of the following where MONTH is a month name or three letter
abbreviation:

 MONTH DD, YYYY

 DD MONTH YYYY

 MM/DD/YY

 MM/DD/YYYY

If num.expr is not specified or, when truncated to an integer, is zero, then the output format is
“YYMMDD”. If the value is non-zero, then the format is “YYYYMMDD”.

If str.var is not specified, then str.expr must be a string variable into which the converted date is stored.

If num.var is not specified, then an illegal date will cause an error 38 to occur.

Any non-numeric character will be accepted as the date separator (“/”).

If OPTION DATE FORMAT NATIVE is used, the input date will use day-month-year ordering if
specified by the current locale.

This procedure is compatible with UniBasic CALL 24.
Examples

Call VerifyDate(D$)

See also
CALL, CALL DATETOJULIAN

 Intrinsic CALLS 356

dL4 Language Reference Guide©

CALL VOLLINK
Synopsis

Create polyfile.
Syntax

CALL VOLLINK (num.expr1, num.expr2, num.expr3, num.var, array.var)
Parameters

num.expr1 specifies the channel number open to the file or polyfile.

num.expr2 is ignored.

num.expr3 is the polyfile volume number.

num.var receives the operation status.

array.var is a numeric array which receives volume information (see below).
Remarks

If the volume number num.expr3 is zero and the channel number num.expr1 is non-negative, then the
indexed-contiguous file open on the channel will be marked as a polyfile. If the channel num.expr1 is less
than zero, the first element of the array array.var will be zeroed. If num.expr1 is not an open channel
number, the status num.var will be set to 1. If the volume number num.expr3 is not zero when marking a
polyfile, the status num.var will be set to 16. This procedure is compatible with UniBasic CALL 91 and
CALL $VOLLINK.

Examples
Call VOLLINK(5,0,0,S,P[])

See also
CALL

 Intrinsic CALLS 357

dL4 Language Reference Guide©

CALL WHOLOCK
Synopsis

Determine which port or process has locked a record.
Syntax

CALL WHOLOCK(num.expr1, num.expr2, num.var1 {,num.var2})
Parameters

numr.expr1 is a numeric expression which specifies a channel open to a file.

num.expr2 is a numeric expression which specifies a record number in the file open on channel num.expr1.

num.var1is a variable that receives the port number that currently has the specified record locked or -1 if
the record is not locked by a dL4 process.

num.var2 is an optional variable that receives the operating system defined process id number of the
process that has the specified record locked or -1 if the record is not locked by another process.

Remarks
CALL WHOLOCK is supported only for Formatted, Contiguous, and Indexed-Contiguous files.

CALL WHOLOCK is not supported on Windows due to operating system limitations and will always
return -1 as in num.var1 and num.var2.

This procedure is compatible with UniBasic CALL $WHOLOCK.
Examples

Call WhoLock(ChanNo,RecNbr,PortNo)

See also
CALL, PORT

 File Specification 358

dL4 Language Reference Guide©

Chapter 9 - File Specification

file.spec Definition
A file.spec is an expression used in a dL4 BASIC program to either open or build a file. The expression
consists of a list of items. The standard list of items consists of a Filename Item, an Option Item, a
Protection Item, a Number of Records Item, and finally a Record Length Item. These items can be
specified either as a single string expression or as a list of items. The single string expression and the list
of items are referred to as a file.spec.str and a file.spec.items, respectively in this manual.

The file.spec.str is internally parsed into the standard list of items. Thus, a non-standard list of items
cannot be specified in a file.spec.str. Unlike a file.spec.str, a file.spec.items can use both the standard and a
non-standard list of items. Thus, a file.spec.items must be used when opening a driver that requires a non-
standard list of items.

This chapter includes a detailed discussion with examples for both a file.spec.str and a file.spec.items. In
addition, it provides a detailed description of each individual items and concludes with a small running
program.

file.spec.str

A file.spec expressed as a single string expression is referred to as a file.spec.str. A generic and a specific
example of a file.spec.str respectively would be:

"(option item) <protection item> $cost item [number of records item : record length item] filename item!"

"(charset=ebcdic) <62> $99.99 [100:10] myfile!"

The following rules apply to a file.spec.str:

• Except for the filename item which is required and must be the last item, the remaining individual
items are discretionary and can be expressed in any order, but they must be grouped together as a
single string expression.

• The exclamation point (!) in the filename item is used only with the BUILD statement to replace an
existing file.

• The option item, the protection item, and the cost item must be surrounded by parentheses (()), angle
brackets (<>), and must begin with a leading dollar sign ($), respectively.

• The dollar sign ($) is the only allowable currency designator in the cost item.

• The number of records and the length of each record are specified as a single item, enclosed by square
brackets ([]), and are separated by a colon (":").

An example of a file.spec.str using the BUILD statement is as follows:

BUILD #9, "(charset=ebcdic) <62> $99.99 [100:10] myfile!"

 File Specification 359

dL4 Language Reference Guide©

The BUILD statement above builds a new Contiguous file, called myfile, by replacing myfile if it already
exists. An explanation of each individual item in this example follows:

• Option Item - selects an EBCDIC character set instead of the default character set.

• Protection Item - set to 62, prohibiting reading and writing by other groups, and prohibiting writing by
the same group.

• Cost Item - 99.99 is selected.

• Number of Records Item - create 100 initial records.

• Record Length Item - create a file with a record length of 10 words each.

• Filename Item - the name of the file is myfile, which is created in the user's current directory. The
exclamation point replaces myfile if it already exists.

file.spec.items

A file.spec, which begins in a "{" and ends in a "} and is expressed as a list of items, is referred to as a
file.spec.items. A generic and a specific example of a file.spec.items respectively would be:

{"filename item!", "option item", "protection item", cost item, number of records item, record length item}

{"myfile!", "charset=ebcdic", "62", 99.99, 100,10}

Although the typical usage is file.spec.str, the actual interpretation of each item in the list of items is driver-
class dependent. A file.spec.items must be used if the driver-class interprets the list of items differently.

Unlike a file.spec.str, each individual item in a file.spec.items must be defined separately. Each item has a
data type associated with it, and the appropriate data type must be used for each particular item. In
addition, the As "driver-class" must be used with the BUILD statement. The data types of each individual
items in a file.spec.items are as follows:

ITEM DATA TYPE COMMENTS
Filename Item String A required item with an optional exclamation point (!) to replace

and build an existing file. "" is allowed, but will generate an error
since "" is not a valid filename.

Option Item String "" is allowed, meaning no option specified. Surrounding
parentheses () are not allowed.

Protection Item String "" is allowed, meaning no protection specified. Surrounding
angle brackets (<>) are not allowed.

Cost Item Numeric Must specify a legal value. A zero is allowed.
Number of Records Item Numeric Specified as a single numeric item.
Record Size Item Numeric Specified as a single numeric item.

 File Specification 360

dL4 Language Reference Guide©

The following rules apply to a file.spec.items:

• A standard list of items must be in the following order: Filename Item, Option Item, Protection Item,
Cost Item, Number of Records Item, Record Length Item.

• Surrounding parentheses (()) are not allowed in a Option Item.

• Surrounding angle brackets (<>) are not allowed in a Protection Item.

• The interpretation of each item is driver-class-specific. Therefore, the way each item is interpreted
depends upon which specific driver-class is in use.

• The list of items must always appear in order.

• Any discretionary item after the last specified item may be omitted while attempting to open a file.
Thus, a file may be opened without write access as follows:

OPEN #9,{""myfile"", "", "w"}

• The driver-class/name must be specified with an AS clause if the list is used in a BUILD statement.

An example of a file.spec.items using the BUILD statement is as follows:

BUILD #9,{"myfile!", "charset=ebcdic", "62", 99.99, 100,10} As "Contiguous"

In addition to grouping the list of items within braces, "{}", the list of items can also be specified in a
structure variable. Thus, the previous example can also be written as:

 BUILD #0, struct.var As "Contiguous"

The BUILD statements above build a Contiguous file, called myfile, and replace myfile, if it already
exists. An explanation of each individual item for the above example follows:

• Filename Item - the name of the file is myfile, which is created in the user's current directory. The
exclamation point (!) replaces the file that may already exist.

• Option Item - selects an EBCDIC character set instead of the default character set.

• Protection Item - set to 62, prohibiting reading and writing by other groups, and prohibiting writing by
the same group.

• Cost Item - 99.99 is selected.

• Number of Records Item - create 100 initial records.

• Record Length Item - create a file with a record length of 10 words each.

• Each item in the list of items must be specified, even if it is not used, while building a file.

The Standard List of Items
The standard list of items in a file specification, or file.spec, is described in the following paragraphs.

Filename Item

A filename is a string literal or expression containing a filename which is optionally preceded by a relative
or absolute directory pathname. A filename must always be specified in a file.spec. A filename that
contains embedded spaces must be enclosed in quotation marks.

The final optional exclamation point (!) allows creation of a new file, even if a file already exists. This
creation is performed by first deleting the old file, if it already exists, then creating the new file. The
exclamation point is used only with the BUILD statement.

 File Specification 361

dL4 Language Reference Guide©

If the final optional exclamation point (!) is omitted, an error will occur while attempting to build an
existing file.

Option Item

An Option Item changes driver-class dependent behavior of the driver-class. The general syntax for an
Option Item is:

option-name=value {, option-name=value}...

For example, to create a file with the EBCDIC character set, the option item in the BUILD statement is set
to charset=ebcdic. In the absence of the Option Item, the driver-class would have built the file with its own
default character set.

The syntax optionally allows for additional comma separated options.

Protection Item

A Protection Item allows for the manipulation of file permissions. It can be specified to change the default
read and write protection during the building or opening of a file. The methods for specifying protection
during BUILD and OPEN are described in the following paragraphs.

File protection is ultimately Operating System dependent, therefore the Protection Item specified is
translated to be compatible with the Operating System format.

Specifying Protection During BUILD

There are three (3) methods to specify a protection string while building a file. These methods are
described in the following paragraphs.

Protection by Attribute Letters

The first method is to specify attribute letters. The meaning of each letter is listed below:
A Allow reading by any member of the group.
B Allow writing by any member of the group.
D Prohibit deletion of the file. (operating system specific.)
P Allow reading and writing by all.
R Prohibit reading by anyone except the file owner.
W Prohibit writing by anyone except the file owner.

The attributes are created by combining the above letters, where each letter is used only once. In other
words, "RR" is an illegal protection value.

For example, "AW" allows reading by any member of a group, and prohibits writing by anyone except the
file owner.

Protection by Two-Digit Number

The second method to specify protection is to use a two-digit number. The meaning of each digit is
described below:

 File Specification 362

dL4 Language Reference Guide©

40 Prohibit reading by other groups.
20 Prohibit writing by other groups.
10 Prohibit copying by other groups. (operating system specific.)
04 Prohibit reading by the same group.
02 Prohibit writing by the same group.
01 Prohibit copying by the same group. (operating system specific.)

The two-digit attributes are calculated by summing the desired digits, where each digit is added only once
in a valid operation. In other words, 48 (40 + 4 + 4) is an illegal protection value, because 4 is added
twice. Thus, 77 is the highest available legal value.

For example, if the desired attributes are "Prohibit reading by other groups" and "Prohibit writing by the
same group", then these attributes can be summed as 40 plus 02 to equal a sum of 42.

Protection by Three-Digit Number

The third method to specify protection is to use a three-digit number. The meaning of each digit is
described below:

400 Owner can read the file.
200 Owner can write to the file.
100 Owner can execute the file.
40 Group can read the file.
20 Group can write to the file.
10 Group can execute the file.
04 Others can read the file.
02 Others can write to the file.
01 Others can execute the file.

The meaning of the execute permission is operating system specific.

The three-digit attributes are calculated by summing the desired digits, where each digit is added only once
in a valid operation. In other words, 448 (400 + 40 + 4 + 4) is an illegal protection value, because 4 is
added twice. Thus, 777 is the highest available legal value.

Examples are shown below:
PROTECTION MEANING
777 owner, group, and public can read, write, and execute file
744 owner can read, write, and execute; group and public can read file
644 owner can read and write; group and public can read file
711 owner can read, write, and execute; group and public can execute file

Specifying Protection During OPEN

When a file is opened, protection is specified by selecting a combination of the letters listed below.
R Open a file without read permission
W Open a file without write permission
E Open a file in exclusive mode (driver-class dependent)
L Open a file and disable record locking (driver-class dependent)

Up to four unique letters can be selected.

For example, "RW" protection value prohibits reading from and writing to the file. A "RWW" protection
value is an illegal combination, because the letter W is selected twice.

 File Specification 363

dL4 Language Reference Guide©

Cost Item

A Cost Item is a floating point monetary unit whose meaning is driver-class dependent.

Number of Records Item

A Number of Records Item provides a method to specify the number of records.

Record Length Item

A Record Length Item provides a method to specify the record size.

Example of file.spec

The program below demonstrates the use of a file.spec.str to build and open a Contiguous file.
10 DIM S$[20], B?[20]
20 BUILD #9, "(charset=ebcdic) <62> $99.99 [100:10] myfile!"
30 WRITE #9,0; "My File"
40 CLOSE #9
50 OPEN #9, "<W> myfile" \ REM Open without Write permission
60 READ #9, 0; S$
70 READ #9,0;B?
80 PRINT S$, HEX$ (B?) \ REM Verify that data was written/read
correctly
90 CLOSE

 Glossary 364

dL4 Language Reference Guide©

Appendix A - Glossary
This glossary defines terms in the context of dL4. For the concepts behind many of these terms, refer to
Introduction to dL4:

absolute pathname the full pathname, starting at the root.

BASIC object code SEE object code.

block one or more statements treated as though they were a single statement.

channel a communication method between an application and a dL4 driver for
requesting specific file operations.

character a letter, number, or other special data representation.

character code a numeric value that represents a particular character in a set, such as the ASCII
character set.

character data type a representation of a letter, number, or other special data representation.

character set a mapping of characters to their identifying numeric values.

context SEE runtime context.

driver a dL4 driver acts as a translator converting a generic file operation request from
an application program into a specific command that carries out the requested
operation.

executable a program that is ready for execution.

file a collection of records.

index a mechanism of locating data.

infinite loop the never-ending repetition of a block of dL4 statements.

interface SEE port.

ISAM files ISAM (Indexed Sequential Access Method) is a storage and retrieval system
that allows efficient access to data records using key values.

key values identifying values used in a file to describe and locate a desired record.

keyword a reserved word used as part of dL4 syntax.

loop the repeated circular execution of one or more statements.

member each individual data type in a structure data type. See structure data type.

nested loop a loop within a loop.

object code a translation, not readable to the user, of a program source code that can be
directly executed by the computer.

operand a piece of data upon which an operation is performed.

phantom port a port that does not have access to its display device. Typically it runs in
background.

portable capable of being ported to different systems.

position parameter A position parameter is used by some BASIC/Debugger commands to specify a
line in a dL4 program. Refer to dL4 Command Reference Guide, Appendix C
for description of position parameter.

program a set of executable instructions.

 Glossary 365

dL4 Language Reference Guide©

relative pathname a partial pathname relative to your current working directory.

record a set of related fields.

reserved word in dL4, a word that has a fixed function and cannot be used for any other
purpose. Same as keyword.

root the root directory, which is the main directory that contains everything on the
disk.

run time related to the events that occur while a program is being executed.

runtime context a machine state when a dL4 program is executed.

SCCS Source Code Control System (SCCS) is a Unix utility that allows source code
level revision control for a project.

source code a user-readable text file containing dL4 BASIC language statements.

step into trace inside a function.

step through execute a function but do not trace inside a function. Trace resumes outside the
function.

string a sequence of alphanumeric characters. dL4 converts all strings to Unicode
characters.

structure data type a data type that organizes different data types so that they can be referenced as a
single unit. Typically, used to define a record in a data file.

subscript a number inside brackets that differentiates one element of an array from
another.

Unicode a 16-bit character set capable of encoding all known characters and used as a
worldwide character-encoding standard.

 Reserved Words 366

dL4 Language Reference Guide©

Appendix B - dL4 Reserved Words
The following list shows dL4 reserved words, also called keywords. You cannot use any of these words as
a variable, label, or procedure name. Each of the reserved words has a fixed function and cannot be used
for any other purpose.

ABS

ACCESS

ADD

ALL

ALTERNATE

AND

ANGLE

ARITHMETIC

AS

ASC

ASCENDING

ATN

AUTO

AUTO

BSTR$

BVAL

BASE

BINARY

BOX

BUFFER

BUILD

BY

BYTES

CALL

CASE

CHDIR

CHAIN

CHANNEL

CHF

CHF$

CHR

CHR$

CLEAR

CLOSE

COLLATE

COM

COMMA

CON

CONV

COS

DAT#

DATA

DATE

DECIMAL

DECIMALS

DECLARE

DEF

DEFINE

DEGREES

DELETE

DESCENDING

DET

DIM

DIRECTORIES

DISPLAY

DO

DUPLICATE

DUPLICATES

EDIT

ELSE

END

ENTER

EOFCLR

EOFSET

EOPEN

ERASE

ERM$

ERR

ERRCLR

ERROR

ERRSET

ERRSTM

ESCCLR

ESCDIS

ESCSET

ESCSTM

EXCEPT

EXIT

EXP

EXTERNAL

FAILURE

FILE

FOR

FORMAT

FRA

FREE

FUNCTION

GET

GMT#

GMT$

GOSUB

GOSUB

GOTO

HEX$

HEX?

IDN

 Reserved Words 367

dL4 Language Reference Guide©

IF

IGNORED

INDEX

INPUT

INT

INTCLR

INTRINSIC

INTSET

INV

IS

ITEM

IXR

JUMP

KEY

KILL

LBOUND

LCASE$

LTRIM$

LEN

LET

LIB

LIKE

LINE

LINES

LOG

LOOP

MAN

MAP

MAT

MEMBER

MOD

MODIFY

MONTH

MONTH$

MONTHDAY

MOVE

MSC

MSC$

NATIVE

NESTING

NEXT

NOT

NUMERIC

OFF

ON

OPEN

OPTION

OR

PCHR$

PAUSE

PERIOD

PORT

POS

PRINT

RTRIM$

RADIANS

RANDOM

RAW

RDLOCK

READ

RECORD

RECV

REM

REP$

RESTOR

RETRY

RETURN

RETURNED

REWIND

RND

ROPEN

ROUND

SEARCH

SELECT

SEND

SET

SETFP

SGN

SIGNAL

SIN

SIZE

SPACING

SPAWN

SPC

SQR

STANDARD

STATEMENTS

STEP

STOP

STR$

STRING

STRINGS

STRUCT

SUB

SUBSCRIPTS

SUSPEND

SWAP

SYSTEM

TAB

TAN

THEN

TIM

TIM#

TIMEOUT

TIMEZONE

TO

TRACE

TRN

TRUNCATE

TRY

UBOUND

UCASE$

UNIQUE

UNIT

 Reserved Words 368

dL4 Language Reference Guide©

UNLOCK

UNTIL

UPPERCASE

USING

VAL

WEEKDAY

WEEKDAY$

WEND

WHILE

WINDOW

WOPEN

WORDS

WRITE

WRLOCK

YEAR

YEARDAY

ZER

 Error Codes 369

dL4 Language Reference Guide©

Appendix C - BASIC Error Codes
The BASIC error messages, preceded by their numbers, are listed below. All errors have in common the
fact that they are recognized from a statement.

0 - No such error.

1 - Syntax error.

2 - Illegal string operation.

3 - Storage overflow.

4 - Format error.

5 - Character is illegal or not supported by driver.

6 - No such line.

7 - Line too long.

8 - Too many variable names.

9 - Unrecognizable word.

10 - GO is illegal before an initial run.

11 - Incorrect parentheses closure.

12 - Program is list/copy protected.

13 - Number out of range.

14 - Out of data.

15 - Arithmetic or date overflow.

16 - GOSUBS nested too deep.

17 - RETURN without GOSUB.

18 - FOR-NEXT loops nested too deep.

19 - FOR without matching NEXT.

20 - NEXT without matching FOR.

21 - Expression too complex.

22 - Illegal numeric or date precision.

23 - No such error.

24 - Too many dimensions.

25 - Variable not dimensioned.

26 - Directory not found.

27 - Too many procedure parameters.

28 - Parameter out of range.

29 - Illegal function usage.

30 - Procedure not declared or defined.

31 - Procedures nested too deep.

32 - Matrices have different dimensions.

 Error Codes 370

dL4 Language Reference Guide©

33 - Argument is not a matrix.

34 - Dimensions are not compatible.

35 - Matrix is not 'square'.

36 - Intrinsic procedure not found.

37 - No such error.

38 - Error detected by CALLed subroutine.

39 - Formatted output exceeded buffer size.

40 - Channel in use.

41 - Illegal filename.

42 - File not found.

43 - Syntax error in file specification.

44 - Incompatible file type (can't open or replace).

45 - File is read-protected.

46 - File is write-protected.

47 - Disk or directory is full.

48 - Accounts disk block allotment is insufficient

49 - Channel not open.

50 - File is copy-protected.

51 - Illegal record number.

52 - Record not written.

53 - Illegal item number.

54 - Item types don't match.

55 - Statement is illegal from keyboard.

56 - No current program.

57 - Variable already dimensioned.

58 - Error in format string.

59 - Variable is in-use.

60 - Too many numbers entered for INPUT.

61 - Illegal data type.

62 - Signal buffer is full or no such port.

63 - Illegal number/types of args for specified dri....

64 - Illegal line number.

65 - Filename in use for different type file.

66 - Filename in use, being built or replaced.

67 - Filename in use and no exclamation point ('!').

68 - Filename in use by a different account.

69 - File is a processor or driver.

70 - Data read error.

 Error Codes 371

dL4 Language Reference Guide©

71 - No such driver.

72 - Device not accessible.

73 - Device not on line.

74 - Device requires manual intervention.

75 - Line exceeds buffer size.

76 - File or device is open elsewhere.

77 - Directory access denied.

78 - File is being built, replaced, or deleted.

79 - Illegal driver operation.

80 - Disk does not have enough contiguous blocks.

81 - Device profile not set up properly.

82 - Too many channels in use.

83 - Component file deleted or inaccessible.

84 - Internal error in driver.

85 - Array dimension(s) too large.

86 - Illegal subscript value.

87 - Illegal subroutine name (length or illegal characters).

88 - Illegal usage of multi-statement line.

89 - Program not authorized to use privileged function.

90 - Driver resource exhausted.

91 - Variable in CHAIN READ not passed by CHAIN WRITE.

92 - Variable from CHAIN WRITE not in this program.

93 - Variable in CHAIN READ already contains data.

94 - Variable in CHAIN WRITE contains no data.

95 - Input timed out.

96 - Aborted by ALTESCAPE or MESSAGE event.

97 - Unexpected error status returned by system call.

98 - Illegal value entered for input.

99 - ESCAPE trapped by error branch.

100 - Operation interrupted by abortive channel event.

101 - No such error.

102 - No such error.

103 - No such error.

104 - No such error.

105 - No such error.

106 - No such error.

107 - No such error.

108 - No such error.

 Error Codes 372

dL4 Language Reference Guide©

109 - No such error.

110 - No such error.

111 - No such error.

112 - No such error.

113 - No such error.

114 - No such error.

115 - No such error.

116 - No such error.

117 - No such error.

118 - No such error.

119 - No such error.

120 - No such error.

121 - No such error.

122 - No such error.

123 - Record is locked.

124 - Record is not locked.

125 - No such error.

126 - No such error.

127 - No such error.

128 - No such error.

129 - No such error.

130 - No such error.

131 - No such error.

132 - No such error.

133 - No Dynamic Window open.

134 - Dynamic Windows not enabled.

135 - Variable is not a structure.

136 - Structure definition not found.

137 - Structure variable has no declared type.

138 - Structure variable already declared.

139 - No such structure member.

140 - Procedure not found.

141 - Procedure is not a function.

142 - Procedure is not a subprogram.

143 - Procedure parameter multiply declared.

144 - Statement is illegal in a procedure.

145 - Illegal procedure nesting.

146 - Inconsistent procedure declaration or definitio....

 Error Codes 373

dL4 Language Reference Guide©

147 - Illegal variable name declared as procedure.

148 - Illegal procedure name declared as variable.

149 - Type of return value does not match function ty....

150 - Procedure calls are illegal from keyboard.

151 - Message too large.

152 - Port is already in-use.

153 - Illegal port number.

154 - No ports available.

155 - No messages waiting.

156 - Port is not in-use.

157 - Duplicate line label.

158 - Duplicate line number.

159 - Illegal line reference.

160 - Not an indexed file.

161 - Invalid or non-existent index specified.

162 - Key size larger than destination string.

163 - BASIC program has not been successfully compiled.

164 - Unable to load program - invalid file version.

165 - Unable to load program - file can be corrupted.

166 - COM statement out of order.

167 - COM or CHAIN READ variable type mismatch.

168 - TRY blocks nested too deep.

169 - TRY without ELSE.

170 - TRY without END TRY.

171 - RETRY without TRY.

172 - END TRY without TRY.

173 - Statement is illegal in TRY.

174 - DEF STRUCT without END DEF.

175 - MEMBER without DEF STRUCT.

176 - Statement is illegal in DEF STRUCT.

177 - Duplicate member definition.

178 - No members defined.

179 - END DEF without DEF STRUCT.

180 - DO without LOOP.

181 - UNTIL/WHILE at both ends of DO/LOOP.

182 - EXIT DO without DO.

183 - LOOP without DO.

184 - Duplicate OPTION setting.

 Error Codes 374

dL4 Language Reference Guide©

185 - Illegal OPTION setting.

186 - SELECT CASE without END SELECT.

187 - CASE without SELECT CASE.

188 - Lines between SELECT CASE and first CASE.

189 - Missing CASE.

190 - END SELECT without SELECT CASE.

191 - SUB without END SUB.

192 - EXIT SUB not inside a subprogram.

193 - END SUB without SUB.

194 - FUNCTION without END FUNCTION.

195 - EXIT FUNCTION not inside a function.

196 - END FUNCTION without FUNCTION.

197 - WHILE without WEND.

198 - WEND without WHILE.

199 - Statement is illegal in IF.

200 - No such error.

201 - IFs without END IF.

202 - ELSE without IF or TRY.

203 - END IF without IF.

204 - Can't insert line; program must be renumbered.

205 - Line numbers are illegal or overlap lines.

206 - Subprogram file not found.

207 - No such error.

208 - Number/types of arguments do not match param list.

209 - ENTER is illegal if not in a subprogram.

210 - No such error.

211 - Program filename must be specified (no current

212 - Subprogram file is read protected.

213 - Subprogram file is not a BASIC program.

214 - No such error.

215 - No such error.

216 - Param variable in ENTER statement has already b....

217 - The ENTER statement can only be executed once i....

218 - Cannot execute command, all channels are in use.

219 - Program was not interrupted by a SUSPEND statem....

220 - Program change would invalidate running program.

221 - Statement, function, or feature not implemented.

222 - No such character set.

 Error Codes 375

dL4 Language Reference Guide©

223 - Duplicate character set name.

224 - Directory not empty.

225 - Directory has too many links.

226 - Error executing device macro.

227 - Illegal or missing field name.

228 - Illegal DECIMALS setting.

229 - DECIMALS option must be specified for this file....

230 - No field of that name exists.

231 - Duplicate of existing field name.

232 - Field already mapped.

233 - Field is too long for this file type.

234 - Duplicate of existing index name.

235 - Key option not supported by this file type.

236 - Duplicate key in unique index.

237 - File must be empty to define record or index.

238 - Error in source file.

239 - Error in source line.

240 - Unable to link program.

241 - Duplicate procedure name.

242 - Unsatisfied reference to procedure.

243 - Error in link file.

244 - Intrinsic procedure not declared as intrinsic.

245 - Duplicate of intrinsic procedure name.

246 - Intrinsic procedure table contains duplicate symbols.

247 - Long CHAIN attempted.

248 - Procedure not active.

 249 - No such variable.

 250 - Resource in use.

 251 - Program in use.

 252 - Breakpoint not in current program.

 253 - No such breakpoint.

 254 - Open mode not supported by this driver.

 255 - Licensing failure.

 256 - File position limit exceeded.

 257 - System file position limit exceeded.

 258 - Illegal record length.

 259 - Illegal sequence of operations.

 260 - Error in index.

 Error Codes 376

dL4 Language Reference Guide©

 261 - Error on channel.

 262 - Invalid access name or password.

 263 - Unexpected value returned by system call.

 264 - Record data is out of date (modified by other user).

 265 - Not licensed to load or create this program.

 266 - Procedure declared as both intrinsic and non-intrinsic.

 267 - Operation would corrupt file

 268 - Default option changed after options used

 269 - Duplicate structure definition

 270 - Include file not found

 271 - Include files nested too deep

 272 - Procedure not defined in conversion profile

 273 - Not licensed to use this feature

 274 - SQL syntax error

 275 - Additional system error information

 276 - Field definition overlaps an existing field

 277 - Index field definition does not match record field definition

 278 - Index definition does not match actual index

 279 - SQL implementation or configuration limit exceeded

 280 - SQL procedure error

 281 - SQL constraint not satisfied

 32768 - Impossible state detected, interpreter abort.

 dL4 Statements 377

dL4 Language Reference Guide©

Appendix D - dL4 Statements (Quick
Reference)

ADD Define structure of file, or expand file.
ADD INDEX Add an index to a file.
ADD RECORD Add new record to file.
BOX Draw rectangular figure on display device.
BUILD Create and open a file.
CALL BASIC Program Call a BASIC program.
CALL Procedure Call a procedure.
CASE Control complex conditional and branching operations.
CHAIN Transfer control to another program.
CHAIN READ Read variables from a previous program.
CHAIN READ IF Read variables from a previous program.
CHAIN WRITE Write variables to the next program.
CHANNEL Perform a driver-specific command.
CHDIR Change default directory to the path specification.
CLEAR Clear an open channel or initialize variables.
CLOSE Close {all} open channel{s}.
COM Specify common variables.
CONV Convert binary data to decimal, or convert decimal data to binary.
DATA Define internal program data.
DECLARE Declare a procedure which precedes the actual definition.
DEF FN Define user function.
DEFINE RECORD Define a record in a file.
DEF STRUCT Define a structure.
DELETE INDEX Delete an index in a file.
DELETE RECORD Delete current record from a file.
DIM Allocate space for variables.
DO Establish program loops.
DO UNTIL Perform a loop as long as the expression is false.
DO WHILE Perform a loop as long as the expression is true.
DUPLICATE Duplicate a file.
EDIT Format numeric and string expressions.
ELSE Control conditional branching.
END Terminate a running program.
END DEF Define the end of a structure definition.
END FUNCTION End a FUNCTION definition.
END IF End conditional branch.
END SELECT End complex conditional branch.
END SUB End a procedure or function.
END TRY End redirection of error branching.
ENTER Accept arguments into a procedure.
EOFCLR Clear end-of-file branching.
EOFSET Enable end-of-file error setting.
EOPEN Exclusively OPEN a data file.
ERASE Perform driver-class dependent function(s).
ERRCLR Clear error branching.
ERROR Create a dL4 BASIC error to the current running program.
ERRSET Enable branch to statement on error.
ERRSTM Specify statements to execute on an error.
ESCCLR Clear any ESCape branching in effect.
ESCSET Enable branch to statement on ESCape.
ESCDIS Disable Escape key.

 dL4 Statements 378

dL4 Language Reference Guide©

ESCSTM Specify statements to execute on Escape.
EXIT DO Exit a DO loop.
EXIT FOR Exit a FOR/NEXT loop.
EXIT FUNCTION Exit a named function.
EXIT SUB Exit a named subroutine.
EXTERNAL FUNCTION Define an independent function.
EXTERNAL LIB Declare named library file.
EXTERNAL SUB Define an independent subroutine.
FOR Repeat a group of statements.
FREE Deallocate (undimension) variables.
FUNCTION Define a multi-procedure which returns a value.
GET Obtain class-driver dependent parameters from a channel opened to a file.
GOSUB Unconditional branch to internal group of statements, saving return point.
GOTO Unconditional branch to statement.
IF Control conditional branching.
IR ERR 0 Specify a line of statements to execute on the occurrence of an error
IF ERR 1 Specify an error branch.
INPUT Retrieve keyboard or channel input.
INTCLR Clear program interrupt branch.
INTSET Define a branch for program interrupts.
JUMP Transfer control immediately to another location.
KILL Delete a data or program file.
LET Assign values to variables.
LIB Specify a directory name for callable subprograms.
LINE (A function of drivers)
LOOP Mark the end of a group of statements enclosed in a DO loop.
MAP Define the logical index or directory number used within the application.
MAP RECORD Define an alternate item number mapping at run-time.
MAT= Copy an entire matrix.
MAT+ Add elements from two matrices.
MAT* Multiply elements of two matrices.
MAT CON Establish a constant matrix.
MAT IDN Establish an identity matrix.
MAT INPUT Assign keyboard/file input to a matrix.
MAT INV Invert a matrix.
MAT PRINT Print contents of an array or matrix.
MAT RDLOCK Read an array, matrix, or string with locking.
MAT READ Read an array, matrix, or string from DATA or a channel.
MAT TRN Transpose a matrix.
MAT WRITE Write array, matrix, or string to a channel.
MAT WRLOCK Write an array, matrix, or string with locking.
MAT ZER Zero an entire matrix.
MEMBER Define a member associated with a specific structure.
MODIFY Change filename or attributes/permissions.
MOVE Move a window.
NEXT Continuation of FOR loop statement.
ON Conditional branch on value of expression.
OPEN Open {a file for Read and Write access}{a Driver ...}
OPTION Specify a runtime option for the current program unit.
OPTION DEFAULT Specify a runtime option for all program units in the current program.
PAUSE Suspend program execution.
PORT Attach and control other ports.
PRINT Output ASCII to screen, file, or device.
RANDOM Seed random generator for RND function.
RDLOCK Read and unconditionally lock a record.
READ Read variables from DATA structures.
READ RECORD Read an entire structure and update indexes.
RECV Receive communication message.
REM Make a non-executed program comment.

 dL4 Statements 379

dL4 Language Reference Guide©

RESTOR Reset DATA pointer for READ statement.
RETRY Repeat last TRY statement.
RETURN Return from previous GOSUB subroutine call.
REWIND Reset a file to the first data byte.
ROPEN Open a file for Read-only access.
SEARCH (String) Search string for sub-string.
SEARCH (Traditional) Maintain index of an Indexed file.
SEARCH (Modern) Locate a key.
SELECT Select the size of a window, in columns and rows.
SELECT CASE Organize blocks of statements.
SEND Transmit a message to another port.
SET Read and write class-driver dependent parameters on a channel.
SETFP Set file position for sequential access.
SIGNAL Transmit/receive ported messages and pause.
SIZE Select the size of a window in columns and rows.
SPAWN Launch a background BASIC program.
STOP Abnormally terminate a program.
SUB Define subroutine procedure.
SUSPEND Abnormally terminate a program.
SWAP Pause and execute another BASIC program.
SYSTEM Execute system functions and commands.
TRACE Enable statement trace debugging.
TRY Perform single-line or blocked, nested error handling.
UNLOCK Unlock any records on a channel.
WEND With WHILE, block a set of repeated statements.
WHILE With WEND, block a set of repeated statements.
WINDOW Maintain Dynamic Windows.
WOPEN Open a file/device for Write-only.
WRITE Write array, matrix, or string from a channel.
WRITE RECORD Write entire structure and update indexes.
WRLOCK Write and unconditionally lock a record.

 Statements Groups 380

dL4 Language Reference Guide©

Appendix E - dL4 Statement Groups

Introduction
This appendix describes the dL4 statement set by dividing the statements into groups. Each of these
groups, such as File and Device Handling or Windows, should be familiar to you from your previous
programming experience.

Groups
The dL4 statements have been divided into meaningful groups according to function. A subset of all the
statements listed below includes statements that communicate with a channel; these statements are
boldfaced.

GROUP NAME dL4 STATEMENTS IN GROUP
1. File and Device Handling ADD, ADD INDEX , ADD RECORD, BUILD, CHANNEL, CHDIR,

CLEAR , CLOSE, DEFINE RECORD, DELETE INDEX, DELETE
RECORD, DUPLICATE, EOPEN, GET, INPUT, KILL, MAP, MAP
RECORD, MODIFY, OPEN, RDLOCK , READ, READ RECORD,
ROPEN, REWIND, SEARCH, SET, SETFP, UNLOCK, WOPEN,
WRITE , WRITE RECORD , WRLOCK

2. User Subroutines and Functions DECLARE, DEF, END FUNCTION, END SUB, ENTER, EXIT
FUNCTION, EXIT SUB, EXTERNAL FUNCTION, EXTERNAL LIB,
EXTERNAL SUB, FUNCTION, GOSUB, INTRINSIC FUNCTION,
INTRINSIC SUB, LIB, SUB

3. Error and Interrupt Handling END TRY, EOFCLR, EOFSET, ERRCLR, ERROR, ERRSET, ERRSTM,
ESCCLR, ESCDIS, ESCSET, ESCSTM, IF ERR 0, IF ERR 1, INTCLR,
INTSET, TRY, RETRY

4. Arrays and Matrices MAT, MAT INPUT, MAT PRINT, MAT RDLOCK , MAT READ,
MAT WRITE, MAT WRLOCK

5. Data Structures COM, DEF STRUCT, DIM, END DEF, ERASE, MEMBER, FREE, LET
6. Program Flow CALL, CHAIN, CHAIN READ, CHAIN READ IF, CHAIN WRITE,

END, GOTO, JUMP, PAUSE, RETURN, SPAWN, STOP, SUSPEND,
SWAP

7. Blocks and Loops CASE, CASE ELSE, DO, DO UNTIL, DO WHILE, ELSE, END IF, END
SELECT, EXIT DO, EXIT FOR, FOR, IF, LOOP, LOOP UNTIL, LOOP
WHILE, NEXT, ON, THEN, SELECT CASE, WEND, WHILE

8. Communications PORT, RECV, SEND, SIGNAL
9. Windows MOVE, SIZE, WINDOW CLEAR, WINDOW CLOSE, WINDOW

MODIFY, WINDOW OFF, WINDOW ON, WINDOW OPEN
10. Formatting Output PRINT, EDIT
 11. Miscellaneous Statements BOX, CONV, DATA, LINE, OPTION, RANDOM, REM, RESTORE,

SYSTEM, TRACE

In grouping these statements by function, no presumption of evenness is implied, as each group contains
both statements with broad and also others with very specific functionality. No presumption is made about
importance, either, because the relative importance or influence of a statement is dependent on the
individual developer's perception. The statements are grouped only according to the kinds of effects they
have on development.

 Statements Groups 381

dL4 Language Reference Guide©

File and Device Handling
ADD Define structure of file, or expand file.
ADD INDEX Add an index to a file.
ADD RECORD Add new record to file.
BUILD Create and open a file.
CHANNEL Perform a driver-specific command.
CHDIR Change default directory to the path specification.
CLEAR Clear an open channel or initialize variables.
CLOSE Close {all} open channel{s}.
DEFINE RECORD Define a record in a file.
DELETE INDEX Delete an index in a file.
DELETE RECORD Delete current record from a file.
DUPLICATE Duplicate a file.
EOPEN Exclusively OPEN a data file.
GET Obtain class-driver dependent parameters from a channel opened to a file.
INPUT Retrieve keyboard or channel input.
KILL Delete a data or program file.
MAP Define the logical index or directory number used within the application
MAP RECORD Define an alternate item number mapping at run-time.
MODIFY Change a filename or attributes/permission.
OPEN Open {a file for Read and Write access}{a Driver...}
RDLOCK Read and unconditionally lock a record.
READ Read variables from DATA structures.
READ RECORD Read entire structure and update indexes.
ROPEN Open a file for Read-only access.
REWIND Reset a file to the first data byte.
SEARCH (String) Search string for sub-string.
SEARCH (Trad.) Maintain index of Indexed file.
SEARCH (Mod.) Locate a key.
SET Read/write class-driver dependent parameters on channel.
SETFP Set file position for sequential access.
UNLOCK Unlock any records on a channel.
WOPEN Open a file/device for Write-only.
WRITE Write array, matrix, or string from a channel.
WRITE RECORD Write entire structure and update indexes.
WRLOCK Write and unconditionally lock a record.

 Statements Groups 382

dL4 Language Reference Guide©

User Subroutines and Functions
DECLARE Declare a procedure which precedes the actual definition.
DEF FN Define user function.
END FUNCTION End a FUNCTION definition.
END SUB End a procedure or function.
ENTER Accept arguments into a procedure.
EXIT FUNCTION Exit a named function.
EXIT SUB Exit a named subroutine.
EXTERNAL
FUNCTION

Define an independent function.

EXTERNAL LIB Declare named library file.
EXTERNAL SUB Define an independent subroutine.
FUNCTION Define a multi-procedure which returns a value.
GOSUB Unconditional branch to internal group of statements, saving return point.
LIB Specify a directory name for callable subprograms.
SUB Define subroutine procedure.

Error and Interrupt Handling
END TRY End redirection of error branching.
EOFCLR Clear end-of-file branching.
EOFSET Enable end-of-file error setting.
ERRCLR Clear error branching.
ERROR Create a dL4 BASIC error to the current running program.
ERRSET Enable branch to statement on error.
ERRSTM Specify statements to execute on an error.
ESCCLR Clear any Escape branching in effect.
ESCDIS Disable Escape key.
ESCSET Enable branch to statement on Escape.
ESCSTM Specify statements to execute on Escape.
IF ERR 0 Specify a line of statements to execute on the occurrence of an error.
IF ERR 1 Specify an error branch.
INTCLR Clear program interrupt branch.
 INTSET Define a branch for program interrupts.
TRY Perform single-line or blocked, nested error handling.
RETRY Repeat last TRY statement.

 Statements Groups 383

dL4 Language Reference Guide©

Arrays and Matrices
MAT= Copy an entire matrix.
MAT+ Add elements from two matrices.
MAT* Multiply elements of two matrices.
MAT CON Establish a constant matrix.
MAT IDN Establish an identity matrix.
MAT INPUT Assign keyboard/file input to a matrix.
MAT INV Invert a matrix.
MAT PRINT Print contents of an array or matrix.
MAT RDLOCK Read an array, matrix, or string with locking.
MAT READ Read an array, matrix, or string from DATA or a channel
MAT TRN Transpose a matrix.
MAT WRITE Write array, matrix, or string to a channel.
MAT WRLOCK Write an array, matrix, or string with locking.

Data Structures
COM Specify common variables.
DEF STRUCT Define a structure.
DIM Allocate space for variables.
END DEF Define the end of a structure definition.
ERASE Perform driver-class dependent function(s).
MEMBER Define a member associated with a specific structure.
FREE Deallocate (undimension) variables.
LET Assign values to variables.

Program Flow Statements
CALL BASIC Pgm Call a BASIC program.
CALL Procedure Call a procedure.
CHAIN Transfer control to another program.
CHAIN READ Read variables from a previous program.
CHAIN READ IF Read variables from a previous program.
CHAIN WRITE Write variables to the next program.
END Terminate a running program.
GOTO Unconditional branch to statement.
JUMP Transfer control immediately to another location.
PAUSE Suspend program execution.
RETURN Return from previous GOSUB subroutine call.
SPAWN Launch a background BASIC program.
STOP Abnormally terminate a program.
SUSPEND Abnormally terminate a program.
SWAP Pause and execute another BASIC program.

Blocks and Loops
CASE Control complex conditional and branching operations.
DO Establish program loops.
DO UNTIL Perform a loop as long as the expression is false.

 Statements Groups 384

dL4 Language Reference Guide©

DO WHILE Perform a loop as long as the expression is true.
ELSE Control conditional branching.
END IF End conditional branch. .
END SELECT End complex conditional branch.
EXIT DO Exit a DO loop.
EXIT FOR Exit a FOR/NEXT loop.
FOR Repeat a group of statements.
IF Control conditional branching.
LOOP Mark the end of a group of statements enclosed in a DO loop.
NEXT Continuation of FOR loop statement.
ON Conditional branch on value of expression.
WEND With WHILE, block a set of repeated statements.
WHILE With WEND, block a set of repeated statements.

Communications
PORT Attach and control other ports.
RECV Receive communication message.
SEND Transmit a message to another port.
SIGNAL Transmit/receive ported messages and pause.

 Statements Groups 385

dL4 Language Reference Guide©

Windows
MOVE Move a window.
SIZE Select the size of a window in columns and rows.
WINDOW CLEAR Maintain Dynamic Windows.
WINDOW CLOSE
WINDOW MODIFY
WINDOW OFF
WINDOW ON
WINDOW OPEN

Formatting Output
EDIT Format numeric and string expressions.
PRINT Output ASCII to screen, file, or device.

Miscellaneous Statements
BOX Draw rectangular figure on display device.
CONV Convert binary data to decimal, or convert decimal to binary
DATA Define internal program data.
LINE (A function of drivers.)
OPTION Specify a runtime option for current program unit.
OPTION DEFAULT Specify a runtime option for all program units in the current program.
RANDOM Seed random generator for RND function.
REM Make a non-executed program comment.
RESTOR Reset DATA pointer for READ statement.
SYSTEM Execute system functions and commands.
TRACE Enable statement trace debugging.

 Unicode Character Set 386

dL4 Language Reference Guide©

Appendix F - Unicode Character Set

Introduction
Unicode is a 16-bit, fixed-width, uniform text and character encoding scheme. It includes most of world's
written scripts, publishing characters, mathematical and technical symbols, geometric shapes, basic
dingbats and punctuation marks. In addition to modern languages such as Arabic, Bengali and Thai, it also
includes such classical languages as Greek, Hebrew, Pali and Sanskrit.

The Unicode set can represent more than 65,000 characters and includes many of the traditional character
sets. The first 128 characters, i.e. 0x00 - 0x7F, are identical to the ASCII character set. The first 256
characters, i.e. 0x00 - 0xFF, represent the ISO 8859-1, or Latin1 character set. Unicode values 0x2500 -
0x257F and 0x2580 - 0x27BF, represent forms and charts, and special graphics characters, respectively.

One of the advantages of the Unicode character set over other character sets is that it allows data
representation from anywhere in the world in a uniform, plaintext format. In other words, Unicode
simplifies software internationalization.

The following illustrates the Unicode encoding layout.

 0x0000 0x0100 0x0200 0x0600 0xFFFF

 ASCII LATIN 1 ARABIC

Unicode is used internally for all text processing in dL4. Externally, the various drivers at the I/O level
perform any necessary translation to the appropriate character set for a given file or device. Obviously, not
all hardware devices are capable of displaying or printing the full complement of Unicode characters. The
techniques used to handle the Unicode character set are driver-class dependent.

A full definition of the Unicode character set can be found in The Unicode Standard, Worldwide
Character Encoding, Volumes I and II, published by Addison -Wesley.

 Unicode Character Set 387

dL4 Language Reference Guide©

Index
Accept arguments into a procedure101
access mode ..321
ADD - Add Full-ISAM file record...............................57
ADD INDEX - Define index to identify parts of key .58
Add new record to Full-ISAM file See ADD RECORD

statement
ADD RECORD - Add new record to Full-ISAM file 59
ADDMD5 - Checksum..237
Allocate space for variables ...86
AND ...302
Arrays

as Data Type ...3
ASC2EBCDIC...238
ATOE ...239
Attaching a Port ..176, 345
Auto-Dimensioning ..7
Automatic dimensioning...7
AVAILBLKS...240
AVPORT ...241
background ...211
Background Programs ...175
Base 10000 Representations ...3
BASE64$..242
BASE64?..243
BASIC Error Codes

Listed ..369
BCD Representations..3
Binary data..5
Binary Data Conversion...75
Binary Data Type..3
Binary Input..34
Binary Input Mode..219
Binary Output ...34
Binary Output Mode...219
BITMANIP - Numeric BIT Manipulation................244
BITS representation..245
BITSNUMSTR..245
Boolean expressions ..20
Boolean operators ...17
BOX - Draw an onscreen rectangle or square60
Branch

Unconditional ..131
Branching

Conditional ...93
BUILD - Build and open a new file61
Build and open a new fileSee BUILD statement
BYTECOPY ..246
cache ...315
CALL

Call external BASIC or C subroutine63, 64

Call an External function...119
CALL DRAWIMAGE ...274
CALL DUPCHANNEL..275
CALL ENV ...279
CALL Statements

Listed ..236
CALLSTAT...247
CALLSTAT$...248
CASE - Multi-way branching statement65
CHAIN - Transfer control to another program66
CHAIN READ - Read variables from a previous

program ...67
CHAIN READ IF – Conditionally read variables from

a previous program ..68
CHAIN WRITE - Write variables to the next program

..69
chan.cmd

CHANNEL statement...70
Change default directory to the path specification See

CHDIR statement
Change logical unit...255
CHANNEL - Perform a driver-specific command70
Channel Expressions

Description ..21
channel number ..284
Character Data Type...3
character sets ..260
CHDIR - Change default directory to the path

specification...71
CHECKDIGITS ...249
CHECKNUMBER..250
checksum ..237, 303
Checksum ...252
CHSTAT..251
CKSUM ...252
CLEAR - Clear an open channel or initialize variables

..72
Clear an open channel or initialize variables72
Clear any ESCAPE branching in effect111
Clear error branching ..107
Clear outstanding signals..209
Clear program interrupt branch...............................138
CLEARSTR ..253
CLOSE - Close open channel73
Close open channels..73
CLOSEALL ..254
CLU..255
COM - Specify common variables74
Command

BYE from a program ..219

 Index 388

dL4 Language Reference Guide©

NEW from a Program...219
comment ...188
communication..187
Concatenation operators ...16
Conditional GOSUB ...168
Conditional GOTO ...168
Conditionally read variables from a previous program ..68
Control complex conditional and branching operationsSee

CASE statement
Control conditional branching132
CONV - Convert binary to decimal and decimal to

binary ...75
Conventions ...1
Convert characters ..256
Convert date..264
Convert date to string using a mask..............................265
Convert decimal to octal ...268
CONVERTCASE..256
Copy a file ..91
Copy a Matrix ...149
Copy bytes ..246, 294, 295
COPYSTR ...257
CRC16 ...258
CRC32 ...259
Create polyfile ..356
CTRL C Branching ..138
custom character sets ..260
CUSTOMCHARACTERSET260
cyclic reduncancy code...258, 259
cyclic redundancy code...308
data ...189
DATA - Define internal program data77
data item ...189
Data Type

Binary ..5
Data Types...3

Date ..5
Listed..3
Numeric Data ..3
String Data ..4

date ...342
Date

Current ..14
Day of Year ..14

DATE ...263
Date Data Type...3
Dates ...5
DATETOJULIAN ..264
DATEUSING$..265
DBASE ...267
Deallocate variables ..126
Debugger mode...212, 215
DECLARE - Declare a procedure which precedes the

actual definition ..78
Declare a procedure which precedes the actual definition

.. See DECLARE statement
Declare named library file ..121

DECTOOCT ...268
DEF - Defines user function...79
DEF STRUCT

DIM Statement ...87
General Form..8
Related to MEMBER..9

DEF STRUCT - Define a structure.............................81
Define a branch for program interrupts139
Define a structure ...81
Define an alternate item number mapping at run-time .148
Define an independent subroutine122
Define end of program definition95
Define index to identify parts of key . See ADD INDEX
Define internal program data77
Define multi-line procedure which returns a value .127
DEFINE RECORD - Define a record in a file80
Defines the logical index or directory number used within

the application ..147
Delete a data or program file ..141
DELETE INDEX - Delete an index in a file84
DELETE RECORD - Delete current record from a

file...85
Deleting Files ...141
DEVCLOSE ..269
DEVOPEN ..270
DEVPRINT ...271
DEVREAD ..272
DEVWRITE ..273
DIM - Allocate space for variables..............................86
dimension ...287
DO - Establish program loops88
DO UNTIL - Perform a loop as long as the expression

is false...89
DO WHILE - Perform a loop as long as the expression

is true ...90
Draw an onscreen rectangle or square See BOX

statement
DUPLICATE - Copy a file...91
Duplicate channels..275
Dynamic Windows

WINDOW Statement226, 227, 228, 229, 230, 231
dynamicXport CALLs ..236
EBCDIC ...238, 239, 281
Echo..328
ECHO ..276
Echo Control...219
EDIT - Format numeric and string expressions92
EDITFIELD ..277
ELSE IF - Control conditional branching..................93
Enable branch to statement on ESCAPE113
Enable branching on errors...109
Enable statement trace debugging221
END - Terminate a running program.........................94
End a function block...96
End a procedure or a function99
End a redirection of error branching100
End a WHILE block ..224

 Index 389

dL4 Language Reference Guide©

End complex conditional and branching operations .98
End conditional branching...97
END DEF -Define the end of a structure definition ..95
END FUNCTION - End a FUNCTION Block96
END IF - Control conditional branching (See IF

Statement)..132
END SELECT - End complex conditional and

branching operations..98
END SUB - End a procedure or a function99
END TRY - End a redirection of error branching ..100
End-of-file branching ...103
E-Notation ..3
ENTER - Accept arguments into a procedure101
environment variable ..279
Environment Variable

AVAILREC..196
GOSUBNEST...130
INPUTSIZE..77
MAXPORT...211
PREALLOCATE..196
Retrieving Values ...220
TABSIZE..180

EOF
Error branching...104

EOFCLR - Clear end-of-file branching....................103
EOFSET Statement ..104
EOPEN ..301
EOPEN Statement ..105
ERASE - Perform driver-class dependent functions

..106
ERRCLR - Clear error branching107
ERRMSG$...280
ERROR - Generate a dL4 error to the current

running program ..108
ERRSET - Enable branching on errors...................109
ERRSTM - Specify statements to execute on an error

..110
escape key...112, 113, 114
ESCCLR - Clear any ESCAPE branching in effect 111
ESCDIS - Disable ESCAPE key112
ESCSET - Enable branch to statement on ESCAPE

..113
ESCSTM - Specify statements to execute on ESCAPE

..114
ETOA ...281
Exclusively OPEN a data file105
Execute function of specific driver...............................145
Execute system functions and commands.................219
Exit a DO loop..115
Exit a FOR/NEXT loop. ...116
Exit a named function...117
Exit a named subroutine ..118
EXIT DO - Exit a DO loop...115
EXIT FOR - Exit a FOR/NEXT loop........................116
EXIT FUNCTION - Exit a named function117
EXIT SUB - Exit a named subroutine118

EXTERNAL FUNCTION - Call an External function
..119

EXTERNAL LIB - Declare named library file121
EXTERNAL SUB - Define an independent subroutine

..122
File directory ..319
file position...204
File Specification...358
file.spec

Definition ...358
FILEINFO...282
Filename

Changing names and protections165
Find available port..241, 309
FINDCHANNEL ..284
FINDF..285
FLUSHALLCHANNELS ..286
FMTOF..287
FOR - Loop or repeat a group of statements124
FOR without matching NEXT......................................369
FORCEPORTDUMP ...288
FORMATDATE ...290
FOR-NEXT loops

Nested too deep ..369
FREE - Deallocate (undimension) variables126
FUNCTION - Define multi-line procedure which

returns a value ..127
Functions - User Defined..79
GATHER...291
Generate dL4 error to current running program108
GET - Obtain class-driver dependent parameters

from a channel opened to a file..............................129
GETGLOBALS ..292
GETREGISTRY...293
Glossary of dL4 Terms...364
GOSUB

Nested too deep ..369
GOSUB - Unconditional branch to internal group of

statements, saving return point130
GOSUB subroutine call, return from prior191
GOTO - Unconditional branch to a statement131
GOTO (Computed) ..140
Group, of Statements

Arrays and Matrices ...383
Blocks and Loops ...383
Communications...384
Data Structures ...383
Error and Interrupt Handling382
File and Device Handling ...381
Formatting Output ..385
Miscellaneous Statements...385
Program Flow Statements...383
User Subroutines and Functions382
Windows...385

HOT_KEY Swapping...340
IEEE BCD Representations..3
IF ERR Statement ..134

 Index 390

dL4 Language Reference Guide©

Immediate Mode...54
IMSMEMCOPY ...294
IMSPACK ...295
index ...195
INITERRMSG ..296
INPBUF - Append data to Type-ahead buffer.........297
INPUT - Retrieve keyboard or channel input.........135
INTCLR - Clear program interrupt branch138
Interrupts ..139
Introduction To This Guide ...1
INTSET - Define a branch for program interrupts.139
IRISOS95...298
ISSQLNULL ...299
italic type ..1
julian ...264, 300
JULIANTODATE ..300
JUMP - Transfer control immediately to another

location...140
keyed...198
keyed file ..195
Keywords.. See Reserved Words
KILL - Delete data or program file...........................141
Labels ...54, 56
Launch a background BASIC program211
LET - Assign values to variables142
LIB - Specify a directory name for callable

subprograms..144
LINE - Execute function of specific driver145
Line Identification ..56
Line numbers ..54
Line Numbers..56
line-no...56
Locate ...198
LOCK ..301
Locking a record

RDLOCK Statement ...183
Locking a record...235
LOGIC - Perform Logical Operations......................302
loop ...225
LOOP - Mark the end of a group of statements

enclosed in DO loop ..146
MAP - Define logical index or directory number used

within application ...147
MAP RECORD - Define alternate item number

mapping at run time ...148
MAT * - Multiply elements of two matrices.............151
MAT + - Add elements from two matrices150
MAT = - Copy an entire matrix149
MAT CON - Establish a constant matrix152
MAT IDN - Establish an identity matrix..................153
MAT INPUT - Assign keyboard/file input to a matrix

..154
MAT INV - Invert a matrix155
MAT PRINT - Print contents of array or matrix156
MAT RDLOCK - Read an array, matrix, or string

with locking ...157

MAT READ - Read an array, matrix, or string from
DATA or a channel...158

MAT TRN - Transpose a matrix...............................159
MAT WRITE - Write array, matrix, or string to a

channel...160
MAT WRLOCK - Write an array, matrix, or string

with locking ...161
MAT ZER - Zero an entire matrix162
Matrix Addition ..150
Matrix Constant ...152
Matrix Identity ...153
Matrix Input ...154
Matrix Inversion ...155
Matrix Multiplication...151
Matrix Transpose ...159
Matrix Zero ...162
MD5? ...303
Member...8

DEF STRUCT statement ..8
MEMBER - Define member of specific structure....163
MEMCMP...304
MEMCOPY ..305
message...202, 205
MISC47..306
MISCSTR..307
Mnemonic Codes ..43
Mnemonics Miscellaneous ..32
Mnemonics applied to the cursor position27
Mnemonics Coordinate Grid32
Mnemonics for Drawing ..31
Mnemonics for Extended Graphics43
Mnemonics for Graphic User Interfaces35
Mnemonics for Keyboard and Auxiliary Port25
Mnemonics for special I/O Control.............................33
Mnemonics to Clear/Reset the Terminal26
Mnemonics to control attributes28
Mnemonics to Control Color29
Mnemonics to transmit data..30
MODIFY - Change filename or other

attributes/permissions ..165
MOVE - Move a window ...166
Move a window ...166
Multiple Statement Lines ...56
Multi-statement lines ..56
NCRC32 ..308
NEXT - Continue FOR Loop Statement167
NEXT without matching FOR......................................369
NEXTAVPORT ..309
NOT ...302
Numeric

Precision ...3
Numeric Data..3
Numeric Data Type ..3
Numeric Formatting...92
Obtain class-driver dependent parameters from a channel

opened to a file ...129, 203

 Index 391

dL4 Language Reference Guide©

ON - Perform conditional branch on value of
expression ..168

op.code
CONV statement...75

OPEN Statement...169
Opening a file ..169, 193
Operator Precedence ..15
Operators

Unary + -...16
OPTION - Specify runtime option for current

program ...171
OR ..302
Organizes statement blocks ..200
Output ASCII to screen, file, or device180
Pack numeric data...310, 311, 314
Parent Process...217
PAUSE - Suspend program operation174
Pause and execute another BASIC program............217
PCHR$..5
Perform a driver-specific command

/tSee CHANNEL statement70
Perform single-line or blocked, nested error handling .222
permissions ...165
Phantom Ports...175, 345
PKDEC20 ..310
PKDEC45 ..311
PKRDX5018 ..312
PKRDX5048 ..313
PKUNPKDEC ...314
port..202
PORT - Attach and control other ports....................175
Precision ...3

Defaults...4
precison...287
Predefined functions

listed..10
PRINT - Output ASCII to screen, file, or device180
Print contents of array or matrix156
Program

Suspend Operation ...174
program dump...288
Program Interrupts ..138
Program Loops ...167
PROGRAMCACHE...315
PROGRAMDUMP ...317
Quick Reference

dL4 Statements, by Group ..380
Listing of dL4 Statements...377

Radix 50..312, 313, 353, 354
RANDOM - Seed random generator for RND function

..182
Random Number Generator......................................182
RDFHD ..319
RDLOCK - Read and unconditionally lock a record

..183
Read a record and Lock ...183

Read an array, matrix, or string from DATA or a channel
..158

Read an array, matrix, or string with locking157
READ Statement ..184
Read variables from a previous program........................67
Read-Only ..193
READRECORD - Read an entire structure186
READREF...321
Receive communication messages187
RECV - Receive communication messages...............187
Re-dimensioning variables...7
rel.op

relational operator...90
Relational operators..17
REM - Make non-executable program comment188
RENAME ..324
Repeat last TRY statement ..190
REPLACECI...326
REPLACEL ..325
Reserved Words ...366
Reset a file ..192
RESTOR - Reset DATA pointer for READ statement

..189
Retrieve keyboard or channel input..............................135
RETRY - Repeat last TRY statement.......................190
RETURN

without GOSUB ...369
RETURN - Return from prior GOSUB subroutine call

..191
Return from prior GOSUB subroutine call...................191
REWIND - Reset a file to the first data byte............192
RMVSPACES ...322
RMVSPACESI..323
RND function

In RANDOM statement..182
ROPEN - Open a file for Read-Only access193
SCATTER ...327
SEARCH (Modern) ...198
SEARCH (Traditional) Statement195
SEARCH - Search string for sub-string194
Search string ...337, 338
Seed ..182
SELECT CASE - Organizes statement blocks.........200
Select the size of a window in columns and rows210
SEND - Transmit a message to another port202
SET - Read and write driver-specific parameters on a

channel...203
Set file position for sequential access...........................204
SETECHO...328
SETFP - Set file position for sequential access204
SETGLOBALS ...329
SETREGISTRY..330
SIGNAL- Transmit/receive ported messages and

pause ..205, 207
SIZE - Select the size of a window in columns and

rows..210
SORTINSTRING ...331

 Index 392

dL4 Language Reference Guide©

SPAWN - Launch a background BASIC program..211
Specify a directory name for callable subprograms......144
Specify common variables..74
Specify statements to execute on an error110
Specify statements to execute on ESCAPE...............114
SQLNULL ...332
SQLNULL# ...333
SQLNULL$...334
Statement

RETURN ...192
Statements...54, 56

Multiple on a single line ...56
Structure..54

STOP - Terminate program and enter Debugger mode
..212

str.lit..4
String

Data...4
Definition..4
literals ...4

STRING ...335
String constants...4
string functions ...307, 335, 350
String Operator USING ...18
String Processing

Rules governing...21
string search..336
String search ...339
STRINGSEARCH ..336
STRSRCH1 ...337
STRSRCH44 ...338
STRSRCH81 ...339
structure ..186, 234
Structure

definition...8
Structures

as Data Type ...3
SUB - Define subroutine procedure214
subprograms..63
subroutine ...214
Subscripts ...6
sub-string ..194
SUSPEND - Terminate program and enter Debugger

mode ...215
Suspend program ..207
SWAP - Pause and execute another BASIC program

..217
SWAPF - Define HOT-KEY Swapping340
Syntax Used In This Guide ..1
SYSRC ...341
SYSTEM - Execute system functions and commands

..219
system signal...208
Terminal

Output Processing to Terminals and Channels23
Terminate a running program94
Terminate program and enter Debugger mode212, 215

TIME ...342
TRACE - Enable statement trace debugging221
Trace debugging ...221
Trace Mode...220
Transfer control immediately to another location.........140
TRANSLATE..343
Transmit message to another port.................................202
Transmit/receive ported messages and pause205
TRIM$...344
TRXCO - Transmit Command to Phantom Port345
TRY - Perform single line or blocked, nested error

handling ...222
Type Ahead Buffer ...297
type-ahead buffer..297
UBASC ..347
UBCHR$..348
UBMEM ..349
UBSTRING ...350
Unconditional branch to a statement131
Unconditional branch to internal group of statements,

saving return point..130
Undimension variables ...126
Unicode Character Set

General Description..386
UNLOCK - Unlock any locked records on a channel

..223
Unlock any locked records on a channel223
Unpack numeric data ..351, 352
UNPKDEC21 ..351
UNPKDEC46 ..352
UNPKRDX5019 ..353
UNPKRDX5049 ..354
USINGSee String Operator USING
Validate numeric field ..249, 250
Variable

Assignment ..142
De-allocation ..219

Variable Allocation...86
Variable Naming ..6
Verify date ..355
VERIFYDATE..355
VOLLINK ...356
WEND - Block a set of repeated statements.............224
WHILE

Block a set of repeated statements225
WHOLOCK ..357
WINDOW - Maintain Dynamic Windows226, 227,

228, 229, 230, 231
Window, select size of..210
WOPEN - Open a file/device for write only232
WRITE - Write array, matrix, or string from a

channel...233
Write an array, matrix, or string with locking161
Write array, matrix, or string from a channel233
Write array, matrix, or string to a channel....................160
Write entire structure and update indexes234
Write variables to the next program...........................69

 Index 393

dL4 Language Reference Guide©

WRLOCK Statement ...235 XOR ...302

